
0.1. Weights for a torus T . We saw that the space of weights for the circle S1,
which is the space Ŝ1 of its irreps , is isomorphic to Hom(S1, S1)since all represen-
tations are complex 1-dimensional. Hom(S1, S1) is in turn naturally isomorphic to
the integers Z. (The natural isomorphism is, topologically speaking, the degree of
the map S1 → S1.) Since a torus T is isomorphic to n copies of the circle, it is not

a surprise that its space T̂ of irreps is Zn. But it is helpful to see this intrinsically.
The Lie algebra of a torus T , denoted

t ∼= Hom(R, T )

contains an intrinsic lattice

ker(exp) ∼= Hom(S1, T ) := Λ∗.

consisting of those one-parameter subgroups exp(tX) that close up after after one
period: exp(X) = 1. Dually we have that the dual to the Lie algebra t∗ contains
the lattice

Λ ∼= Hom(T, S1)

intrinsically dual to the above lattice. This is the lattice T̂ of characters. The
pairing between the two lattices, is composition, Hom(S1, T ) × Hom(T, S1) →
Hom(S1, S1) ∼= Z which gives us composing we get a homomorphism S1 → S1,
and associated to this homomorphism is an integer, the winding number, thus
establishing a pairing

Hom(S1, T )×Hom(T, S1)→ Hom(S1, S1) ∼= Z.

To see how the lattice Λ of characters sits inside the vector space t∗ we build a
character χ : T → S1 out of a linear functional λ : t→ R by using the exponential:

χ(expX) = ei2πλ(X).

Note that the requirement χ(1) = 1 requires that λ(X) ∈ Z whenever exp(X) = 1
which is to say, we must insist that λ be in the lattice dual to the lattice ker(exp).
For each λ ∈ Λ we write Vλ for the corresponding complex one-dimensional weight
space.

Weights of a representation. From now on we identify the lattice Λ ⊂ t∗

with T̂ , the space of irreducible representations of T . If V is a finite-dimensional rep-
resentation space for T , then we can break V up into irreducibles: V =

⊕
χmχVχ

where the sum is over some finite subset S of the lattice Λ and the integers mχ

are the multiplicities. The “weights” of the representations are the elements of this
subset S listed with their multiplicities.

Aside 1. Coordinates. Choosing a basis for t consisting of elements in a Z-basis
for ker(exp) induces an isomorphism (ker(exp), t) ∼= (Zn,Rn) and consequently of
T ∼= t/ker(exp) ∼= Rn/Zn. Then Λ ∼= Zn∗. Written out in in the corresponding
angular coordinates θj(mod1), the characters of T have the form exp(2πiΣnjθ

j).
The form (t1, . . . , tn)→ Σnjt

j is a weight for T .
Remark 2. The algebraic topological viewpoint on these lattices is:

t ∼= H1(T ;R) ; Λ∗ ∼= H1(T ;Z).

.

t∗ ∼= H1(T,R) ; Λ ∼= H1(T,Z)

.
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Take G to be a connected compact Lie group. Fix a maximal torus T ⊂ G. Let
V be a representation space for G. By restriction, V is a representation space for
T .

Definition 1. The weights of V are the weights of the restricted representation of
T on V . The corresponding joint eigenspaces Vλ, λ ∈ Λ are called “weight spaces”

If λ is a weight, t = exp(H) ∈ T and v ∈ Vλ then this means that

ρ(t)(v) = exp2πiλ(H)v.

Exercise 1. If the representation is unitary then different weight spaces are or-
thogonal: Vλ ⊥ Vλ′ , λ 6= λ′.

G has a canonical representation on its Lie algebra , the adjoint representation.

Definition 2. The roots of G are the weights of the adjoint representation of G
on g. The corresponding weight spaces are called the root spaces, denoted gα. The
root space for 0 , that is, the trivial representation of T , is t.

Thus

g = t⊕
⊕
α 6=0

gα (∗)

and by the lemma, and the bi-invariance of the metric

t⊥ =
⊕

gα.

Remark on Reality. The Lie algebra of compact G is a real vector space, not
a complex one, so its adjoint representation is a real representation, not a complex
one. But in our discussion of weights above we dealt with complex representations.
Our realization (*) is tantamount to identifying each non-trivial real representation
of T occuring in the adjoint representation with a fixed complex one-dimensional
representation. This in turn is the same as choosing an orientation on the real
irreducible representation space.

The complex representation Vλ ∼= C of a torus T can be viewed as a real rep-
resentation, by viewing C as a real vector space. Then its matrix realization is

exp(H) 7→
(

cos(2πλ(H)) − sin(2πλ(H))
sin(2πλ(H)) cos(2πλ(H))

)
. Conversely, all non-trivial real repre-

sentations of T are of this form. For if V is a real irrep, then V ⊗ C is a complex
rep. which can then be broken into irreducibles: VC = Vλ1

⊕Vλ2
⊕ . . .. Because the

trace (character) of a real rep is a real function, we must have that the λi come in
positive-negative pairs: λ2 = −λ1, . . . . Irreducibilty shows us that there are just
two summands Vλ ⊕ V−λ. A choice of orientation of V is equivalent to identifying
V with one of Vλ or V−λ. Reversing orientation, reverses the choice. Viewed as real
representations, and not fixing orientation, we have Vλ ∼= V−λ. Summarizing, over

the reals, the irreducible representations of T are parametrized by T̂ /± ∼= Zn/± 1
where 0 corresponds to the trivial one-dimensional real representation, and all other
representations are the real two-dimensional representations, Vλ ∼= V−λ.

The root space for 0 is t.Because T is Abelian, its own adjoint action is trivial,
which shows that t is contained in the root space for 0: Adt(v) = v for v ∈ t. There
is something to prove though , hidden in the definition of root space and this is that
t exhausts the vectors of weight 0. For, suppose there is some other vector v ∈ g,
v /∈ t, v of weight zero under the adjoint action restricted to T . Then Adt(v) = v
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for all t ∈ T . Exponentiating, t(exp(sv))t−1 = exp(sv) for all s. This shows that
adjoining the one-parameter subgroup generated by v to T (and taking closures if
necessary) yields a compact Abelian group strictly bigger than T , contradicting T ’s
maximality.

Lemma 1. Under the bi-invariant metric, this decomposition is orthogonal, with
t the tangent space to T . For generic x ∈ T , the orthogonal sum

⊕
gα is the the

tangent space to the conjugacy class G · x through x.

If λ is a root, t = exp(H) ∈ T and X ∈ Vλ then this means that

Adt(X) = exp2πiλ(H)X.

Now In a little bit, we will see that all maximal torii are conjugate. If V a
complex representation of G. Then, by differentiation, V becomes a representation
of the Lie algebra g, and of the complex Lie algebra gC . with Cartan subalgebra
t. A weight for V is an element w ∈ t∗ such that there is a nonzero vector v ∈ V
with the property that ζ · v = w(ζ)v for all ζ ∈ t (a simultaneous eigenvector). The
space of v’s for a given weight w is called the weight space for w and is denoted Vw.
If w ∈ t∗ is not a weight we set Vw = 0. For a finite-dimensional representation V
of g the set of weights is finite, and

V =
⊕
w∈t∗

Vw.

The roots of g are the weights of the adjoint representation, with the corresponding
weight spaces called the root spaces, and denoted by gα.

From ζξv = ξζv + [ζ, ξ]v it follows that if v ∈ Vw and ξ ∈ gα then ξ · v ∈ Vw+α.
In other words, gα · Vw ⊂ Vw+α, which implies the following “vanishing weight
criterion”:

If w is weight and α is a root such that w + α is not a weight then
gα · Vw = 0.

This is part of the proposition

(1) gα · Vw 6= 0⇐⇒ w + α is a weight.

It follows that if, as in our case, all weight spaces are 1-dimensional, then gα ·Vw =
Vw+α whenever w + α is a weight.


