
SLICES OF GROUP ACTIONS.

RICHARD MONTGOMERY

By a ‘G-space’ we mean a smooth manifold X on which a Lie group G acts

smoothly. Associated to each point x0 of a G-space X we have two objects, the

orbit through x0, denoted Gx0, which is a subset of X, and the isotropy of x0 (also

called its stabilizer, symmetry group, or little group), denoted Gx0
and which is a

closed subgroup of G. In set-theory notation :

Gx0 = {y ∈ X : ∃g ∈ G, y = gx0}, Gx0 = {g ∈ G : gx0 = x0}.

The orbit is a submanifold of X, and is compact and embedded if G is compact.

The isotropy group is a Lie subgroup of G. The smooth map

πx0
: G→ Gx0; g 7→ gx0

relates the orbit and isotropy. The map is constant under the RIGHT Gx0
action

on G, that is πx0(gh) = πx0(g) for h ∈ Gx0 . Thus πx0 induces a G-equivariant

diffeomorphism:

G/Gx0
∼= Gx0.

Both sides of this isomorphism are homogeneous spaces.

Definition 1. A homogeneous space is a G-space where the G-action is transitive.

Thus each orbit of X is a homogeneous space. All homogeneous spaces Y are

diffeomorphic to some coset space G/H for some closed subspace H ⊂ G, H being

the isotropy of a fixed point of Y . To understand the structure of a G-space X the

strategy is to list all its isotropy groups H, and then describe how the consequent

homogeneous spaces G/H fit together to form X.
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Remark 1. The map πx0
gives G the structure of a smooth principal Gx0

bundle

over the orbit. The fibers of this fibration arethe cosets gGx0 and are all diffeomor-

phic to the subgroup Gx0
. Indeed

Exercise 1. If x and y lie on the same orbit then their isotropy groups are conju-

gate. Precisely Gy = gGxg
−1 if y = gx.

It follows that as y varies over the orbit G/H the consequent isotropy groups

vary over all conjugates to H.

Definition 2. By the orbit type of x we mean the conjugacy class of the stabilizer

Gx of x. We represent the orbit type by Gx itself.

By the orbit types of a G-space X we mean the list of the conjugacy classes of

isotropy groups Gx that occur as x varies.

Example 1. Take G = SO(3) and X = R3 with the standard linear action of the

rotation group SO(3) on R3. If x0 6= 0 then its isotropy group is the circle SO(2)

of all rotations about the line thru x0. The orbit of this x0 is the sphere of radius

‖x0‖:

Gx0 = S2(‖x0‖) = SO(3)/SO(2)

The origin x0 = 0 is itself an orbit whose isotropy is all of G. There are thus two

orbit types, the circle subgroup (SO(2)) and the whole group G. The map

πx0
: SO(3)→ S2 = Gx0

is the Hopf fibration, up to a Z2-cover.

The isotropy group represents the ‘symmetry” of the point x. We expect the

typical point of X to be the least symmetric, and hence to have the smalled isotropy

group among all possible isotropy groups of points of X. For example, with X = R3

and G = SO(30 we saw that the typical point had a one-dimensional isotropy group,

while one single point (the origin) had the entire three-dimensional group G as its

isotropy group.
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We formalize the idea of ‘ less symmetric’ with a partial order “�” on the col-

lection of closed subgroups of G. This order measures instead the size of the orbit.

Observe that the larger the isotropy group H, the smaller its corresponding orbit

G/H so that these typical points we expect to have the ‘largest’ isotropy group.

Formally, write K � H if K lies inside some conjugate of H. In other words:

K � H ⇐⇒ ∃g ∈ G : K ⊂ gHg−1.

This order is invariant under conjugation and so induces an order on the set of all

conjugacy classes of closed subgroups of G.

Remark 2. Using conjugation, we may assume that K ⊂ H when K � H. We

then have an obvious submersion:

(1) K � H =⇒ π : G/K → G/H(onto)

between homogeneous spaces.

Exercise 2. a)Show the fiber of the fibration (1) is the homogeneous space H/K.

b) Show that there exists a G-equivariant map G/K → G/H if and only if

K � H.

Theorem 1 (Principal orbit type). If G is compact and X is connected then there

is a unique maximal orbit type H, called the principal orbit type for X. Thus, for

all x ∈ X there is a g ∈ G such that gHg−1 ⊂ Gx. The set of points with orbit type

H forms a dense open connected subset of X.

In the example of SO(3) on R3 the principal orbit type is SO(2).

To prove the maximal torus theorem, we think of G itself as an X. We will see

that the maximal torus theorem is almost equivalent to the following theorem

Theorem 2 (Principal orbit type for conjugation action). Let G be a compact

connected Lie group. Consider X = G to be a G-space by having G act on G by
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conjugation. Then the principal orbit type of this action is realized by (any of ) the

maximal torus T ⊂ G.

The proof will rely on the slice theorem and the isotropy representation so will

have to wait for these topics to be presented.

In the case G = SO(3),if we differentiate the action of conjugation at the identity

we get the adjoint action, which we have seen is the action described in the example

above. In other words, the example above can be viewed as the derivative of the

previous theorem for the case of G = SO(3).

1. Slices

The relation “x and y lie on the same orbit” is an equivalence relation on X, and

hence X is decomposed into the disjoint union of orbits. Each orbit itself is a ho-

mogeneous space. X itself can be recovered by the way’ these various homogeneous

pieces fit together.

This ‘fitting together” of orbits is typically a complicated mess if G is non-

compact. For example, dynamical systems are just “R-spaces” and we see pictures

of horribly (or beautifully, depending on your aesthetics!) complicated orbit struc-

tures in books on “chaos”. But for a compact Lie group G the ‘fitting together” of

the orbits is surprisingly well organized. The most effective organizational structure

is that of a slice.

Definition 3. A local slice at x0 is an embedded disc S → X, transverse to the

orbit, invariant under the isotropy group: Gx0S = S and such that GS is a neigh-

borhood of the orbit Gx0.

A global slice is an embedded submanifold S ⊂ X which intersects some orbit Gx0

transversally, is Gx0 invariant, and intersects every orbit of X. Thus GS = X.

From the definition of ‘local slice’ S at x, we see that if y is a point close to x

then the G orbit through y must intersect the slice S. This is where the word ‘slice’

comes from: the slice, cuts , or slices across, across all (nearby) orbits. Although



SLICES OF GROUP ACTIONS. 5

S intersects all nearby orbits, this intersection need not be unique. Understanding

the intersection is crucial to understanding how the orbits fit together.

Also note that dim(Gx0) + dim(S) = dim(X), or

dim(G)− dim(Gx0
) + dim(S) = dim(X).

Example 2. Continuing with SO(3) acting on R3, for x0 6= 0 the line spanned by

x0 is a global slice. Any subinterval of this line which contains X0 is a ‘local slice”,

If the length of that interval is less that |x0| then the local slice has the property

that it intersects each orbit exactly once.

Theorem 3 (Slice theorem). If G is a compact Lie group , and X is a G-space,

then for every point x ∈ X there is a slice S to the G-action. This slice can be

constructed as the “orthogonal to the orbit’ at x0.

If X is compact or complete, then there is a global slice. It can be obtained

by “exponentiating” the normal vectors to the orbit Gx0 at x0 with respect to a

G-invariant metric on X.

The idea of the proof of the Slice theorem can be seen in the example of SO(3)

acting on R3 that we have been carrying along. The line through x0 6= 0, which we

saw is a slice, is precisely the line orthogonal to the orbit through x0, which is of

course the sphere of radius ‖x0‖.

Theorem 4 (Slice theorem, case of an orthogonal representation). Let E be an

orthogonal representation space for G. View E as a G-space. Then the tangent

space to the orbit through v ∈ E is TvGv = g · v, and a global slice to the G-action

at v is given by taking the orthogonal complement to this tangent space, namely ,

the slice is S = (g · v)⊥.

Proof. The representation is a map G×E→ E which we will write as (g, v) 7→ g·v

and which is linear in v, for each fixed g. Differentiating with respect to g at g = e

we get the ‘infinitesimal’, or Lie algebra action g × E → E, expressed ξ, v 7→ ξ · v

which is a bilinear map. If we fix v and vary g we sweep out the orbit Gv, which
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shows that the tangent space Tv(Gv) consists of all vectors of the form ξ 7→ ξ · v as

ξ varies over g. This subspace we have written as g · v.

Since the representation is orthogonal Gv is contained in the sphere SN−1(‖v‖)

of radius ‖v‖ about the origin. Consequently Tv(Gv) ⊂ TvSN−1(‖v‖) = v⊥. Taking

perps of this inclusion we get v ∈ Tv(Gv)⊥ so that indeed v ∈ S as is required. S

intersects Tv(Gv) orthogonally by construction.

It remains to show that S intersects every G orbit. To this purpose, let w be any

point of E and consider its orbit Gw. Gw and Gv are smooth compact submanifolds

of E, disjoint from each other. Consider the infimum of all the distances ‖x− y‖ as

x varies over Gv and y varies over Gw. This infimum is realized and the resulting

minimizing pair (A,B), A ∈ Gv,B ∈ Gw forms a line segment AB which must be

orthogonal to each orbit at its respective endpoint. Now A = gv for some g ∈ G.

Apply g−1 to rotate the line segment to vB′, B′ = g−1B. We have that B′ ∈ Gw,

and since the G action is orthogonal, the rotated line segment remains orthogonal

to both orbits. (Its length also equals ‖A − B‖.) In particular B′ − v ∈ S. Since

v ∈ S and S is a linear subspace we have that B′ = v + (B′ − v) ∈ S, proving that

Gw ∩ S 6= ∅

QED

NOW DO?? ADOINT Action of G on g, compact case??

this is the ‘infinitesimal maximal torus theorem” !

2. Invariant Metrics

We collect the tools needed to prove the slice theorem: the tubular neighbor-

hood theorem, existence of invariant metrics, the equivariant tubular neighborhood

theorem, and the isotropy representation.

From now on, let G be compact. Use the fact that Haar measure is bi-invariant.

Then, starting with any metric onX (i.e Riemannian metric) , by pushing it forward

by the G-action and averaging the result with respect to Haar measure, we obtain a

Riemannian metric on X such that this action of G on X is an action by isometries.
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Now recall how we use the Riemannian exponential map to construct a ‘tubular

neighborhood” of any embedded submanifold Σ ⊂ X. (In a moment Σ will be

Gx0.)

The Riemannian exponential map.

First, to define the exponential map, we use the fact that the geodesic equation

is a second-order differential equation on X (a first order equation on TX) and as

a result, there is a unique geodesic γ(t) passing through any point x, and pointing

in any direction v ∈ TxX. Here , “passing through x” means that γ(0) = x,

and “pointing in the direction v” means that γ̇(0 = v. Then the Riemannian

exponential map is the map expR,x : TxX → X given by expR,x(v) = γ(1). It

satisfies the property that expR,x(tv) = γ(t).

The two exponential maps agree!

Theorem 5. For a bi-invariant metric on a Lie group, the Riemannian exponential

with x = 1 agrees with the group theoretic exponential.

We proved a special case of this theorem, that of G = U(n), in class today.

Tubular neighborhoods

Return to our general submanifold Σ ⊂ X. The ‘normal bundle’ to Σ is the

vector bundle over Σ whose fiber over x consists of all the vectors v ∈ TxX such

that v ⊥ TxΣ. We write it ν(Σ). Thus

ν(Σ)x = (TxΣ)⊥.

Then the normal exponential map is the smooth map

expΣ : ν(Σ)→ X

defined by expΣ(x, v) = expR,x(v). Note that the curves expΣ(x, tv) are geodesics

passinng through x ∈ Σ and orthogonal to Σ.

Theorem 6 (Tubular neighborhood theorem). The normal exponential map is a

diffeomorphism in a neighborhood of the zero section, thus making a neighborhood
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of Σ in X diffeomorphic to a disc bundle lying inside the vector bundle ν(Σ). This

diffeo sends the zero section to Σ.

The slice theorem is essentially an equivariant tubular neighborhood theorem.

We apply the construction of the theorem with care, with Σ = Gx0 and the metric

on X being G-invariant.

3. Isotropy Representation

For h ∈ Gx0
we have that h(x0) = x0. Differentiating, we see that (dh)x0

:

Tx0X → Tx0X is a linear map, where, by slight abuse of notation we have written

dh for the differential of map X → X given by x 7→ hx. By the chain rule, d(hg)x0
=

dhx0
dgx0

if h, g ∈ Gx0
so this differentiation definve a linear representation of the

isotropy group on the tangent space of the manifold.

Definition 4. The isotropy representation at x0 ∈ X is the linear representation

of the isotropy group Gx0
of x0 on the tangent space Tx0

X at x0 obtained by dif-

ferentiation as above.

For G compact the isotropy representation splits as

Tx0X = Tx0(Gx0)⊕ νx0 ; with νx0 = Tx0(Gx0)⊥.

the ⊥ taken with respect to the invariant Riemannian metric, which is a Gx0 in-

variant inner product on Tx0
X.

The first part of the slice theorem follows immediately from:

Proposition 1. A local slice S at x0 is given

S = expx0(D);D = D(δ) ⊂ νx0

with D being a small disc centered at the origin.

To establish the proposition, observe that G acts on the normal bundle by differ-

entiation, and this action covers the action of G on the orbit. To be precise, the G



SLICES OF GROUP ACTIONS. 9

action on the normal bundle is given by: g(x, v) = (gx, dgx(v)) for v ∈ νx, x ∈ Gx0.

(This action turns ν(Gx0) into what is called a “ homogeneous vector bundle”.)

Because G acts by isometries, the normal exponential map becomes a G-equivariant

map:

expGx0
: ν(Gx0)→ X.

(“Equivariant” means exp(g(x, v) = gexp(x, v)) for x ∈ Gx0, v ∈ νx.) The normal

exponential map takes a disc bundle of the zero section diffeomorphically onto a

neighborhood of Gx0. Each fiber of this disc bundle has the form g(D), where

D ⊂ νx0
is as in the proposition, so that equivariance implies that gS sweeps out a

neighborhood of the orbit. Again, equivariance implies that each h ∈ Gx0 maps S

to itself.

To finish the proof of the slice theorem, we need the global slice S. Simply replace

D by all of νx0 so that S = exp(νx0). That S intersects every orbit essentially

follows from the fact that the exponential map at x0 maps Tx0
X onto X when X

is compact or complete.

4. Principal orbit type via isotropy representaton.

The following propositions are immediate consequences of the slice theorem.

Proposition 2 (Upper semicontinuity of orbit type). For all x ∈ X there exists a

nbhd U of x such that for all y ∈ U , Gy � Gx.

Proof. By the slice theorem, we can assume that y ∈ S, the local slice at

Proposition 3. The orbit type of a point x ∈ X is locally constant if and only

if the isotropy representation on the space νx of normal vectors at x is the trivial

representation.

It suffices to show that for all y ∈ S, y sufficiently close to x, that Gy

************
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This means that G acts on all of ν by vector bundle automorphisms, and this

action covers the G action on the orbit:

dgx : ν(Gx0
)→ ν(Gx0

); g ∈ G.

Recall that a representation of G on V is called “irreducible” if the only G-

invariant linear subspaces of V are V itself and the 0 subspace. If the orbit through

x0 is not open, then the isotropy representation is not irreducible, since the tangent

space to the orbit is an invariant subspace.

We will see momentarily that if G is compact then the isotropy representation

always splits:

The action of the isotropy group on the normal piece νx0
is what tells us how to

“piece together” orbits.

isotropy representation Since the isotropy group H = Gx0
leaves x0 in-

variant, we have that H acts linearly on Tx0
X. This action is called the “isotropy

representation”. Now in our case, of G compact acting on X by isometries, this

representation splits into two sub-representations, tangential and normal:

Tx0
X = Tx0

(Gx0)⊕ νx(Gx0)

....
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