Homework 6: Lie groups.

1. The Lie group $O(n)$, as a set, is the solution space to the quadratic matrix equation

$$
A A^{t}=I d .
$$

within the space $g l(n, \mathbb{R})=\operatorname{End}(\mathbb{V})$ all real n by n matrices. It may help to think of $g l(n)=$ $\operatorname{End}(\mathbb{V})$ where $\mathbb{V}=\mathbb{R}^{n}$. The left hand side of this equation defines a map $F(A)=A A^{t}$ from the real vector space $\operatorname{End}(\mathbb{V})$ to the real vector space $\operatorname{Sym}(\mathbb{V})$ of symmetric operators (or matrices) on \mathbb{V}.
a) Compute the derivative of F at a matrix $A_{0} \in \operatorname{End}(\mathbb{V})$ using the method of curves. Your formula should be one for a linear operator $B \mapsto d F_{A_{0}}(B)$.
b) Show that the identity, Id, is a regular value for F.
c) From (b) conclude that $O(n)$ is a manifold.
d) Compute the dimension of $O(n)$ and describe its tangent space at $A=I$.
e) Show that $O(n)$ is a Lie group.
2. Repeat problem 1 for $U(n)$ which is defined by $A A^{*}=I d$, where $A \subset g l(n, \mathbb{C})$ the space of all n by n complex matrices and where A^{*} is its hermitian conjugate: the matrix whose entries are the conjugates of the transpose of A. Begin by identifying the right target vector space for $A \mapsto A A^{*}$.
3. Repeat problem 1 for the symplectic group $S p(n)$. To define $S p(n)$ choose a symplectic form ω for a real vector space \mathbb{V} of dimension $2 n$. Then $S p(n)=S p(\omega) \subset G L(2 n)=G l(\mathbb{V})$ is defined by the equation

$$
\omega(A v, A w)=\omega(v, w) \text { for all } v, w \in \mathbb{V}
$$

You will need to do a 'step 0" in order to place the definition of $S p(n)$ into the context of problem 1. Step 0. The Darboux theorem in its simplest form asserts that \mathbb{V} admits linear 'Darboux' coordinates $q^{1}, \ldots, q^{n}, p_{1}, \ldots p_{n}$ such that $\omega=\sum_{i=1}^{n} d p_{i} \wedge d q^{i}$. Now define a linear operator J by

$$
\omega(v, w)=\langle v, J w\rangle
$$

where the inner product $\langle\cdot, \cdot\rangle$ is the one for which the Darboux coordinates are orthonormal. Verify that J has the q, p block form

$$
J=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)
$$

Use J now to define a quadratic equation for $A \in S p(n)$ similar to that defining $O(n)$. Now continue with the rest of the steps. (Warning: there are two different Lie groups both commonly denoted " $S p(n)$ ". I am using the one that does not involve quaternions!)
4. Look up what it means for a manifold to be 'parallelizable'. Prove that every connected Lie group is parallelizable.
5. The quaternions \mathbb{H} are a real 4 -dimensional algebra with basis $1, i, j, k$. Look up the definition of the quaternions. Look up the definition of quaternionic conjugation $q \mapsto \bar{q}$.
a) Prove that the group of unit quaternions: $\{q: q \bar{q}=1\}$ forms a Lie group under quaternionic multiplication and that as a manifold it is diffeomorphic to the 3 -sphere S^{3}. This group is typically denoted " $S p(1)$ - so you are see the other "Sp" now.
b) Show that the Lie algebra $s p(1)$ of the group of unit quaternions is the space of purely imaginary quaternions: $\{h: \bar{h}=-h\}$ Figure out its Lie bracket.
c) $S p(1)$ acts on $\mathbb{R}^{3} \cong \operatorname{Im}(\mathbb{H})$ by conjugation: $(q, h) \mapsto q h \bar{q}$. Show that this defines a smooth homomorphism $S p(1) \rightarrow S O(3)$ which is onto. Find its kernel. Hint: the standard inner product on \mathbb{R}^{3} is induced by $\left\langle h_{1}, h_{2}\right\rangle=\operatorname{Re}\left(h_{1} \bar{h}_{2}\right)$.
d) $S p(1) \times S p(1)$ acts on $\mathbb{R}^{4} \cong \mathbb{H}$ by $\left(\left(g_{1}, g_{2}\right), q\right) \mapsto g_{1} q \bar{g}_{2}$. Show that this action defines a homomorphism $S p(1) \times S p(1) \rightarrow S O(4)$ which is onto. Find its kernel.
e) Look up the definition of " $S U(2)$ ". Show that $S U(2)$ is isomorphic as a LIe group to $S p(1)$.

