We continue on with the root space decomposition.
We will write $\mathfrak{g}_{ \pm \alpha}$ for the two-dimensional real vector space whose complexification is $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{ \pm \alpha}$ so that the root space decomposition reads:

$$
\mathfrak{g}=\mathfrak{t} \oplus \bigoplus_{\alpha \in R} m_{a} \mathfrak{g}_{ \pm \alpha}
$$

Theorem 1. $m_{\alpha}=1$ for all $\alpha \in R$. In other words each weight $\pm \alpha$ which occurs in the root space decomposition $\left({ }^{*}\right)$ occurs with multiplicity 1 .

If $\alpha \in R$, and if $k \alpha \in R$, then $k= \pm 1$.
The proof from Hsiang is rather spectacular.
Step 1. Classify all rank 1 compact connected Lie groups. The complete list is, $S^{1}, S U(2)$ and $S O(3)$.

Step 2. Observe that for each $\alpha \in R$ the kernel, $\operatorname{ker}(\alpha)$ defines a subtorus T_{α} of codimension 1,

Step 3. Compute that the centralizer $Z\left(T_{\alpha}\right)$ (the group of all elements g such that $g t=t g$ for all $t \in T_{\alpha}$) is a closed connected Lie subgroup $G_{\alpha} \subset G$ whose Lie algebra is $\mathfrak{t} \oplus \bigoplus_{\beta \in R(\alpha)} \mathfrak{g}_{ \pm \beta}$, the big sum \bigoplus being over the set $R(\alpha)=R \cap \mathbb{Z} \alpha$ of all roots β which are a nonzero multiple of α..

Step 4. Observe that the quotient group G_{α} / T_{α} is a closed compact Lie group of rank 1 , since its maximal torus is T / T_{α}.

Step 5. Conclusion! : By Step 1, the Lie algebra of G_{α} / T_{α} agrees with su(2), and in particular has dimension 3. It follows that only a single pair $\pm \alpha$ can occur, and that with multiplicity 1.

QED, modulo proving the pieces 1-3.
Step 1. Takes the most work. Hang on!
Step 2. Recall that we can also view roots (and weights) as homomorphisms $T \rightarrow S^{1}$. As such, their kernels are closed subtorii, of codimension 1 , since they are onto.

Step 3. On the Lie algebra level, the centralizer of a subalgebra \mathfrak{t}_{α} consists of all those elements X which commute with every element of \mathfrak{t}_{α}. We first compute that the Lie algebra centralizer of \mathfrak{t}_{α} is $\mathfrak{t} \oplus \bigoplus_{\beta \in R(\alpha)} \mathfrak{g}_{ \pm \beta}$. Indeed, if $\beta=k \alpha$ then we have that $\left[\mathfrak{g}_{\beta}, \mathfrak{t}_{\alpha}\right]=0$ since any element of $\exp (H) \in T_{\alpha}$ acts on \mathfrak{g}_{β} by multiplication by $Z \mapsto \exp (i 2 \pi k \alpha(H)) Z$ and since $\alpha(X)=0$, the action is by the identity. Differentiating we see that get $\left[X, \mathfrak{t}_{\alpha}\right]=0$. We also have $\left[\mathfrak{t}, \mathfrak{t}_{\alpha}\right] \subset[\mathfrak{t}, \mathfrak{t}]=0$. This proves that on the Lie algebra level $\mathfrak{t} \oplus \bigoplus_{\beta \in R(\alpha)} \mathfrak{g}_{ \pm \beta}$ centralizes. One checks that if β is not an element of $R(\alpha)$ then the generic element of T_{α} rotates $\mathfrak{g}_{ \pm \beta}$, so that $\left[\mathfrak{t}_{\alpha}, \mathfrak{g}_{\beta}\right] \neq 0$. This shows that the Lie sub-algebra $\mathfrak{t} \oplus \bigoplus_{\beta \in R(\alpha)} \mathfrak{g}_{ \pm \beta}$ is the centralizer. Exponentiating we get the Lie group G_{α}. Finally, a bit of topological work, described nicely in Hsiang, shows that the centralizer of any subtorus, and in particular of T_{α} is a closed connected Lie subgroup, here denoted G_{α}.

Step 4. General properties of Lie groups yield that if $N \subset H$ is a closed normal subgroup of a closed connected Lie group H, then the Lie subalgebra $\mathfrak{n} \subset \mathfrak{h}$ is a Lie ideal $[\mathfrak{n}, \mathfrak{h}] \subset \mathfrak{n}$ and G / N is a closed connected Lie group with Lie algebra $\mathfrak{h} / \mathfrak{n}$. Consequently G_{α} / T_{α} is a closed connected Lie group with Lie algebra $\mathfrak{t} / \mathfrak{t}_{\alpha} \oplus$ $\bigoplus_{\beta \in R(\alpha)} \mathfrak{g}_{ \pm \beta}$. But $\mathfrak{t} / \mathfrak{t}_{\alpha}$ is one dimensional and acts nontrivially on all the $\mathfrak{g}_{ \pm k \alpha}$, $k \alpha \in R(\alpha)$, showing that the rank of this Lie group is 1 , with the Lie algebra of the maximal torus being $\mathfrak{t} / \mathfrak{t}_{\alpha}$, and showing that $R(\alpha)=\{ \pm \alpha\}$.

The big step, step 1.
If $\operatorname{dim}(G)=1$ we are done, G is a circle.
Otherwise, consider the weight space decompostion of \mathfrak{g} which is the decomposition of the restriction to the circle T of G 's adjoint action on \mathfrak{g}. We have $\mathfrak{g}=\mathfrak{t} \oplus \bigoplus \mathfrak{g}_{ \pm \alpha}$, the sum being over weights for the circle and written with multiplicity. Take the lowest occuring weight, call it α_{1}, with corresponding weight space $\mathfrak{g}_{ \pm \alpha_{1}}$. Observe that $\mathfrak{g}_{1}:=\mathfrak{t} \oplus \mathfrak{g}_{ \pm \alpha_{1}}$ forms a Lie sub-algebra of \mathfrak{g} isomorphic to $s u(2)$. The induced linear isomorphism $s u(2) \rightarrow \mathfrak{g}_{1}$ exponentiates to give a Lie group homomorphism $S U(2) \rightarrow G$ for which the differential of the image is $\mathfrak{g} 1$. (We use $S U(2)$'s simple connectivity to guarantee the existence of the map.) Write $G 1$ for the image, a closed Lie subgroup of G, isomorphic to either $S O(3)$ or $S U(2)$. Restricting the adjoint representation to $G_{1} \subset G$ then yields a representation of either $S O(3)$ or $S U(2)$ on \mathfrak{g}. But \mathfrak{g}_{1} is a invariant subspace, of this representation of G_{1}, and so the orthogonal complement $\mathfrak{g}_{1}^{\perp}=\bigoplus_{\lambda \neq \alpha} \mathfrak{g}_{ \pm \lambda}$ is also a representation of G_{1}. (If the original α_{1} occured with multiplicity then their may be a copy of $\mathfrak{g}_{ \pm \alpha_{1}}$ within $\mathfrak{g}_{1}^{\text {perp }}$.) There is no 0 weight for this subrepresentation, since the torus is by assumption dimension 1 , and a weight 0 would mean the maximal torus had dimension at least 2. But for $S O(3)$ every representation has a zero weight subspace, arising as it does from a $V_{2 k}$. Consequently $G_{1} \neq S O(3)$. This leaves us with $G_{1}=S U(2)$, in which case the weight α_{1} occuring within \mathfrak{g}_{1} is weight 2 , since that is the root space decomposition of $S U(2)$. Thus all the other weights occurring in the orthogonal representation \mathfrak{g}_{1}^{\perp} are 2 (allowing for multiplicity) or higher. But this is impossible: any representation of $S U(2)$ is either even, in which case it has a zero weight, which we've already excluded, or odd, in which case it has a weight space of weight 1 , which we've also excluded since we took α_{1} to be the lowest occurring weight.

