Weyl Group.

The standard definition of the Weyl group W is $W=N(T) / T$.
We will show how to construct W out of the root space decomposition of \mathfrak{g}. The trick is to see that selecting a root pair $\{ \pm \alpha\}$ induces a homomorphism

$$
\phi_{\alpha}: S U(2) \rightarrow G
$$

such that $d \phi_{\alpha}(s u(2))$ contains the root space $\mathfrak{g}_{ \pm \alpha}$. The image G^{α} of ϕ_{α} is a copy of either $S U(2)$ or $S O(3)$ canonically attached to the root hyperplane $\{\alpha=0\}$. G^{α} is contained in the centralizer $G_{\alpha}=Z\left(T_{\alpha}\right)$ of the codimension 1 torus T_{α}, and so leaves T_{α} invariant when acting by conjugation. Set

$$
\sigma_{\alpha}=\phi_{\alpha}\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)
$$

Conjugation by σ_{α} induces the desired reflection about the root hyperplane $\alpha=0$ (and, in T, about T_{α}.)

Let X_{α}, Y_{α} be an oriented orthonormal basis for $\mathfrak{g}_{ \pm \alpha}$.
Proposition 1. (i) $\left[X_{\alpha}, Y_{\alpha}\right] \in \mathfrak{t}$. (ii) $\left[X_{\alpha}, Y_{\alpha}\right] \neq 0$. (iii) $\left[X_{\alpha}, Y_{\alpha}\right] \perp \operatorname{ker}(\alpha)$.
Proof of item (i). Let $H \in \mathfrak{t}$. Then

$$
\left[H, X_{\alpha}\right]=\alpha(H) Y_{\alpha} \text { and }\left[H, Y_{\alpha}\right]=-\alpha(H) X_{\alpha}
$$

Using this fact, and the Jacobi identity we see that for all $H \in \mathfrak{t}$ we have $\left[H,\left[X_{\alpha}, Y_{\alpha}\right]\right]=$ 0 . Maximality of T now implies that $\left[X_{\alpha}, Y_{\alpha}\right] \in \mathfrak{t}$.

Proof of item (ii) and (iii). The inner product on \mathfrak{g} is $A d$ invariant: $\langle A d(g) U, A d(g) V\rangle=$ $\langle U, V\rangle$. Differentiating this identity with respect to g we see that

$$
\langle[Z, U], V\rangle+\rangle U,[A, Y]\langle=0
$$

for all $Z, U, V \in \mathfrak{g}$. We compute

$$
\left\langle H,\left[X_{\alpha}, Y_{\alpha}\right]\right\rangle=-\left\langle\left[X_{\alpha}, H\right], Y_{\alpha}\right\rangle=+\alpha(H)\left\langle Y_{\alpha}, Y_{\alpha}\right\rangle
$$

from which it follows that $\left[X_{\alpha}, Y_{\alpha}\right] \perp \operatorname{ker}(\alpha)$. Thus $\left[X_{\alpha}, Y_{\alpha}\right]$ must lie in the line in \mathfrak{t} orthogonal to $\operatorname{ker}(\alpha)$. To see that $\left[X_{\alpha}, Y_{\alpha}\right]$: is not zero, choose $H=e_{\alpha}$ orthogonal to $\operatorname{ker}(\alpha)$ such that $\alpha\left(e_{\alpha}\right)=1$ to conclude that $\left[X_{\alpha}, Y_{\alpha}\right] \neq 0$. QED.

The root $S U(2)$. Choose a basis H_{α} for the line $\operatorname{ker}(\alpha)^{\perp}$ in \mathfrak{t}. By appropriate scaling, we can make sure that $X_{\alpha}, Y_{\alpha}, H_{\alpha}$ satisfy the Lie algebra relations of $s u(2)$. Hence we have a Lie algebra homorphism $\phi_{\alpha}^{\prime}: s u(2) \rightarrow \mathfrak{g}$ whose image $\mathfrak{g}^{\alpha}=$ $\mathbb{R} H_{\alpha} \oplus \mathfrak{g}_{ \pm \alpha}$ is the LIe subalgebra generated by $\mathfrak{g}_{ \pm \alpha}$. By general theory, (eg. see Hsiang ch. 2, Thm 3) this Lie algebra homomorphism integrates up to a group homomorphism ϕ_{α} with aforementioned properties.

Proposition 2. Conjugation by $\sigma_{\alpha} \in G^{\alpha}$ induces reflections about \mathfrak{t}_{α} and T_{α}.
Proof. Take the maximal torus T_{1} of $S U(2)$ to be the diagonals. Conjugation by $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ maps T to itself, acting by reflection: $\theta \mapsto-\theta$ on T_{1}. (Coordinatize T_{1} by $\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$.) I claim that conjugation by $\sigma_{\alpha}=\phi_{\alpha}(w)$ acts on the maximal torus T by reflection across about $T_{\alpha}=\operatorname{ker}(\alpha)$. Indeed, $\sigma_{\alpha} \in G^{\alpha} \subset G_{\alpha}$ and $G_{\alpha}=Z\left(T_{\alpha}\right)$, the centralizer of the codimension 1 torus $T_{\alpha}=\operatorname{ker}(\alpha)$. Being an element of $G^{\alpha}, \sigma_{\alpha}$ acts under conjugation as the identity on T_{α}. But σ_{α} acts by $H_{\alpha} \rightarrow-H_{\alpha}$ and H_{α} generates the line in \mathfrak{t} (resp. T) orthogonal to the root hyperplane $\{\alpha=0\}$ (resp. orthogonal to T_{α}). QED.

Examples. $S U(3)$. Write the maximal torus as the diagonal matrices $\operatorname{diag}\left(e^{i 2 \pi \theta_{1}}, e^{i 2 \pi \theta_{2}}, e^{i 2 \pi \theta_{3}}\right)$, the θ_{j} subject to the constraint that $\theta_{1}+\theta_{2}+\theta_{3}=0$. Selecting any two of the three θ_{j} yield angular coordinates on the torus. We also view the θ_{j} as linear functions on $s u(3)$, which is to say, elements of the dual $\mathfrak{t}^{*}=s u(3)^{*}$. As such, $\theta_{1}, \theta_{2}, \theta_{3}$. generated the weight lattice in \mathfrak{t}^{*}, isometric to a hexagonal lattice in the plane. (The θ_{j} are the weights of the birthday representation of $S U(3)$ on \mathbb{C}^{3}.) The dual lattice Λ^{*} in \mathfrak{t} generated by $2 \pi \operatorname{idiag}(1,-1,0), 2 \pi \operatorname{idiag}(1,0,-1), 2 \pi \operatorname{idiag}(0,1,-1)$.

There are 3 pairs of roots $\pm\left(\theta_{1}-\theta_{2}\right), \pm\left(\theta_{2}-\theta_{3}\right), \pm\left(\theta_{3}-\theta_{1}\right)$. This ' 3 ' is the same as the ' 3 ' of $\operatorname{dim}(S U(3))=2+2 * 3$. The root spaces are
$\mathfrak{g}_{12}=\left\{\left(\begin{array}{ccc}0 & z & 0 \\ -\bar{z} & 0 & 0 \\ 0 & 0 & 0\end{array}\right): z \in \mathbb{C}\right\} ; \mathfrak{g}_{23}=\left\{\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & z \\ 0 & -\bar{z} & 0\end{array}\right): z \in \mathbb{C}\right\} ; \mathfrak{g}_{31}=\left\{\left(\begin{array}{ccc}0 & 0 & z \\ 0 & 0 & 0 \\ -\bar{z} & 0 & 0\end{array}\right): z \in \mathbb{C}\right\}$
The corresponding 3 root $S U(2)$'s in $S U(3)$ are obtained by selecting out the corresponding plane $i j$ out of \mathbb{C}^{3}. For example, the 1 st root $S U(2)$ is for the 12 plane and consists of block matrices

$$
\left(\begin{array}{ccc}
a & b & 0 \\
-\bar{b} & \bar{a} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with $|a|^{2}+|b|^{2}=1$ - in other words, its elements comprise the $S U(2)$ associated to the decomposition $\mathbb{C}^{3}=\mathbb{C}^{2} \oplus \mathbb{C}^{1}$ with the $S U(2)$ acting on the copy of \mathbb{C}^{2}.

The Weyl group W is generated by the 3 permutation matrices $\sigma_{i j}$

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

lying in their respective root $S U(2)$'s. They act by reflections about the root hyperplanes, which is by transposition of the θ_{i}; so for example σ_{12} switches θ_{1} with θ_{2}, keeping θ_{3} fixed. They generate W which is the permutation group S_{3} on three letters, acting on $\mathfrak{t}\left(\mathfrak{t}^{*}, T\right)$ by permuting the three coordinates (weights, angular coordinates) $\theta_{1}, \theta_{2}, \theta_{3}$.
$S U(n)$. All of this business for $S U(3)$ generalizes in a straightforward way to $S U(n)$. Its Weyl group W is S_{n}, the symmetric group on n letters. The action of W on \mathfrak{t} is obtained by realizing \mathfrak{t} as $\left\{\theta_{1}+\ldots+\theta_{n}=0\right\}$ in \mathbb{R}^{n} and having S_{n} act by permuting the indices of the coordinates (weights) θ_{j}.

Proposition 3. The center of G is discrete if and only if the roots span \mathfrak{t}^{*}.
Suppose that the roots do not span \mathfrak{t}^{*}. Then there is an $H \in \mathfrak{t}, H \neq 0$ such that for all roots α, we have $\alpha(H)=0$. It follows that the one-parameter subgroup generated by H acts trivially with respect to the adjoint representation. Integrating, up to $A D$, we see this subgroup commutes with all elements of G, and consequently the center of G is at least one-dimensional.

Conversely, suppose that the center Z is not discrete, and hence has dimension at least one. Consider its identity component Z_{0}. This is an Abelian Lie group of dimension at least one which commutes with all elements of T and so is contained in T. Let $H \in \operatorname{Lie}\left(Z_{0}\right) \subset \mathfrak{t}, H \neq 0$. And let $\alpha \in R$ be any root. I claim that
$\alpha(H)=0$. For otherwise, $\operatorname{Ad}(\exp (t H))$ will be non-trivial, (not the identity) and as a consequence $A D(\exp (t H))$ will be non-trivial. (and in every maximal torus), contradicting the fact that $\exp (t H)$ lies in the center of G. QED
t
For any $\sigma \in N(T)$, conjugation by σ is an automorphism of T, Since $A d\left(\sigma t \sigma^{-1}\right)=$ $A d(\sigma) A d(t) A d\left(\sigma^{-1}\right)$, the map $t \mapsto A d(\sigma) A d(t) A d\left(\sigma^{-1}\right)$ defines another representation of T on \mathfrak{g} equivalent to the restriction to T of the adjoint representation. It follows that the set of roots for this new representation are the same as for the original. Thus, whenever α is a root so is $\operatorname{Ad}\left(\sigma^{-1 *}\right)(\alpha)$, where $\operatorname{Ad}\left(\sigma^{-1 *}\right)$ denotes the co-adjoint action. Also this co-adjoint action by σ maps the weight lattice $\Lambda \subset \mathfrak{t}^{*}$ to itself, for similar reasons, and the dual lattice $\Lambda \subset \mathfrak{t}$ to itself.

We now follow the Grothendieck-Demazure definition of roots and the Weyl group, as explained in Vogan.

