Assignment 4.

1. Consider the sphere $S^{n}=\left\{q \in \mathbb{R}^{n+1}:\langle q, q\rangle=1\right\}$ In class we asserted that the geodesic equations on this sphere can be written in the form

$$
\begin{equation*}
\ddot{q}=\lambda(t) q(t) \tag{1}
\end{equation*}
$$

where $\lambda(t)$ is a scalar. Derive that $\|\dot{q}(t)\|$ and $\lambda(t)$ are constant along any solution to this equation, provided the solution $q(t)$ indeed lies on the sphere. HINT: repeatedly use the relation $d / d t\langle A(t), B(t)\rangle=\langle\dot{A}, B\rangle+\langle A, \dot{B}\rangle$ for differentiating dot products.
2. The Poincaré metric on the upper half plane $y>0$ is $d s^{2}=\left(d x^{2}+d y^{2}\right) / y^{2}$. Derive the geodesic equations. Verify that half circles orthogonal to the ideal $(y=0)$ are geodesics.

