Assignment 5.

Recall "Koopmanism": if Φ a measure preserving map of a probability space (X, μ) then the induced unitary operator U on $L^2 = L^2(X, \mu)$ given by $Uf(p) = f(\Phi(p))$ is a unitary operator. In class we showed, or I at least I hope we showed:

• (i) Φ is ergodic if and only if the only L^2 solutions to Uf = f are the constant functions f, and that

• (ii) Φ is mixing if and only if for all $f, g \in L^2$ we have $\langle U^n f, g \rangle \to \int f \int g$.

Exercises 1 and 2 apply these considerations to the cat map from assignment 3, exercise 1. Recall that any $f \in L^2(\mathbb{T}^2)$ can be expanded in a Fourier series: $f = \sum a_{p,q} e_{p,q}$ where $e_{p,q}(x, y) = exp(2\pi i(px + qy))$ Here (x, y) are standard toral coordinates so both x, y are to be viewed mod 1.

1. Complete the following exercise to show the ergodicity of the cat map.

a) Show that $Ue_{p,q} = e_{A(p,q)}$ where A is the linear operator defining the cat map: A(p,q) = (2p+q, p+q).

b) Show that Uf = f if and only if the Fourier coefficients $a_{p,q}$ of f satisfy $a_{p,q} = a_{A^{-1}(p,q)}$

c) Think of $(p,q) \in \mathbb{Z}^2$, the integer lattice. The operators A and A^{-1} act on the integer lattice. Re-interpret (b) as follows: Uf = f if and only if the Fourier coefficients are constant along the orbits of A acting on \mathbb{Z}^2 . What do these orbits look like? Are they ever bounded?

d) Show that the only bounded orbit for A acting on the integer lattice is the orbit of (0,0).

e) We have $\int |f|^2 = \Sigma |a_{p,q}|^2$ from which it follows that if $f \in L^2$ then the Fourier coefficients must satisfy $a_{p,q} \to 0$ as $(p,q) \to \infty$.

f) Combine these steps to conclude that the only L^2 solution to Uf = f is $f = a_{0,0} = \text{const.}$

2. Complete the following exercise to show mixing of the cat map.

a) Argue by linearity and limits that it is enough to check item (ii) above for f, g pairs of basis functions $e_{p,q}$.

b) The only basis function with average nonzero is $e_{0,0}$.

c). If $(p,q) \neq (0,0)$ and $(r,s) \in \mathbb{Z}^2$ is given, then for all n large enough $A^n(p,q) \neq (r,s)$.

d) Now verify (ii) for all pairs f, g of basis functions.

3. [Variational vector field] Let $X : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector field, Φ_t its flow, and $c(t) = \Phi_t(x_0)$ the solution to $\dot{c} = X(c)$ with initial condition x_0 . Fix a time τ . Then $\Phi_\tau : \mathbb{R}^n \to \mathbb{R}^n$ is a (typically nonlinear) diffeomorphism. Show that $D\Phi_\tau(x_0) : \mathbb{R}^n \to \mathbb{R}^n$ is the linear operator defined as follows. Let $A(t) = DX(c(t)) : \mathbb{R}^n \to \mathbb{R}^n$ be the time-dependent linear operator whose matrix entries are the Jacobian matrix of X along c(t). Solve the time-dependent linear system $dv/dt = A(t)v(t), v(t) \in \mathbb{R}^n$, with initial condition $v(0) = v_0$. Show that $D\Phi_\tau(x_0) : \mathbb{R}^n \to \mathbb{R}^n$ is given by $D\Phi_\tau(x_0)(v_0) = v(\tau)$.

Hint: associated to v_0 we have the curve of initial conditions $x(\epsilon) = x_0 + \epsilon v_0$ and associated solution curves $c_{\epsilon}(t) = \Phi_t(x(\epsilon))$. Let $\delta c(t) = \frac{d}{d\epsilon}|_{\epsilon=0}c_{\epsilon}(t)$. Show that $\delta c(t)$ satisfies the same time-dependent linear system as v(t) does, and has the same initial condition.

Special case: If $X(p_0) = 0$ and $A = DX(p_0)$, then show that $D\Phi_{\tau}(p_0)v_0 = exp(\tau A)v_0$.