We continue on with the root space decomposition.
We will write g4, for the two-dimensional real vector space whose complexifica-
tion is go @ g+ so that the root space decomposition reads:

g=1t® D Mmagta
a€ER

Theorem 1. my, =1 for all « € R. In other words each weight +a which occurs
in the root space decomposition (*) occurs with multiplicity 1.

If a € R, and if ka € R, then k = £1.

The proof from Hsiang is rather spectacular.

Step 1. Classify all rank 1 compact connected Lie groups. The complete list is ,
S, SU(2) and SO(3).

Step 2. Observe that for each a € R the kernel, ker(a) defines a subtorus T, of
codimension 1,

Step 3. Compute that the centralizer Z(T,) (the group of all elements g such
that gt = tg for all t € T,,) is a closed connected Lie subgroup G, C G whose Lie
algebra is t & @BeR(a) g+, the big sum € being over the set R(a) = RN Za of
all roots 8 which are a nonzero multiple of a..

Step 4. Observe that the quotient group G, /T, is a closed compact Lie group
of rank 1, since its maximal torus is T'/T,.

Step 5. Conclusion! : By Step 1, the Lie algebra of G, /T, agrees with su(2),
and in particular has dimension 3. It follows that only a single pair £« can occur,
and that with multiplicity 1.

QED, modulo proving the pieces 1-3.

Step 1. Takes the most work. Hang on!

Step 2. Recall that we can also view roots (and weights) as homomorphisms
T — S'. As such, their kernels are closed subtorii, of codimension 1, since they are
onto.

Step 3. On the Lie algebra level, the centralizer of a subalgebra t, consists of all
those elements X which commute with every element of t,. We first compute that
the Lie algebra centralizer of t,, is t® @56R(a) g+3. Indeed, if 3 = ka then we have
that [gg, to] = 0 since any element of exp(H) € T, acts on gz by multiplication by
Z — exp(i2rka(H))Z and since a(X) = 0, the action is by the identity. Differen-
tiating we see that get [X, t,] = 0. We also have [t,t,] C [t,t] = 0. This proves that
on the Lie algebra level t® ®HER(a) g+ centralizes. One checks that if 8 is not an
element of R(«) then the generic element of T, rotates gig, so that [ta, gg] # 0.
This shows that the Lie sub-algebra t® BeR(a) 9+8 is the centralizer. Exponenti-
ating we get the Lie group G,. Finally, a bit of topological work, described nicely
in Hsiang, shows that the centralizer of any subtorus, and in particular of 7, is a
closed connected Lie subgroup, here denoted G,,.

Step 4. General properties of Lie groups yield that if N C H is a closed normal
subgroup of a closed connected Lie group H, then the Lie subalgebra n C § is
a Lie ideal [n,h] C n and G/N is a closed connected Lie group with Lie algebra
h/n. Consequently G, /T, is a closed connected Lie group with Lie algebra t/t, @
®BER(a) g+g. But t/t, is one dimensional and acts nontrivially on all the gira,
ka € R(«), showing that the rank of this Lie group is 1, with the Lie algebra of
the maximal torus being t/t,, and showing that R(«) = {£a}.
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The big step, step 1.

If dim(G) =1 we are done, G is a circle.

Otherwise, consider the weight space decompostion of g which is the decom-
position of the restriction to the circle T of G’s adjoint action on g. We have
g =tDPgia, the sum being over weights for the circle and written with mul-
tiplicity . Take the lowest occuring weight, call it a;, with corresponding weight
space g+q,. Observe that g; := t @ gi,, forms a Lie sub-algebra of g isomorphic
to su(2). The induced linear isomorphism su(2) — g1 exponentiates to give a Lie
group homomorphism SU(2) — G for which the differential of the image is g1. (We
use SU(2)’s simple connectivity to guarantee the existence of the map.) Write G1
for the image, a closed Lie subgroup of G, isomorphic to either SO(3) or SU(2).
Restricting the adjoint representation to Gi C G then yields a representation of
either SO(3) or SU(2) on g. But gy is a invariant subspace, of this representation
of G1, and so the orthogonal complement gi- = € Ao OA 18 also a representation
of Gy. ( If the original «; occured with multiplicity then their may be a copy
of g1, within g7“?.) There is no 0 weight for this subrepresentation, since the
torus is by assumption dimension 1, and a weight 0 would mean the maximal torus
had dimension at least 2. But for SO(3) every representation has a zero weight
subspace, arising as it does from a Va. Consequently Gy # SO(3). This leaves
us with G; = SU(2), in which case the weight o1 occuring within g; is weight 2,
since that is the root space decomposition of SU(2). Thus all the other weights
occurring in the orthogonal representation gi- are 2 (allowing for multiplicity) or
higher. But this is impossible: any representation of SU(2) is either even, in which
case it has a zero weight, which we’ve already excluded, or odd, in which case it
has a weight space of weight 1, which we’'ve also excluded since we took «y to be
the lowest occurring weight.



