Assignment 5.

Recall "Koopmanism":if Φ a measure preserving map of a probability space (X, μ) then the induced unitary operator U on $L^{2}=L^{2}(X, \mu)$ given by $U f(p)=$ $f(\Phi(p))$ is a unitary operator. In class we showed, or I at least I hope we showed:

- (i) Φ is ergodic if and only if the only L^{2} solutions to $U f=f$ are the constant functions f. and that
- (ii) Φ is mixing if and only if for all $f, g \in L^{2}$ we have $\left\langle U^{n} f, g\right\rangle \rightarrow \int f \int g$.

Exercises 1 and 2 apply these consideratiosn to the cat map from assignment 3, exercise 1. Recall that any $f \in L^{2}\left(\mathbb{T}^{2}\right)$ can be expanded in a Fourier series: $f=\Sigma a_{p, q} e_{p, q}$ where $e_{p, q}(x, y)=\exp (2 \pi i(p x+q y) /$ Here (x, y) are standard toral coordinates so both x, y are to be viewed mod 1.

1. Complete the following exercise to show the ergodicity of the cat map.
a) Show that $U e_{p, q}=e_{A(p, q)}$ where A is the linear operator defining the cat map: $A(p, q)=(2 p+q, p+q)$.
b) Show that $U f=f$ if and only if the Fourier coefficients $a_{p, q}$ of f satisfy $a_{p, q}=a_{A^{-1}(p, q)}$
c) Think of $(p, q) \in \mathbb{Z}^{2}$, the integer lattice. The operators A and A^{-1} act on the integer lattice. Re-interpret (b) as follows: $U f=f$ if and only if the Fourier coefficients are constant along the orbits of A acting on \mathbb{Z}^{2}. What do these orbits look like? Are they ever bounded?
d) Show that the only bounded orbit for A acting on the integer lattice is the orbit of $(0,0)$.
e) We have $\int|f|^{2}=\Sigma\left|a_{p, q}\right|^{2}$ from which it follows that if $f \in L^{2}$ then the Fourier coefficients must satisfy $a_{p, q} \rightarrow 0$ as $(p, q) \rightarrow \infty$.
f) Combine these steps to conclude that the only L^{2} solution to $U f=f$ is $f=a_{0,0}=$ const.
2. Complete the following exercise to show mixing of the cat map.
a) Argue by linearity and limits that it is enough to check item (ii) above for f, g pairs of basis functions $e_{p, q}$.
b) The only basis function with average nonzero is $e_{0,0}$.
c). If $(p, q) \neq(0,0)$ and $(r, s) \in \mathbb{Z}^{2}$ is given, then for all n large enough $A^{n}(p, q) \neq$ (r, s).
d) Now verify (ii) for all pairs f, g of basis functions.
3. [Variational vector field] Let $X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth vector field, Φ_{t} its flow, and $c(t)=\Phi_{t}\left(x_{0}\right)$ the solution to $\dot{c}=X(c)$ with initial condition x_{0}. Fix a time τ. Then $\Phi_{\tau}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a (typically nonlinear) diffeomorphism. Show that $D \Phi_{\tau}\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the linear operator defined as follows. Let $A(t)=D X(c(t)): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the time-dependent linear operator whose matrix entries are the Jacobian matrix of X along $c(t)$. Solve the time-dependent linear system $d v / d t=A(t) v(t), v(t) \in \mathbb{R}^{n}$, with initial condition $v(0)=v_{0}$. Show that $D \Phi_{\tau}\left(x_{0}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by $D \Phi_{\tau}\left(x_{0}\right)\left(v_{0}\right)=v(\tau)$.

Hint: associated to v_{0} we have the curve of initial conditions $x(\epsilon)=x_{0}+\epsilon v_{0}$ and associated solution curves $c_{\epsilon}(t)=\Phi_{t}(x(\epsilon))$. Let $\delta c(t)=\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} c_{\epsilon}(t)$. Show that $\delta c(t)$ satisfies the same time-dependent linear system as $v(t)$ does, and has the same initial condition.

Special case: If $X\left(p_{0}\right)=0$ and $A=D X\left(p_{0}\right)$, then show that $D \Phi_{\tau}\left(p_{0}\right) v_{0}=$ $\exp (\tau A) v_{0}$.

