Weyl Group.

The standard definition of the Weyl group W is W = N(T)/T.

We will show how to construct W out of the root space decomposition of \mathfrak{g} . The trick is to see that selecting a root pair $\{\pm \alpha\}$ induces a homomorphism

$$\phi_{\alpha}: SU(2) \to G$$

such that $d\phi_{\alpha}(su(2))$ contains the root space $\mathfrak{g}_{\pm\alpha}$. The image G^{α} of ϕ_{α} is a copy of either SU(2) or SO(3) canonically attached to the root hyperplane { $\alpha = 0$ }. G^{α} is contained in the centralizer $G_{\alpha} = Z(T_{\alpha})$ of the codimension 1 torus T_{α} , and so leaves T_{α} invariant when acting by conjugation. Set

$$\sigma_{\alpha} = \phi_{\alpha} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}).$$

Conjugation by σ_{α} induces the desired reflection about the root hyperplane $\alpha = 0$ (and, in T, about T_{α} .)

Let X_{α}, Y_{α} be an oriented orthonormal basis for $\mathfrak{g}_{\pm \alpha}$.

Proposition 1. (i) $[X_{\alpha}, Y_{\alpha}] \in \mathfrak{t}$. (ii) $[X_{\alpha}, Y_{\alpha}] \neq 0$. (iii) $[X_{\alpha}, Y_{\alpha}] \perp ker(\alpha)$.

Proof of item (i). Let $H \in \mathfrak{t}$. Then

$$[H, X_{\alpha}] = \alpha(H)Y_{\alpha}$$
 and $[H, Y_{\alpha}] = -\alpha(H)X_{\alpha}$.

Using this fact, and the Jacobi identity we see that for all $H \in \mathfrak{t}$ we have $[H, [X_{\alpha}, Y_{\alpha}]] = 0$. Maximality of T now implies that $[X_{\alpha}, Y_{\alpha}] \in \mathfrak{t}$.

Proof of item (ii) and (iii). The inner product on \mathfrak{g} is Ad invariant: $\langle Ad(g)U, Ad(g)V \rangle = \langle U, V \rangle$. Differentiating this identity with respect to g we see that

$$\langle [Z, U], V \rangle + \rangle U, [A, Y] \langle = 0$$

for all $Z, U, V \in \mathfrak{g}$. We compute

$$\langle H, [X_{\alpha}, Y_{\alpha}] \rangle = -\langle [X_{\alpha}, H], Y_{\alpha} \rangle = +\alpha(H) \langle Y_{\alpha}, Y_{\alpha} \rangle$$

from which it follows that $[X_{\alpha}, Y_{\alpha}] \perp ker(\alpha)$. Thus $[X_{\alpha}, Y_{\alpha}]$ must lie in the line in t orthogonal to $ker(\alpha)$. To see that $[X_{\alpha}, Y_{\alpha}]$: is not zero, choose $H = e_{\alpha}$ orthogonal to $ker(\alpha)$ such that $\alpha(e_{\alpha}) = 1$ to conclude that $[X_{\alpha}, Y_{\alpha}] \neq 0$. QED.

The root SU(2). Choose a basis H_{α} for the line $ker(\alpha)^{\perp}$ in t. By appropriate scaling, we can make sure that $X_{\alpha}, Y_{\alpha}, H_{\alpha}$ satisfy the Lie algebra relations of su(2). Hence we have a Lie algebra homorphism $\phi'_{\alpha} : su(2) \to \mathfrak{g}$ whose image $\mathfrak{g}^{\alpha} = \mathbb{R}H_{\alpha} \oplus \mathfrak{g}_{\pm\alpha}$ is the LIe subalgebra generated by $\mathfrak{g}_{\pm\alpha}$. By general theory, (eg. see Hsiang ch. 2, Thm 3) this Lie algebra homomorphism integrates up to a group homomorphism ϕ_{α} with aforementioned properties.

Proposition 2. Conjugation by $\sigma_{\alpha} \in G^{\alpha}$ induces reflections about \mathfrak{t}_{α} and T_{α} .

Proof. Take the maximal torus T_1 of SU(2) to be the diagonals. Conjugation by $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ maps T to itself, acting by reflection: $\theta \mapsto -\theta$ on T_1 . (Coordinatize T_1 by $diag(e^{i\theta}, e^{-i\theta})$.) I claim that conjugation by $\sigma_{\alpha} = \phi_{\alpha}(w)$ acts on the maximal torus T by reflection across about $T_{\alpha} = ker(\alpha)$. Indeed, $\sigma_{\alpha} \in G^{\alpha} \subset G_{\alpha}$ and $G_{\alpha} = Z(T_{\alpha})$, the centralizer of the codimension 1 torus $T_{\alpha} = ker(\alpha)$. Being an element of G^{α} , σ_{α} acts under conjugation as the identity on T_{α} . But σ_{α} acts by $H_{\alpha} \to -H_{\alpha}$ and H_{α} generates the line in t (resp. T) orthogonal to the root hyperplane { $\alpha = 0$ } (resp. orthogonal to T_{α}). QED.

Examples. SU(3). Write the maximal torus as the diagonal matrices $diag(e^{i2\pi\theta_1}, e^{i2\pi\theta_2}, e^{i2\pi\theta_3})$, the θ_j subject to the constraint that $\theta_1 + \theta_2 + \theta_3 = 0$. Selecting any two of the three θ_j yield angular coordinates on the torus. We also view the θ_j as linear functions on su(3), which is to say, elements of the dual $\mathfrak{t}^* = su(3)^*$. As such, $\theta_1, \theta_2, \theta_3$. generated the weight lattice in \mathfrak{t}^* , isometric to a hexagonal lattice in the plane. (The θ_j are the weights of the birthday representation of SU(3) on \mathbb{C}^3 .) The dual lattice Λ^* in \mathfrak{t} generated by $2\pi i diag(1, -1, 0), 2\pi i diag(1, 0, -1), 2\pi i diag(0, 1, -1)$.

There are 3 pairs of roots $\pm(\theta_1 - \theta_2), \pm(\theta_2 - \theta_3), \pm(\theta_3 - \theta_1)$. This '3' is the same as the '3' of dim(SU(3)) = 2 + 2 * 3. The root spaces are

$$\mathfrak{g}_{12} = \left\{ \begin{pmatrix} 0 & z & 0 \\ -\bar{z} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : z \in \mathbb{C} \right\}; \mathfrak{g}_{23} = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & z \\ 0 & -\bar{z} & 0 \end{pmatrix} : z \in \mathbb{C} \right\}; \mathfrak{g}_{31} = \left\{ \begin{pmatrix} 0 & 0 & z \\ 0 & 0 & 0 \\ -\bar{z} & 0 & 0 \end{pmatrix} : z \in \mathbb{C} \right\}$$

The corresponding 3 root SU(2)'s in SU(3) are obtained by selecting out the corresponding plane ij out of \mathbb{C}^3 . For example, the 1st root SU(2) is for the 12 plane and consists of block matrices

$$\begin{pmatrix} a & b & 0 \\ -\bar{b} & \bar{a} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

with $|a|^2 + |b|^2 = 1$ – in other words, its elements comprise the SU(2) associated to the decomposition $\mathbb{C}^3 = \mathbb{C}^2 \oplus \mathbb{C}^1$ with the SU(2) acting on the copy of \mathbb{C}^2 .

The Weyl group W is generated by the 3 permutation matrices σ_{ij}

$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

lying in their respective root SU(2)'s. They act by reflections about the root hyperplanes, which is by transposition of the θ_i ; so for example σ_{12} switches θ_1 with θ_2 , keeping θ_3 fixed. They generate W which is the permutation group S_3 on three letters, acting on $\mathfrak{t}(\mathfrak{t}^*, T)$ by permuting the three coordinates (weights, angular coordinates) $\theta_1, \theta_2, \theta_3$.

SU(n). All of this business for SU(3) generalizes in a straightforward way to SU(n). Its Weyl group W is S_n , the symmetric group on n letters. The action of W on t is obtained by realizing t as $\{\theta_1 + \ldots + \theta_n = 0\}$ in \mathbb{R}^n and having S_n act by permuting the indices of the coordinates (weights) θ_i .

Proposition 3. The center of G is discrete if and only if the roots span \mathfrak{t}^* .

Suppose that the roots do not span \mathfrak{t}^* . Then there is an $H \in \mathfrak{t}$, $H \neq 0$ such that for all roots α , we have $\alpha(H) = 0$. It follows that the one-parameter subgroup generated by H acts trivially with respect to the adjoint representation. Integrating, up to AD, we see this subgroup commutes with all elements of G, and consequently the center of G is at least one-dimensional.

Conversely, suppose that the center Z is not discrete, and hence has dimension at least one. Consider its identity component Z_0 . This is an Abelian Lie group of dimension at least one which commutes with all elements of T and so is contained in T. Let $H \in Lie(Z_0) \subset \mathfrak{t}, H \neq 0$. And let $\alpha \in R$ be any root. I claim that $\alpha(H) = 0$. For otherwise, Ad(exp(tH)) will be non-trivial, (not the identity) and as a consequence AD(exp(tH)) will be non-trivial. (and in every maximal torus), contradicting the fact that exp(tH) lies in the center of G. QED

t For any $\sigma \in N(T)$, conjugation by σ is an automorphism of T, Since $Ad(\sigma t \sigma^{-1}) = Ad(\sigma)Ad(t)Ad(\sigma^{-1})$, the map $t \mapsto Ad(\sigma)Ad(t)Ad(\sigma^{-1})$ defines another representation of T on \mathfrak{g} equivalent to the restriction to T of the adjoint representation. It follows that the set of roots for this new representation are the same as for the original. Thus, whenever α is a root so is $Ad(\sigma^{-1*})(\alpha)$, where $Ad(\sigma^{-1*})$ denotes the co-adjoint action. Also this co-adjoint action by σ maps the weight lattice $\Lambda \subset \mathfrak{t}^*$ to itself, for similar reasons, and the dual lattice $\Lambda \subset \mathfrak{t}$ to itself.

We now follow the Grothendieck-Demazure definition of roots and the Weyl group, as explained in Vogan.