
This note explores the spherical harmonics, and how they form the irre-
ducible representations of SO(3) and how they together in terms of an sl(2)
action.

Let P denote the space of complex valued real polynomials on IR3, and
Pd ⊂ P the space of homogeneous degree d polynomials. Thus

P =
⊕
d

Pd.

Exercise 1. Compute the dimension of Pd. Prove that dim(Pd) =
dim(Pd−2) + (2d+ 1).

The group SO(3) of rotations of 3-space acts on the space of all continuous
complex valued functions on IR3 according to f 7→ Rf := f ◦R−1, R ∈ SO(3).
This action maps P to P and perserves degree so defines a finite-dimensional

representation of SO(3) on Pd. The Laplacian ∆ = ∂
∂x

2
+ ∂

∂y

2
+ ∂

∂y

2
is a

rotationally invariant operator: δ(R · f) = R ·∆f . It follows that

Hd = Pd ∩ ker(∆)

is an SO(3)- invariant subspace.

Definition 1 Hd = Pd ∩ ker(∆) is called the space of degree d harmonic func-
tions. A function f is called “harmonic” if ∆f = 0.

Example: (x+ iy)5 ∈ H5 ⊂ P5.

Theorem 1 • A) Hd forms an irrep for SO(3), isomorphic to the spin 2d
irred.

• B) Pd decomposes into SO(3)-irreps according to :

Pd = Hd ⊕ r2Hd−2 ⊕ r4Hd−4 ⊕ . . .

Exercise. For d = 4 show that upon taking dimensions of both sides this
decomposition yields the equality 15 = 9 + 5 + 1.

By the Bolzano-Weierstrass theorem, the restiction of functions f ∈ P to
the unit sphere S2 ⊂ IR3 forms a dense subset of C0(S2,C) or of L2(S2).
Since rotations map S2 to itself, they define a representation on these (infinite-
dimensional) vector spaces.

Corollary 1 The space Hd|S2 is an irrep for SO(3) and is the eigenspace for
the Laplacian on the sphere with eigenvalue d(d + 1). These spaces give the
direct sum decompostion of L2(S2) into eigenspaces for the Laplacian:

L2(S2) =
⊕
Hd|S2 , ∆ψd = d(d+ 1)ψd, ψd ∈ Hd|S2 .

The 2d + 1 dimensional subspace Hd|S2 ⊂ C0(S2,C) is called the space of
spherical harmonics of degree d.
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Proof of theorem. Both the real and imaginary parts of any holomorphic
function on the xy plane is harmonic on the plane IR2. We can view such a
function as a function on IR3 which is independent of the third z variable. Thus
for each positive integer d we have that ψd ∈ Hd where ψd(x, y, z) = (x+ iy)d.
But ψd transforms by eidθ under rotations of the xy plane by θ so has weight d.
It follows that the invariant subspace Hd contains a copy of the 2d+ 1 irrep Vd
within it. We will show that Hd = Vd be a dimension count.

It is enough to show that ∆ is onto. For then, since ker(∆) = Hd we
would have dim(Pd) = dim(Hd) + dim(Pd−2). But by the exercise 1 above,
dim(Pd) = 2d+ 1 + dim(Pd−2), so this would prove that Hd = Vd. Inspired by
Schur’s lemma, we expect that ∆ is a “multiple of the identity” on each factor
r2sHd−2s. More precisely, both the operators mr2 of multiplication by r2 and
∆. are SO(3)-equivariant. One raises degree by 2 and one lowers degree by 2,
so the composition ∆ ◦mr2 maps Pd−2 to itself, and its image is contained in
∆(Pd) since mr2 is in

mr2 : Pd−2 → Pd, ∆ : Pd → Pd−2.

We will show that ∆ ◦ mr2 , upon restriction to r2(s−2)Hd−2s−2 is a positive
scalar multiple of the identity. Combined with induction, this will complete the
proof.

We now show by hand that the operator ∆◦mr2 is a positive scalar multiple
of the identity when restricted to each factor r2sHj . Start with s = 1. From
∆(fg) = (∆f)g+2∇f ·∇g+f∆g we compute that ∆(r2g) = 6g+4E[g]+r2∆g
where E[g] = (x ∂

∂x +y ∂
∂y +z ∂

∂y )(g). E is called the “Euler vector field”. Euler’s

identity asserts that if E ∈ Pj then E[g] = jg. Thus if g ∈ Hd−2 we have that
∆(r2g) = (6 + 4(d− 2))g.

Exercise. If ψ ∈ Hj show that ∆(r2sψj) = [s((s− 1) + 6 + 4sj]r2(s−1)ψj .
According to the exercise then (∆ ◦mr2)(r2(s−1)ψd−2s−2) = [s((s− 1) + 6 +

4s(d−2s−2)](r2(s−1)ψd−2s−2) Since the scalar [s((s−1)+6+4s(d−2s−2)] > 0
for 0 < s < (d− 1)/2 we have proved that ∆ is indeed onto, provided we know
the decomposition (B) of the theorem is valid for Pd−2.

To finish off we proceed by induction. For d = 0 and 1, the decomposition is
immediately true, with only one factor. Make the inductive hypothesis: that the
decomposition (B) holds for Ps for all s < d. We show that the decomposition
holds for s = d. By the inductive hypothesis then, we have the desired decom-
position for s = d−2 for which to apply our above reasoning to ∆ : Pd → Pd−2.
Thus, ∆ is onto, and so Pd = Vd ⊕ r2Pd−2 and Vd = Hd.

QED
Proof of Corollary.
Since r = 1 on the sphere, the restrictions of Hd and of r2mHd to the sphere

is the same finite dimensional function space. Thus the restriction of P to the
sphere is the same as the restriction of the direct sum of the Hd to the sphere.
This proves that this direct sum is dense in L2(S2). Now when expressed in
spherical coordinates r, θ, φ, the IR3 the Laplacian becomes:

∆ =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2
∆S2
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where

∆S2f =
1

sinφ

∂

∂φ
(sinφ

∂

∂φ
f) +

1

sin2 φ
(
∂

∂θ
(
∂

∂θ
f))

for f a function of r, θ, φ. Now this latter operator is the Laplacian on the unit
sphere, once we set r = 1.

Now if ψ ∈ Pd then ψ = rdβ(θ, φ) from which we compute that 1
r2

∂
∂r (r2 ∂

∂r )ψ =

(d+ 1)drd−2β(θ, φ), which is to say that 1
r2

∂
∂r (r2 ∂

∂r )ψ = d(d+ 1)ψ upon restric-
tion, (after taking derivatives!) to r = 1. Hence for ψd ∈ Hd we get

0 = d(d+ 1)ψd + ∆S2ψd,

upon setting r = 1.
Now, use the fact that ‘analyst’s laplacian, is the negative of the ‘geometer’s

Laplacian’ to obtain the corollary.

An sl(2) in the picture! Extension to general dimension.
In our computation we used multiplication by r2 in combination with the

Laplacian ∆. The multiplication operator increased degree by 2 while the Lapla-
cian lowers degree by 2. Hence the commutator [∆, r2] preserves degree.

Proposition 1 Restricted to Pd, the commutator [∆, r2] is 6 + 4d times the
identity.

This proposition is a special case of a result valid in n dimensions. Let
E = Σxi

∂
∂xi be the “Euler operator” - the infinitesimal generator of dila-

tions. Write δλ : IRn → IRn for the transformartion of scalar multiplica-
tion by λ: δλ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn) Then E[f ] = d

dλ |λ=1δ
∗
λf .

Euler’s identity asserts that Ef = df for f ∈ Pd, where now Pd denotes
the space of homogeneous degree d polynomials on IRn. Also ∇r2 = 2E
and ∆r2 = 2n where r2 = Σx2i is the squared distance from the origin in
IRn. It follows from ∆(fg) = (∆f)g + 2∇f · ∇g + f∆g , with f = r2 that
∆(r2ψ) = 2nψ + 4E[ψ] + r2∆ψ, or

[∆, r2] = 2nId.+ 4E

It follows from the degree 2 homogeneity of r2 that mr2 is homogeneous
of degree 2: δλ ◦ mr2 ◦ δ1/λ = λ2mr2 . Setting λ = et and differentiating this
identity at t = 0 yields [E,mr2 ] = 2mr2 . In a similar manner ∆ is an operator
which is homogeneous of degree −2 and so [E,∆] = −2∆. It follows from these
commutation relations thatH = 2nId. + 4E , X = mr2 and Y = ∆ define a
representation of the Lie algebra sl(2, IR) on the space P of polynomials on IRn.

Following Hermann Weyl, Roger Howe, combined this sl(2) action with the
O(n) action on P and showed the two actions form what is now called a “Howe
dual pair”. As a consequence of their ‘duality’ Howe obtains a proof of Theo-
rem 1 for the case of general n. In that theorem IRn replaces IR3, SO(n) (or
O(n) replaces SO(3), and the Laplacian becomes the usual IRn-Laplacian. The
corollary also holds, with the sphere now the standard unit n − 1 sphere with
its induced metric.
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