0.1. Weights for a torus T. We saw that the space of weights for the circle S,

which is the space St of its irreps , is isomorphic to Hom(S!, S%)since all represen-

tations are complex 1-dimensional. Hom(S!,S') is in turn naturally isomorphic to

the integers Z. (The natural isomorphism is, topologically speaking, the degree of

the map S* — S!.) Since a torus T is isomorphic to n copies of the circle, it is not

a surprise that its space T of irreps is Z™. But it is helpful to see this intrinsically.
The Lie algebra of a torus 7', denoted

t>= Hom(R,T)
contains an intrinsic lattice
ker(exp) = Hom(S*,T) := A*.

consisting of those one-parameter subgroups exp(tX) that close up after after one
period: exp(X) = 1. Dually we have that the dual to the Lie algebra t* contains
the lattice

A = Hom(T,S")

intrinsically dual to the above lattice. This is the lattice T of characters. The
pairing between the two lattices, is composition, Hom(S',T) x Hom(T,S') —
Hom(S',S') = Z which gives us composing we get a homomorphism S* — St
and associated to this homomorphism is an integer, the winding number, thus
establishing a pairing

Hom(S*,T) x Hom(T,S*) — Hom(S*,S") = Z.

To see how the lattice A of characters sits inside the vector space t* we build a
character y : T — S' out of a linear functional X : t — R by using the exponential:

x(expX) = 2 AX)

Note that the requirement x(1) = 1 requires that A(X) € Z whenever exp(X) =1
which is to say, we must insist that A be in the lattice dual to the lattice ker(exp).
For each A € A we write V), for the corresponding complex one-dimensional weight
space.

Weights of a representation. From now on we identify the lattice A C t*
with 7", the space of irreducible representations of 7. If V' is a finite-dimensional rep-
resentation space for T', then we can break V up into irreducibles: V = @X my Vy
where the sum is over some finite subset S of the lattice A and the integers m,,
are the multiplicities. The “weights” of the representations are the elements of this
subset S listed with their multiplicities.

Aside 1. Coordinates. Choosing a basis for t consisting of elements in a Z-basis
for ker(exp) induces an isomorphism (ker(exp),t) = (Z™,R™) and consequently of
T 2 t/ker(exp) = R™/Z™. Then A = Z™. Written out in in the corresponding
angular coordinates 67(mod1), the characters of T have the form exp(2miXn,;67).
The form (¢!,...,t") — In;t’ is a weight for 7.

Remark 2. The algebraic topological viewpoint on these lattices is:

t~2 Hi(T;R) A= H(T;Z).

"= HYT,R) ;A=HYT,Z)



Take G to be a connected compact Lie group. Fix a maximal torus T C G. Let
V' be a representation space for G. By restriction, V is a representation space for
T.

Definition 1. The weights of V are the weights of the restricted representation of
T on V. The corresponding joint eigenspaces Vx, A € A are called “weight spaces”

If A is a weight, ¢ = exp(H) € T and v € V) then this means that
p(t)(v) = exp? My,

Exercise 1. If the representation is unitary then different weight spaces are or-

thogonal: V\ L Vi, X # N.
G has a canonical representation on its Lie algebra , the adjoint representation.

Definition 2. The roots of G are the weights of the adjoint representation of G
on g. The corresponding weight spaces are called the root spaces, denoted g,. The
root space for 0 , that is, the trivial representation of T', is t.

Thus
s=toPaa (*)
a#0
and by the lemma, and the bi-invariance of the metric

tt = @ga.

Remark on Reality. The Lie algebra of compact G is a real vector space, not
a complex one, so its adjoint representation is a real representation, not a complex
one. But in our discussion of weights above we dealt with complex representations.
Our realization (*) is tantamount to identifying each non-trivial real representation
of T occuring in the adjoint representation with a fixed complex one-dimensional
representation. This in turn is the same as choosing an orientation on the real
irreducible representation space.

The complex representation V) = C of a torus T can be viewed as a real rep-
resentation, by viewing C as a real vector space. Then its matrix realization is
exp(H) — (Z?ﬁg;;ég; )) _C(S):(léig)(\gg )> Conversely, all non-trivial real repre-
sentations of T' are of this form. For if V is a real irrep, then V ® C is a complex
rep. which can then be broken into irreducibles: Vo = V), @ V), &.... Because the
trace (character) of a real rep is a real function, we must have that the A\; come in
positive-negative pairs: Ao = —Ay, .... Irreducibilty shows us that there are just
two summands V) @ V_y. A choice of orientation of V is equivalent to identifying
V with one of V), or V_,. Reversing orientation, reverses the choice. Viewed as real
representations, and not fixing orientation, we have V) = V_,. Summarizing, over
the reals, the irreducible representations of T’ are parametrized by T/4 = Z"/ + 1
where 0 corresponds to the trivial one-dimensional real representation, and all other
representations are the real two-dimensional representations, Vy = V_j.

The root space for 0 is t.Because T is Abelian, its own adjoint action is trivial,
which shows that t is contained in the root space for 0: Ad;(v) = v for v € t. There
is something to prove though , hidden in the definition of root space and this is that
t exhausts the vectors of weight 0. For, suppose there is some other vector v € g,
v ¢ t, v of weight zero under the adjoint action restricted to 7. Then Ad(v) = v
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for all t € T. Exponentiating, t(exp(sv))t~! = exp(sv) for all s. This shows that
adjoining the one-parameter subgroup generated by v to T' (and taking closures if
necessary) yields a compact Abelian group strictly bigger than 7', contradicting T”s
maximality.

Lemma 1. Under the bi-invariant metric, this decomposition is orthogonal, with
t the tangent space to T. For generic x € T, the orthogonal sum @ g is the the
tangent space to the conjugacy class G - x through x.

If Ais aroot, t =exp(H) € T and X € V) then this means that
Ady(X) = exp*™ ) x

Now In a little bit, we will see that all maximal torii are conjugate. If V a
complex representation of G. Then, by differentiation, V' becomes a representation
of the Lie algebra g, and of the complex Lie algebra go. with Cartan subalgebra
t. A weight for V is an element w € t* such that there is a nonzero vector v € V
with the property that ¢ -v = w(¢{)v for all { € t (a simultaneous eigenvector). The
space of v’s for a given weight w is called the weight space for w and is denoted V.
If w € t* is not a weight we set V,, = 0. For a finite-dimensional representation V'
of g the set of weights is finite, and

V=@ V.
wet*
The roots of g are the weights of the adjoint representation, with the corresponding
weight spaces called the root spaces, and denoted by g,.
From (&v = £Cv + [¢, &Jv it follows that if v € V,, and £ € g, then £ - v € Viyqq.
In other words, go - Vi € Vipta, which implies the following “vanishing weight
criterion”:
If w is weight and « is a root such that w + « is not a weight then
o Vw =0.

This is part of the proposition

(1) 0o - Vi # 0 <= w + «a is a weight.

It follows that if, as in our case, all weight spaces are 1-dimensional, then g, -V, =
Vw+a whenever w + « is a weight.



