

Figure 1. Fundamental weights: $x i$. Roots: $x i j=x i-x j$.

Roots and Weights for $S U(3)$
The maximal torus T of $S U(3)$ consists of the diagonal matrices in $S U(3)$:

$$
T=\left\{\left(\begin{array}{ccc}
\exp i 2 \pi x_{1} & & \\
& \text { expi2 } 2 \pi x_{1} & \\
& & \text { expi2 } 2 \pi x_{1}
\end{array}\right): x_{i} \in \mathbb{R}, x_{1}+x_{2}+x_{3}=0\right\}
$$

where blank entries means zeros are placed there. Write

$$
t=t\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{diag}\left(e^{i 2 \pi x_{1}}, e^{i 2 \pi x_{2}}, e^{i 2 \pi x_{3}}\right) \in T
$$

for the above typical element of T.
Birthday Rep. The "birthday representation" of $S U(3)$ is the usual action of $S U(3)$ on \mathbb{C}^{3} by matrix multiplication, with vectors $z \in \mathbb{C}^{3}$ viewed as column vectors. Then

$$
t e_{j}=\exp \left(2 \pi i x_{j}\right) e_{j}, j=1,2,3
$$

where e_{1}, e_{2}, e_{3} is the usual basis for \mathbb{C}^{3}. The x_{i} are int ${ }^{*}$ being linear functions on \mathfrak{t}. Thus the weights of the birthday representation are $x_{1}, x_{2}, x_{3} \in \Lambda^{*} \subset \mathfrak{t}^{*}$. The and the corresponding weight spaces are the \mathbb{C}-spans of the e_{j}. The Killing form induces an inner product on \mathfrak{t}, and hence \mathfrak{t}^{*} and with respect to this inner product the x_{i} form the vertices of an equilateral triangle with center at the origin.

As we will see momentarily, the edge vectors of this triangle, being the six difference vectors $x_{i}-x_{j}$ together with $0=x_{i}-x_{i}$ form the roots for $S U(3)$, which is to say, the weights of its Adjoint representation.

Adjoint representation. We have

$$
A d_{t} X=t X t^{-1}
$$

We compute that:

$$
\begin{aligned}
A d_{t}\left(\begin{array}{ccc}
0 & \xi & 0 \\
-\bar{\xi} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & e^{i 2 \pi\left(x_{1}-x_{2}\right)} \xi & 0 \\
e^{-i 2 \pi\left(x_{1}-x_{2}\right)} \bar{\xi} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
A d_{t}\left(\begin{array}{ccc}
0 & 0 & \xi \\
0 & 0 & 0 \\
-\bar{\xi} & 0 & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 0 & e^{i 2 \pi\left(x_{1}-x_{3}\right)} \xi \\
0 & 0 & 0 \\
e^{-i 2 \pi\left(x_{1}-x_{3}\right)} \bar{\xi} & 0 & 0
\end{array}\right)
\end{aligned}
$$

And:

$$
A d_{t}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \xi \\
0 & -\bar{\xi} & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & e^{i 2 \pi\left(x_{2}-x_{3}\right)} \xi \\
0 & e^{-i 2 \pi\left(x_{2}-x_{3}\right)} \bar{\xi} & 0
\end{array}\right)
$$

while

$$
A d_{t} D=D, D \text { diagonal }
$$

which exhibits the root decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha} \mathfrak{g}_{\alpha} ; \alpha=\alpha_{12}, \alpha_{13}, \alpha_{23} \tag{1}
\end{equation*}
$$

of the Lie algebra $\mathfrak{g}=s u(3)$ as the sum of the diagonal matrices \mathfrak{t} and the "three root spaces" indicated above. Note that $x_{i} \in \mathfrak{t}^{*}$, since the x_{i} are linear functions on \mathfrak{t}. The roots are the three linear functions:

$$
\alpha_{12}=x_{1}-x_{2}, \alpha_{13}=x_{1}-x_{3}, \alpha_{23}=x_{2}-x_{3}
$$

and their negatives $\alpha_{j i}=-\alpha_{i j}$ which appear in the exponentials for these expressions for $A d_{t}$. Thus for example the root space for $\alpha=\alpha_{12}$ is described by the first $A d_{t}$ expression, so that

$$
\mathfrak{g}_{\alpha}=\left\{\left(\begin{array}{ccc}
0 & 0 & \xi \\
0 & 0 & 0 \\
-\bar{\xi} & 0 & 0
\end{array}\right): \xi \in \mathbb{C}\right\}, \text { for } \alpha=\alpha_{12}
$$

Because $A d_{t}=I d$ on \mathfrak{t} and $e^{i 0}=1$, we say that \mathfrak{t} corresponds to the zero-root space.
$* *$
Computations and theory proceeds more simply if we differentiate and complexify the actions.

Differentiating the adjoint action. Write $E_{i j}$ for the matrix with a 1 in the ij place and 0 everywhere else. Then \mathfrak{t} is the spanned by the $\sqrt{-1} E_{i i}, i=1,2,3$ (subject to the single linear relation $\Sigma x_{k} E_{k k}=0$) while the mk root space above is the real span of $E_{k m}-E_{m k}$ and $i E_{k m}+i E_{m k}, m \neq k$.

Differentiating the Adjoint action gives the Lie bracket or "little ad" action of \mathfrak{g} on \mathfrak{g}. Specifically, set $t_{\epsilon}=\exp \left(\epsilon 2 \pi i \Sigma x_{k} E_{k k}\right)$. Then,

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} A d_{t_{\epsilon}} X=2 \pi i\left[\Sigma x_{k} E_{k k}, X\right]
$$

Compute:

$$
\left[\Sigma x_{k} E_{k k}, E_{i j}\right]=\left(x_{i}-x_{j}\right) E_{i j} .
$$

But wait. $E_{i j} \notin \mathfrak{g}$. However, $E_{i j} \in \mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes \mathbb{C} \subset g l(3, \mathbb{C})$. Indeed $E_{i j}=\frac{1}{2}\left(E_{i j}-\right.$ $\left.E_{j i}\right)-\sqrt{-1}\left(\sqrt{-1} E_{i j}+\sqrt{-1} E_{j i}\right)$ is a linear combination of two elements from \mathfrak{g} but with an imaginary coefficient for the second element. We have that $\mathfrak{g}_{\mathbb{C}}=\operatorname{sl}(3, \mathbb{C})$, the complex 3 by 3 matrices with trace zero.

Now the action of $s l(3, \mathbb{C})$ on itself by bracket decomposes as

$$
\begin{equation*}
\mathfrak{t}_{\mathbb{C}} \oplus \Sigma_{i \neq j} \mathbb{C} E_{i j} \tag{2}
\end{equation*}
$$

with \mathfrak{t} acting of $\mathfrak{t}_{\mathbb{C}}$ by zero, and on $E_{i j}$ by multiplication by $\left(x_{i}-x_{j}\right)$. Here $\mathfrak{t}_{\mathbb{C}}$ are complex diagonal matrices with trace 0 . Exponentiating and taking appropriate linear combinations, we get the previous splitting ...

Recapitulation. We took the adjoint action of G on \mathfrak{g}. We differentiated to get the action of \mathfrak{g} on \mathfrak{g} by Lie bracket. We complexified to get the action of $\mathfrak{g}_{\mathbb{C}}=\operatorname{sl}(3, \mathbb{C})$ on $\mathfrak{g}_{\mathbb{C}}$ by Lie bracket. This latter action decomposes into a bunch of one-dimensional complex eigenspaces, the spans of the $E_{i j}$, upon being restricted to $\mathfrak{t}_{\mathbb{C}}$.

We can turn this procedure around. Start with $\mathfrak{g}_{\mathbb{C}}=\operatorname{sl}(3, \mathbb{C})$. Take the adjoint (bracket) action of $\mathfrak{g}_{\mathbb{C}}$ on itself. Restrict this action to $\mathfrak{t}_{\mathbb{C}}$, the space of complex 3 by 3 diagonal matrices of trace zero, to obtain a Lie algebra represenation of $\mathfrak{t}_{\mathbb{C}}$ on $\mathfrak{g}_{\mathrm{C}}$. This representation decomposes into a direct sum of a bunch (8 to be exact) of complex one-dimensional "root spaces", each root space spanned by an $E_{i j}$. The result is (2). Exponentiate to get the Adjoint representation of $T_{\mathbb{C}}$, the space of complex diagonal matrices with determinant 1 , on $\left.g_{\mathbb{C}}\right)$. The restriction of this complexified adjoint action to $T \subset T_{\mathbb{C}}$ maps $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ to itself and the complexified ij root space, together with the ji root space, conspire together with the correct complex scalar factors to yield the root space decomposition (1) for $T \subset S U(3)$ actiing on \mathfrak{g}.

