bloom

Disorderly programming
for a distributed world

Peter Alvaro
UC Berkeley

Joint work

I, BERKELEY

* Peter Alvaro

* Neil Conway

* Joseph M. Hellerstein
 William R. Marczak

Thanks to

e National Science Foundation
e Air Force Office of Scientific Research
e Gifts from IBM, Microsoft and Yahoo! Research

The future is already here

e All systems are (or are becoming) distributed
* Programming distributed systems is hard
* Reasoning about them is harder

s W

Outline

Disorderly Programming

The Bloom programming language
CALM Analysis and visualization
Challenge app: replicated shopping carts

Programming distributed systems

The state of the art

Order is pervasive in the Von Neumann model

* Program state is an ordered array
* Program logic is a sequence of instructions

Data Code

1. Read something <
2. Do something

3. Write something
4. GOTO 1

CPU

The state of the art

Order is pervasive in the Von Neumann model

Parallelism and concurrency via retrofits:
 Threads
* Event-driven programming

The state of the art

In distributed systems, order is

The state of the art

In distributed systems, order is
* expensive to enforce

The state of the art

In distributed systems, order is
* expensive to enforce
e often unnecessary

The state of the art

In distributed systems, order is
* expensive to enforce

e often unnecessary

* easy to get wrong

The stdtefdhehs ard

The art of the state

Disorderly programming

The art of the state

Disorderly programming:

Computation as transformation

The art of the state

Disorderly programming:
* Program state is unordered collections
* Program logic is an unordered "bag”’ of rules

The art of the state

Disorderly programming:
* Independence and concurrency are assumed
* Ordering is explicit

The art of the state

Disorderly programming

bloom

BUD: Bloom Under Development

* Ruby internal DSL
e Set comprehension style of programming
* Declarative semantics

Operational model

Local Updates
Next

System Events

Network

Network

Bloom Rules

multicast <~ (message * members) do |mes, mem
[mem.address, mes.id, mes.payload]

end

multicast <~
[mem.address, mes.id, mes.payload]

end

<Collection>
persistent table
transient scratch

networked channel
transient

scheduled .
transient periodic
one-way | interface
transient

Bloom Rules

(message * members)

<Accumulator>
<= now
<+ next
<- not next
<~ later
e —

do |mes, mem

<From List>

(R*S) join

R.notin(S) | antijoin

<Expression>

| Ruby |

Bud language features

Module system
— Encapsulation and composition via mixins
— Abstract interfaces, concrete implementations

Metaprogramming and reflection

— The program is data

Pay-as-you-code schemas
— Default is key => value

CALM Analysis

Writing distributed programs in Bloom

Abstract Interfaces and Declarations

module DeliveryProtocol
state do

interface input, :pipe in,

[tdst, :src, :ident] => [:payload]
interface output, :pipe sent, pipe in.schema
interface output, :pipe out, pipe in.schema

end

end

Concrete Implementations

module BestEffortDelivery
include DeliveryProtocol

state do Asynchrony

channel :pipe chan, pipe in.schema

end

bloom :snd do)
pipe_chan

pipe chan <~ pipe in (A)
end
bloom :done do _ .
. _ . . p1pe_sent p1pe_out
lpe sent <= plpe 1n
e DR (M) (A)

pipe out <= pipe chan
end

end

A simple key/value store

module KVSProtocol

state do
interface input, :kvput, [:key] => [:reqid, :value]
interface input, :kvdel, [:key] => [:reqid]
interface input, :kvget, [:reqgid] => [:key]

interface output, :kvget response,
[creqid] => [:key, :value]
end

end

kvget_response

A simple key/value store

module BasicKVS
include KVSProtocol 6
state do

table :kvstate, [:key] => [:value] Nonmonotonic @ @
end operation_»
bloom :mutate do = +- @
) Q&)

kvstate <+ kvput { 'S.key, s.valuel]}
kvstate <-&KVstate * kvput).lefts(:key =>_~£key) kvstate -
end N)
bloom :get do
temp :getj <= (kvget * kvstate)sdpairs(:key => :key) getj
kvget response <= getj do |gf t (N)
[g.reqid, t.key, t.valug]
end
end kvget_response
(N)
bloom :delete dge
kvstate <- vstate * kvdel).lefts(:key => :key)
end

end

CALM Analysis

Asynchronous messaging

You never really know

Asynchronous messaging

Monotonic Logic

The more you know, the more you know.

Monotonic Logic

select/ N
filter

Monotonic Logic

project /
map

C D FE

Monotonic Logic

join /
compose

>

Monotonic Logic is order-insensitive

Monotonic Logic is pipelineable

Nonmonotonic Logic

When do you know for sure?

C D F

Nonmonotonic Logic

set minus

Retraction!

Retraction!

Nonmonotonic logic is order-sensitive

C D F

set minus

Nonmonotonic logic is blocking

set minus

Nonmonotonic logic is blocking

set minus

“Sealed”

CALM Analysis

e Asynchrony => loss of order
 Nonmonotonicity => order-sensitivity

* Asynchrony ; Nonmonotonicity =>
Inconsistency

e

CALM Analysis

e Asynchrony => loss of order
 Nonmonotonicity => order-sensitivity

* Asynchrony ; Nonmonotonicity =>
Inconsistency

“Point of Order”

o

Resolving points of order

Resolving points of order

1. Ask for permission

Resolving points of order

1. Ask for permission

application logic

-~

system infrastructure

theoretical.foundation

Coordination => strong consistency

Resolving points of order

1. Ask for permission
2. Ask for forgiveness

Resolving points of order

1. Ask for permission
2. Ask for forgiveness

Compensation, weak consistency

Resolving points of order

1. Ask for permission
2. Ask for forgiveness
3. Ask differently?

Rewrite to reduce consistency cost...

Shopping Carts

Replicated Shopping Carts

Replicated for high availability and low latency

Challenge:
Ensure that replicas are eventually consistent”

Replicated Shopping Carts

module CartClientProtocol
state do
interface input, :client action,
[tserver, :session, :reqid] => [:item, :action]
interface input, :client checkout,
[tserver, :session, :reqid]
interface output, :client response,
[:client, :server, :session] => [:items]
end

end

Replicated Shopping Carts

client_checkout

module CartClientProtocol
state do

interface input, :client action,

[tserver, :session, :reqid] => [:item, :action]

client_response

interface input, :client checkout,

[tserver, :session, :reqid]

interface output, :client response,
[:client, :server, :session] => [:items]
end

end

Carts done two ways

1. A “destructive” cart
2. A “disorderly” cart

“"Destructive’” Cart

module DestructiveCart
include CartProtocol
include KVSProtocol

bloom :on action do
kvget <= action msg {|a| [a.reqid, a.session] }
kvput <= (action msg * kvget response).outer(:reqid => :reqid) do |a,r|
val = (r.value || {})
[a.client, a.session, a.reqid, val.merge({a.item => a.action}) do
|k,0ld,new| old + new
end |
end
end

bloom :on checkout do
kvget <= checkout msg {|c| [c.reqid, c.session] }
response _msg <~ (kvget response * checkout msg).pairs
(:reqid => :reqid) do |r,c|
[c.client, c.server, r.key, r.value.select {|k,v| v > 0}.to a.sort]
end
end
end

React to client

updates .

“"Destructive’” Cart

module DestructiveCart
include CartProtocol
include KVSProtocol

~ bloom :on_action do
kvget <= action msg {|a| [a.reqid, a.session] }
kvput <= (action msg * kvget response).outer(:reqid => :reqid) do |a,r|

React to client
checkout -

val = (r.value || {})
[a.client, a.session, a.reqid, val.merge({a.item => a.action}) do
|k,0ld,new| old + new
end |
end
= end

-~ bloom :on checkout do
kvget <= checkout msg {|c| [c.reqid, c.session] }
response _msg <~ (kvget response * checkout msg).pairs
(:reqid => :reqid) do |r,c|
[c.client, c.server, r.key, r.value.select {|k,v| v > 0}.to a.sort]
end

= end

end

estructive Cart Analysis

client_checkout

== """

checkout_msg
(A)

kvget
(A)

response_msg
D)

client_response

D)

kvget_response
D)

client_action

v

action_msg
(A)

kvstatei

(D) +-

+-

Destructive Cart Analysis

client_checkout

Asynchrony S L >
v v
checkout_msg action_msg +-
(A) (A)
Collapsed SCC
kvget

A d

Nonmonotonicity S e —

Divergent results?

Destructive Cart Analysis

client_checkout

4.---
P

checkout_msg action_msg

(A) (A) +-
Add coordination? E.g., (&) é!
e Synchronous replication

etj, kvget_response, kv ut,k\D
* Paxos [et bomstoepone bop
’0
*
*

*

*
‘0
response_msg
D)
client_response
D)

kvget

n = |client_action|
m = |client_checkout| =1

n rounds of coordination

’)

“Disorderly Cart

module DisorderlyCart
include CartProtocol

state do
table :action log, [:session, :reqid] => [:item, :action]
scratch :item sum, [:session, :item] => [:num]
scratch :session final, [:session] => [:items, :counts]
end

bloom :on_action do
action log <= action msg { |c| [c.session, c.reqid, c.item, c.action] }
end

bloom :on checkout do
temp :checkout log <= (checkout msg * action log).rights(:session => :session)
item sum <= checkout log.group([action log.session, action log.item],
sum(action log.action)) do |s|
s if s.last > 0
end
session final <= item sum.group(|[:session], accum(:item), accum(:num))
response msg <~ (session final * checkout msg).pairs(:session => :session) do |c,m|
[m.client, m.server, m.session, c.items.zip(c.counts).sort]
end
end

end

’)

“Disorderly Cart

module DisorderlyCart
include CartProtocol

state do
table :action log, [:session, :reqid] => [:item, :action]
scratch :item sum, [:session, :item] => [:num]
scratch :session final, [:session] => [:items, :counts]

end

Actions ™ bloom :ron_action do
— action log <= action msg { |c| [c.session, c.reqid, c.item, c.action] }
L end

~ bloom :on checkout do
temp :checkout log <= (checkout msg * action log).rights(:session => :session)
item sum <= checkout log.group([action log.session, action log.item],
sum(action log.action)) do |s|

s if s.last > 0
Checkout-< end
session final <= item sum.group([:session], accum(:item), accum(:num))
response msg <~ (session final * checkout msg).pairs(:session => :session) do |c,m|

[m.client, m.server, m.session, c.items.zip(c.counts).sort]

end

\‘— end

end

Disorderly art Analysis

=== Asynchrony

L] L]
L] L]
L] L]
L]
L]
L]
[.
. action_ms
L]
L]
L]
L]
checkout_msg action_log
(A) (A)
checkout_log

Divergent
Results?

Disorderly art Analysis

: v
: action_msg
. (A)
v
checkout_msg t log
(A) A)
n = | client_action | checkout log

m = |client_checkout| =1

1 round of coordination

Replicated Disorderly Cart

.
.
.
.
.
.
.
.

v

on_n

[} N

" Asynchronous (uncoordinated)
g replication

pipe_out

action_log

>
>

checkout_log

Still just 1 round : @
of coordination C=i™

Teaching bloom

Summary

Why disorderly?
— Order is a scarce (and distracting!) resource

When is order really needed?
— To resolve nonmonotonicity
What is coordination for?

— Re-establishing order, to guarantee consistency.

CALM

— A disorderly programming language
— Tools to identify points of order

More

Resources:
http://boom.cs.berkeley.edu

http://bloom-lang.org

Writeups:

* Consistency Analysis in Bloom: A CALM and Collected Approach (CIDR’11)
* Dedalus: Datalog in Time and Space (Datalog2.0)

 The Declarative Imperative (PODS’10 Keynote address)

* Model-theoretic Correctness Criteria for Distributed Systems (in
submission)

Queries?

Languages regarding languages

Other Languages Bloom

e

Other
Languages

