
We continue on with the root space decomposition.
We will write g±α for the two-dimensional real vector space whose complexifica-

tion is gα ⊕ g±α so that the root space decomposition reads:

g = t⊕
⊕
α∈R

mag±α

Theorem 1. mα = 1 for all α ∈ R. In other words each weight ±α which occurs
in the root space decomposition (*) occurs with multiplicity 1.

If α ∈ R, and if kα ∈ R, then k = ±1.

The proof from Hsiang is rather spectacular.
Step 1. Classify all rank 1 compact connected Lie groups. The complete list is ,

S1, SU(2) and SO(3).
Step 2. Observe that for each α ∈ R the kernel, ker(α) defines a subtorus Tα of

codimension 1,
Step 3. Compute that the centralizer Z(Tα) (the group of all elements g such

that gt = tg for all t ∈ Tα) is a closed connected Lie subgroup Gα ⊂ G whose Lie
algebra is t ⊕

⊕
β∈R(α) g±β , the big sum

⊕
being over the set R(α) = R ∩ Zα of

all roots β which are a nonzero multiple of α..
Step 4. Observe that the quotient group Gα/Tα is a closed compact Lie group

of rank 1, since its maximal torus is T/Tα.
Step 5. Conclusion! : By Step 1, the Lie algebra of Gα/Tα agrees with su(2),

and in particular has dimension 3. It follows that only a single pair ±α can occur,
and that with multiplicity 1.

QED, modulo proving the pieces 1-3.
Step 1. Takes the most work. Hang on!
Step 2. Recall that we can also view roots (and weights) as homomorphisms

T → S1. As such, their kernels are closed subtorii, of codimension 1, since they are
onto.

Step 3. On the Lie algebra level, the centralizer of a subalgebra tα consists of all
those elements X which commute with every element of tα. We first compute that
the Lie algebra centralizer of tα is t⊕

⊕
β∈R(α) g±β . Indeed, if β = kα then we have

that [gβ , tα] = 0 since any element of exp(H) ∈ Tα acts on gβ by multiplication by
Z 7→ exp(i2πkα(H))Z and since α(X) = 0, the action is by the identity. Differen-
tiating we see that get [X, tα] = 0. We also have [t, tα] ⊂ [t, t] = 0. This proves that
on the Lie algebra level t⊕

⊕
β∈R(α) g±β centralizes. One checks that if β is not an

element of R(α) then the generic element of Tα rotates g±β , so that [tα, gβ ] 6= 0.
This shows that the Lie sub-algebra t⊕

⊕
β∈R(α) g±β is the centralizer. Exponenti-

ating we get the Lie group Gα. Finally, a bit of topological work, described nicely
in Hsiang, shows that the centralizer of any subtorus, and in particular of Tα is a
closed connected Lie subgroup, here denoted Gα.

Step 4. General properties of Lie groups yield that if N ⊂ H is a closed normal
subgroup of a closed connected Lie group H, then the Lie subalgebra n ⊂ h is
a Lie ideal [n, h] ⊂ n and G/N is a closed connected Lie group with Lie algebra
h/n. Consequently Gα/Tα is a closed connected Lie group with Lie algebra t/tα ⊕⊕

β∈R(α) g±β . But t/tα is one dimensional and acts nontrivially on all the g±kα,

kα ∈ R(α), showing that the rank of this Lie group is 1, with the Lie algebra of
the maximal torus being t/tα, and showing that R(α) = {±α}.
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The big step, step 1.
If dim(G) = 1 we are done, G is a circle.
Otherwise, consider the weight space decompostion of g which is the decom-

position of the restriction to the circle T of G’s adjoint action on g. We have
g = t ⊕

⊕
g±α, the sum being over weights for the circle and written with mul-

tiplicity . Take the lowest occuring weight, call it α1, with corresponding weight
space g±α1

. Observe that g1 := t ⊕ g±α1
forms a Lie sub-algebra of g isomorphic

to su(2). The induced linear isomorphism su(2) → g1 exponentiates to give a Lie
group homomorphism SU(2)→ G for which the differential of the image is g1. (We
use SU(2)’s simple connectivity to guarantee the existence of the map.) Write G1
for the image, a closed Lie subgroup of G, isomorphic to either SO(3) or SU(2).
Restricting the adjoint representation to G1 ⊂ G then yields a representation of
either SO(3) or SU(2) on g. But g1 is a invariant subspace, of this representation
of G1, and so the orthogonal complement g⊥1 =

⊕
λ6=α g±λ is also a representation

of G1. ( If the original α1 occured with multiplicity then their may be a copy
of g±α1

within gperp1 .) There is no 0 weight for this subrepresentation, since the
torus is by assumption dimension 1, and a weight 0 would mean the maximal torus
had dimension at least 2. But for SO(3) every representation has a zero weight
subspace, arising as it does from a V2k. Consequently G1 6= SO(3). This leaves
us with G1 = SU(2), in which case the weight α1 occuring within g1 is weight 2,
since that is the root space decomposition of SU(2). Thus all the other weights
occurring in the orthogonal representation g⊥1 are 2 (allowing for multiplicity) or
higher. But this is impossible: any representation of SU(2) is either even, in which
case it has a zero weight, which we’ve already excluded, or odd, in which case it
has a weight space of weight 1, which we’ve also excluded since we took α1 to be
the lowest occurring weight.


