Assignment 1.

1. For which polynomials $P(x), x \in \mathbb{R}$ is the flow of $\dot{x}=P(x)$ a complete flow on the real line?
2. Let $P(x)$ be polynomial of degree N on the real line having N distinct zeros x, all satisfying $-1 \leq x \leq 1$. (For example, P might be a Legendre polynomial.)
a) Sketch a phase portrait of the system $\dot{\theta}=P(\cos (\theta))$ on the standard circle, parameterized by $\theta \in[0,2 \pi]$. (Take N a small integer to make it simple.)
b) Suppose you start off with $\theta(0)=\theta_{*}$ such that $\cos \left(\theta_{*}\right)$ lies between two consecutive zeros of $P(x)$, say, $x_{i}<\cos \left(\theta_{*}\right)<x_{i+1}$ Show that, as $t \rightarrow \infty$, we have $\theta(t) \rightarrow \theta_{\infty}$ where $\cos \left(\theta_{\infty}\right)$ equals either x_{i} or x_{i+1}. How can you know which one $\theta(t)$ tends to , the angle corresponding to x_{i} or to x_{i+1} ?
$* *$
Assignment 2.
3. We defined the Poincare section of a periodic orbit for a vector field. Let Σ, Σ^{\prime} be two Poincare sections to the same orbit c, and passing through the same point $p=c(0)$ of c, and let $\Psi: \Sigma, p) \rightarrow(\Sigma, p), \Psi^{\prime}:\left(\Sigma^{\prime}, p\right) \rightarrow\left(\Sigma^{\prime}, p\right)$ be the corresponding Poincare maps. Prove that the two maps are locally conjugate: there is a smooth map $(\Sigma, p) \rightarrow\left(\Sigma^{\prime}, p\right)$ which is a diffeomorphism at p and is such that $\Phi \circ \Psi=\Psi^{\prime} \circ \Phi$. (All maps are only defined in a neighborhood of p and take p to itself.)
4. Suppose that the unit circle is a periodic orbit for a smooth vector field on the plane \mathbb{R}^{2}. The line segment joining $(1-\epsilon, 0)$ to $(1+\epsilon, 0)$ is a slice to this orbit, so defines a Poincare section Use the interval $(-\epsilon, \epsilon)$ to coordinatize this slice by sendig x to $(1+x, 0)$. Prove that it is not possible for the map $x \mapsto-x$ to represent the Poincare map associated to our slice.
$* *$
Assignment 3. [Some maps]
5. Let $F: \mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ denote the standard flat torus. The Arnol'd cat map is the map $\mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ defined by the matrix $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$ Thus the cat map is the $\operatorname{map}(x, y) \bmod 1 \mapsto(2 x+y, x+y) \bmod 1$.
a) Find the fixed points of F.
b) Find the points of order 2, ie, those points p such that $F(F(p))=p$.
c) Describe all periodic points for F.
d) Find the stable and unstable manifolds of the fixed point you found in a). Hint: look at how points on the eigenlines of A evolve upon iterating A forward or backward.
6. Define the continuous piecewise linear "tent maps $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ by the conditions

- $f(0)=0$
- $f(1 / 2+x)=f(1 / 2-x)$
- $f^{\prime}(x)=k$ for $x<1 / 2$.
a) For k small, show that 0 is a global sink: $x_{n} \rightarrow 0$ if $x_{n+1}=f\left(x_{n}\right)$ is an orbit.
b) Show for $k \gg 1$ almost all orbits escape to minus infinity.
c) The case $k=3$. Show that the set of all x whose orbit under f_{3} is bounded is equal to the standard Cantor set
d) Take the case $k=2$. Show that f_{2} maps the unit interval to itself and that there is a semi-conjugacy between the doubling map $g(x)=2 x$ on the circle, viewed as the has a unique maximum

3. [borrowed from Devaney] a) Show that the unimodal map $f(x)=1-2 x^{2}$ from the interval $[-1,1]$ to itself is semi-conjugate to the doubling map $D: \theta \mapsto 2 \theta$ on the standard circle by making the substitution $p(\theta)=-\cos (\theta)$. That is, we have a commutative diagram involving f, p, D so that $f \circ p=p \circ D$
b) Conclude that f has orbits of any desired period, and that the set of periodic orbits is dense in the interval.
