
Figure 1. Fundamental weights: xi. Roots: xij = xi − xj.

Roots and Weights for SU(3)
The maximal torus T of SU(3) consists of the diagonal matrices in SU(3):

T = {
⎛
⎜
⎝

expi2πx1
expi2πx1

expi2πx1

⎞
⎟
⎠
∶ xi ∈ R, x1 + x2 + x3 = 0}

where blank entries means zeros are placed there. Write

t = t(x1, x2, x3) = diag(ei2πx1 , ei2πx2 , ei2πx3) ∈ T

for the above typical element of T .
Birthday Rep. The “birthday representation” of SU(3) is the usual action

of SU(3) on C3 by matrix multiplication, with vectors z ∈ C3 viewed as column
vectors. Then

tej = exp(2πixj)ej , j = 1,2,3

where e1, e2, e3 is the usual basis for C3. The xi are int∗ being linear functions on
t. Thus the weights of the birthday representation are x1, x2, x3 ∈ Λ∗ ⊂ t∗. The
and the corresponding weight spaces are the C-spans of the ej . The Killing form
induces an inner product on t, and hence t∗ and with respect to this inner product
the xi form the vertices of an equilateral triangle with center at the origin.

As we will see momentarily, the edge vectors of this triangle, being the six dif-
ference vectors xi − xj together with 0 = xi − xi form the roots for SU(3), which is
to say, the weights of its Adjoint representation.

Adjoint representation. We have

AdtX = tXt−1.
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We compute that:

Adt
⎛
⎜
⎝

0 ξ 0
−ξ̄ 0 0
0 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 ei2π(x1−x2)ξ 0

e−i2π(x1−x2)ξ̄ 0 0
0 0 0

⎞
⎟
⎠
,

Adt
⎛
⎜
⎝

0 0 ξ
0 0 0
−ξ̄ 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 0 ei2π(x1−x3)ξ
0 0 0

e−i2π(x1−x3)ξ̄ 0 0

⎞
⎟
⎠

And:

Adt
⎛
⎜
⎝

0 0 0
0 0 ξ
0 −ξ̄ 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 0 0

0 0 ei2π(x2−x3)ξ

0 e−i2π(x2−x3)ξ̄ 0

⎞
⎟
⎠

while

AdtD =D,D diagonal

which exhibits the root decomposition

(1) g = t⊕⊕
α

gα;α = α12, α13, α23

of the Lie algebra g = su(3) as the sum of the diagonal matrices t and the “three
root spaces” indicated above. Note that xi ∈ t∗ , since the xi are linear functions
on t. The roots are the three linear functions:

α12 = x1 − x2, α13 = x1 − x3, α23 = x2 − x3
and their negatives αji = −αij which appear in the exponentials for these expressions
for Adt. Thus for example the root space for α = α12 is described by the first Adt
expression, so that

gα = {
⎛
⎜
⎝

0 0 ξ
0 0 0
−ξ̄ 0 0

⎞
⎟
⎠
∶ ξ ∈ C}, for α = α12

Because Adt = Id on t and ei0 = 1, we say that t corresponds to the zero-root space.
***********************
Computations and theory proceeds more simply if we differentiate and complex-

ify the actions.
Differentiating the adjoint action. Write Eij for the matrix with a 1 in the ij

place and 0 everywhere else. Then t is the spanned by the
√
−1Eii, i = 1,2,3

(subject to the single linear relation ΣxkEkk = 0) while the mk root space above is
the real span of Ekm −Emk and iEkm + iEmk,m ≠ k.

Differentiating the Adjoint action gives the Lie bracket or “little ad” action of g
on g. Specifically, set tε = exp(ε2πiΣxkEkk) . Then,

d

dε
∣ε=0AdtεX = 2πi[ΣxkEkk,X]

Compute:

[ΣxkEkk,Eij] = (xi − xj)Eij .
But wait. Eij ∉ g. However, Eij ∈ gC = g ⊗ C ⊂ gl(3,C). Indeed Eij = 1

2
(Eij −

Eji) −
√
−1(

√
−1Eij +

√
−1Eji) is a linear combination of two elements from g but

with an imaginary coefficient for the second element. We have that gC = sl(3,C),
the complex 3 by 3 matrices with trace zero.
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Now the action of sl(3,C) on itself by bracket decomposes as

(2) tC ⊕Σi≠jCEij
with t acting ot tC by zero, and on Eij by multiplication by (xi − xj). Here tC are
complex diagonal matrices with trace 0. Exponentiating and taking appropriate
linear combinations, we get the previous splitting ...

Recapitulation. We took the adjoint action of G on g. We differentiated to
get the action of g on g by Lie bracket. We complexified to get the action of
gC = sl(3,C) on gC by Lie bracket. This latter action decomposes into a bunch of
one-dimensional complex eigenspaces, the spans of the Eij , upon being restricted
to tC.

We can turn this procedure around. Start with gC = sl(3,C). Take the adjoint
(bracket) action of gC on itself. Restrict this action to tC, the space of complex 3
by 3 diagonal matrices of trace zero, to obtain a Lie algebra represenation of tC on
gC. This representation decomposes into a direct sum of a bunch (8 to be exact)
of complex one-dimensional “root spaces” , each root space spanned by an Eij .
The result is (2). Exponentiate to get the Adjoint representation of TC, the space
of complex diagonal matrices with determinant 1, on gC). The restriction of this
complexified adjoint action to T ⊂ TC maps g ⊂ gC to itself and the complexified
ij root space, together with the ji root space, conspire together with the correct
complex scalar factors to yield the root space decomposition (1) for T ⊂ SU(3)
actiing on g.


