
Weyl Group.
The standard definition of the Weyl group W is W = N(T )/T .
We will show how to construct W out of the root space decomposition of g. The

trick is to see that selecting a root pair {±α} induces a homomorphism

φα : SU(2)→ G

such that dφα(su(2)) contains the root space g±α. The image Gα of φα is a copy
of either SU(2) or SO(3) canonically attached to the root hyperplane {α = 0}. Gα
is contained in the centralizer Gα = Z(Tα) of the codimension 1 torus Tα, and so
leavesTα invariant when acting by conjugation. Set

σα = φα(

(
0 1
−1 0

)
).

Conjugation by σα induces the desired reflection about the root hyperplane α = 0
(and, in T , about Tα.)

Let Xα, Yα be an oriented orthonormal basis for g±α.

Proposition 1. (i) [Xα, Yα] ∈ t. (ii) [Xα, Yα] 6= 0. (iii) [Xα, Yα] ⊥ ker(α).

Proof of item (i). Let H ∈ t. Then

[H,Xα] = α(H)Yα and [H,Yα] = −α(H)Xα.

Using this fact, and the Jacobi identity we see that for allH ∈ t we have [H, [Xα, Yα]] =
0. Maximality of T now implies that [Xα, Yα] ∈ t.

Proof of item (ii) and (iii). The inner product on g isAd invariant: 〈Ad(g)U,Ad(g)V 〉 =
〈U, V 〉. Differentiating this identity with respect to g we see that

〈[Z,U ], V 〉+〉U, [A, Y ]〈= 0

for all Z,U, V ∈ g. We compute

〈H, [Xα, Yα]〉 = −〈[Xα, H], Yα〉 = +α(H)〈Yα, Yα〉
from which it follows that [Xα, Yα] ⊥ ker(α). Thus [Xα, Yα] must lie in the line in t
orthogonal to ker(α). To see that [Xα, Yα] : is not zero, choose H = eα orthogonal
to ker(α) such that α(eα) = 1 to conclude that [Xα, Yα] 6= 0. QED.

The root SU(2). Choose a basis Hα for the line ker(α)⊥ in t. By appropriate
scaling, we can make sure that Xα, Yα, Hα satisfy the Lie algebra relations of su(2).
Hence we have a Lie algebra homorphism φ′α : su(2) → g whose image gα =
RHα ⊕ g±α is the LIe subalgebra generated by g±α. By general theory, (eg. see
Hsiang ch. 2, Thm 3) this Lie algebra homomorphism integrates up to a group
homomorphism φα with aforementioned properties.

Proposition 2. Conjugation by σα ∈ Gα induces reflections about tα and Tα.

Proof. Take the maximal torus T1 of SU(2) to be the diagonals. Conjugation by

w =

(
0 1
−1 0

)
maps T to itself, acting by reflection: θ 7→ −θ on T1. (Coordinatize

T1 by diag(eiθ, e−iθ).) I claim that conjugation by σα = φα(w) acts on the maximal
torus T by reflection across about Tα = ker(α). Indeed, σα ∈ Gα ⊂ Gα and
Gα = Z(Tα), the centralizer of the codimension 1 torus Tα = ker(α). Being an
element of Gα, σα acts under conjugation as the identity on Tα. But σα acts
by Hα → −Hα and Hα generates the line in t (resp. T ) orthogonal to the root
hyperplane {α = 0} (resp. orthogonal to Tα). QED.
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Examples. SU(3). Write the maximal torus as the diagonal matrices diag(ei2πθ1 , ei2πθ2 , ei2πθ3),

the θj subject to the constraint that θ1 +θ2 +θ3 = 0. Selecting any two of the three
θj yield angular coordinates on the torus. We also view the θj as linear functions
on su(3), which is to say, elements of the dual t∗ = su(3)∗. As such, θ1, θ2, θ3.
generated the weight lattice in t∗, isometric to a hexagonal lattice in the plane.
(The θj are the weights of the birthday representation of SU(3) on C3. ) The dual
lattice Λ∗ in t generated by 2πidiag(1,−1, 0), 2πidiag(1, 0,−1), 2πidiag(0, 1,−1).

There are 3 pairs of roots ±(θ1− θ2),±(θ2− θ3),±(θ3− θ1). This ‘3’ is the same
as the ‘3’ of dim(SU(3)) = 2 + 2 ∗ 3. The root spaces are

g12 = {

 0 z 0
−z̄ 0 0
0 0 0

 : z ∈ C}; g23 = {

0 0 0
0 0 z
0 −z̄ 0

 : z ∈ C}; g31 = {

 0 0 z
0 0 0
−z̄ 0 0

 : z ∈ C}

The corresponding 3 root SU(2)’s in SU(3) are obtained by selecting out the
corresponding plane ij out of C3. For example, the 1st root SU(2) is for the 12
plane and consists of block matrices a b 0

−b̄ ā 0
0 0 1


with |a|2 + |b|2 = 1 – in other words, its elements comprise the SU(2) associated to
the decomposition C3 = C2 ⊕ C1 with the SU(2) acting on the copy of C2.

The Weyl group W is generated by the 3 permutation matrices σij 0 1 0
−1 0 0
0 0 1

 1 0 0
0 0 1
0 −1 0

  0 0 1
0 1 0
−1 0 0


lying in their respective root SU(2)’s. They act by reflections about the root
hyperplanes, which is by transposition of the θi; so for example σ12 switches θ1
with θ2, keeping θ3 fixed. They generate W which is the permutation group S3

on three letters, acting on t (t∗, T ) by permuting the three coordinates (weights,
angular coordinates) θ1, θ2, θ3.

SU(n). All of this business for SU(3) generalizes in a straightforward way to
SU(n). Its Weyl group W is Sn, the symmetric group on n letters. The action of
W on t is obtained by realizing t as {θ1 + . . . + θn = 0} in Rn and having Sn act
by permuting the indices of the coordinates (weights) θj .

Proposition 3. The center of G is discrete if and only if the roots span t∗.

Suppose that the roots do not span t∗. Then there is an H ∈ t, H 6= 0 such
that for all roots α, we have α(H) = 0. It follows that the one-parameter subgroup
generated byH acts trivially with respect to the adjoint representation. Integrating,
up to AD, we see this subgroup commutes with all elements of G, and consequently
the center of G is at least one-dimensional.

Conversely, suppose that the center Z is not discrete, and hence has dimension
at least one. Consider its identity component Z0. This is an Abelian Lie group of
dimension at least one which commutes with all elements of T and so is contained
in T . Let H ∈ Lie(Z0) ⊂ t, H 6= 0. And let α ∈ R be any root. I claim that
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α(H) = 0. For otherwise, Ad(exp(tH)) will be non-trivial, (not the identity) and
as a consequence AD(exp(tH)) will be non-trivial. (and in every maximal torus),
contradicting the fact that exp(tH) lies in the center of G. QED

t
For any σ ∈ N(T ), conjugation by σ is an automorphism of T , SinceAd(σtσ−1) =

Ad(σ)Ad(t)Ad(σ−1), the map t 7→ Ad(σ)Ad(t)Ad(σ−1) defines another represen-
tation of T on g equivalent to the restriction to T of the adjoint representation.
It follows that the set of roots for this new representation are the same as for the
original. Thus, whenever α is a root so is Ad(σ−1∗)(α), where Ad(σ−1∗) denotes the
co-adjoint action. Also this co-adjoint action by σ maps the weight lattice Λ ⊂ t∗

to itself, for similar reasons, and the dual lattice Λ ⊂ t to itself.
We now follow the Grothendieck-Demazure definition of roots and the Weyl

group, as explained in Vogan.


