HW 4, CELESTIAL MECHANICS, W 2017, UCSC. DUE MONDAY, MARCH 6 (AT THE EARLIEST)

The Newtonian potential for the standard 3-body problem is $V(q)=-G\left(\frac{m_{1} m_{2}}{r_{12}}+\right.$ $\left.\frac{m_{2} m_{3}}{r_{23}}+\frac{m_{1} m_{3}}{r_{13}}\right)$. Here I ask you to change the potential to

$$
V_{\alpha}=-G(\alpha)\left(\frac{m_{1} m_{2}}{\left(r_{12}\right)^{\alpha}}+\frac{m_{2} m_{3}}{\left(r_{23}\right)^{\alpha}}+\frac{m_{1} m_{3}}{\left(r_{13}\right)^{\alpha}}\right)
$$

where $\alpha \in \mathbb{R}$ is any exponent except 0 , and investigate how some of the results derived this monday in class change.

Notation: $r_{a b}=\left\|q_{a}-q_{b}\right\|$ denotes the distance between body a and body b, both modelled as point masses. The $m_{a}>0$ are the masses. The new "gravitational constant" $G(\alpha)$ is mostly just there to make certain that the units of V_{α} are those of energy.
A) [2 pts] What are the new 'Newton's equations"? That is, what are the interbody forces $\vec{F}_{a b}=\vec{F}_{a b}(q)$ occuring in the new Newton's equations $m \ddot{\vec{~}}_{a}=\vec{F}_{a b}+\vec{F}_{a c}$? (Here a, b, c is any permutation of 123 .)? Here $\vec{q}_{a}(t) \in \mathbb{R}^{3}$ is the position of the body $a, a=1,2,3$.
B) $[2 \mathrm{pts}]$ Argue that the equations can be written as $\ddot{q}=\nabla U_{\alpha}(q)$ where $q=$ $\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right) \in \mathbb{E}=\left(\mathbb{R}^{3}\right)^{3}$, the gradient ∇ is with respect to the mass metric $\langle\cdot, \cdot\rangle$ as described in class, and where $U_{\alpha}=-V_{\alpha}$.
C) $[2 \mathrm{pts}]$ Show that the energy $E=K+V_{\alpha}$ is conserved, making sure to describe K.
D) $[10 \mathrm{pts}]$ Let $I(q)=\langle q, q\rangle=m_{1}\left\|\vec{q}_{1}\right\|^{2}+m_{2}\left\|\vec{q}_{2}\right\|^{2}+m_{3}\left\|\vec{q}_{3}\right\|^{2}$ be the moment of inertia as before. Derive the new Lagrange-Jacobi identity $\frac{d^{2} I}{d t^{2}}=a E+b U_{\alpha}$ where a, b are constants possibly depending on the exponent α.
E) [4 pts] Something special happens to these Lagrange-Jacobi equation when $\alpha=2$. What is it? Use this special property to solve for the time evolution of $I(t)$ in this case.

