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We propose the use of a stationary probability distribution for the analysis of data on population
size. Predicting this long term population property from short term individual events is
accomplished by the use of the asymptotic theory of stochastic processes. A WKB
approximation to the stationary density is obtained and then applied to observations on the flour
beetle Tribolium.

1. Introduction. Twenty-seven years ago, Leslie (1962) recognized that his
idea for the analysis of the observed single species population growth data in
the flour beetle Tribolium was far more important than the specific model that
he had constructed. Leslie proposed that the equilibrium number of adult
beetles should be characterized in terms of a steady-state probability
distribution. While his particular model was unable to reproduce the form of
the four observed distributions given to him by Park (1954), Leslie was
unwilling to cast aside the utility of a steady state population distribution. In
Leslie’s two final scientific publications (Park et al., 1964; Leslie et al., 1968), 10
additional observed distributions were presented but, perhaps somewhat
disappointed by his 1962 work, no further attempt was made to mathemati-
cally describe this information. It is in the tradition set by Leslie (1962) that we
pursue the concept of an equilibrium probability distribution for the analysis of
population density. In particular, we provide a new method for computing the
steady state distribution that compliments existing procedures (Dennis and
Costantino, 1988) and is directly related to the biology of the organism.
Our purpose in this paper is the development of a method for predicting long
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term population properties from short term individual everts. We accomplish
this by the use of methods from the asymptotic theory oi stochastic processes,
taking advantage of the disparate scales between the population (many
individuals) and single individuals. In doing so, we hope t) both illustrate the
utility of such asymptotic methods when dealing with stochastic processes and
make such methods more accessible to the biological community.

We begin with the experimengal observations. In the third section, we
provide the motivation for our use of a stochastic model and summarize
previous approaches to the analysis of the data. Our stochastic theory begins in
the fourth section, where we formulate the equation that characterizes the
evolution of population density in terms of individual events. We solve this
equation by the use of asymptotic methods in the fifth section and then
compare our results with the experimental observations. We conclude with a
discussion of the results.

2. Experimental Observations. Cultures of the flour beetle Tribolium can be
maintained in the laboratory for long periods of time. Often the cultures are
censused at regular intervals and the resulting time series record of the number
of eggs, larvae, pupae and adults are the data studied. As an example, we
present the observations collected by Lloyd (1965; 1968).

Twelve individual replicates of the Chicago strain of Tribolium castaneum
(Herbst) were initiated with 13 very small larvae (4-5 days old), 10 small larvae
(13—-14 days old), 8 medium larvae (22-23 days old), 7 large larvae (about
32 days old), 4 sexually immature adults (0-1 day after ecolsion, sexes equal)
and 4 mature adults (9—10 days after ecolsion, sexes equal). The cultures were
maintained for 36 weeks in incubators at 24+0.6°C and 31+5% relative
humidity. At weekly intervals the cultures were removed from the incubator
and censused. All of the life stages were counted and then all living stages were
returned to fresh medium.

A census record for one replicate, sketched in Fig. 1, is representative of the
12 observed population histories: The numbers of immature life stages show
clear oscillations during the entire experiment while the number of adults
initially increased and then appear to be much more uniform in number than
the small-medium larvae and large larvae-pupae.

In the past, two approaches have been employed to study this type of data.
One view considered all of the various life stages and attempted to reproduce
the observed temporal pattern of egg, larval, pupal and adult numbers
(Stanley, 1932; Landahl, 1955; Taylor, 1971; Fuijii, 1978). Some success was
realized but a nagging uneasiness remained for the models were complex and
general analytical results could not be obtained. Recently, Hastings and
Costantino (1987) and Desharnais and Liu (1987), were able to construct
somewhat more analytically tractable age-structured models. We have



STATIONARY DISTRIBUTION OF POPULATION SIZE IN TRIBOLIUM 627

140
120
100
801 d. A
GOJ ., .:‘:.4
40§ v X
2ohd AoV
0 5 10 15 20 25 30 35 40

Time in Weeks
Figure 1. Population census record for one replicate of the Chicago strain of T.
cataneum. Circles indicate the number of aduits, triangles the number of small plus
medium larvae and squares the number of large larvae plus pupae. (From Lloyd

1965, replicate A4.)
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proposed (Hastings and Costantino, 1987), for example, that the observed
demographic patterns in laboratory populations of Tribolium may be due to
the existence of a Hopf bifurcation so that cultures can exhibit dynamic
behaviors ranging from fixed point equilibria to stable limit cycles.

The second approach to the analysis of the data in Fig. 1, and the one we
pursue in this report, focused exclusively on the adult life stage (Neyman et al.,
1956; Bartlett, 1957; 1960; Leslie, 1962; Park et al., 1964; Leslie et al., 1968;
Lloyd, 1968; Desharnais and Costantino, 1982; 1985; Dennis and Costantino,
1988). In this case the models attempt to explain the changes in the size of the
adult beetle population based on the association between the number of adults
and the number of the progeny produced by these adults.

3. Previous Analytical Work: Adult Stage Models. We now briefly review
previous work based on “adult only” models. We begin by writing an ordinary
differential equation for the rate of change in adult numbers.

Let A*(t) denote the number of adult beetles at time ¢t and C denote the
probability that a single adult prevents a potential recruit from entering the
adult population (for example, by cannibalism) in some small time interval
(t, t+dt). Assuming that the aduits act independently, the proportion of
potential recruits that become adults during this time interval will be
(1— C)**® which for small values of C is approximately equal to e ~¢4*®_ If we
define B as the rate at which potential recruits are produced per adult and D as
the adult mortality rate then the change in adult numbers during (t, t +dt),
which equals 4*(t +dt)— A *(t) and is denoted dA*(t), is given by:

dA*(t)=A*(t)[Be €4 — D] dt +o(dt), 1)

here o(dt) represents terms such that o(dt)/dt—0 as dt—0. Dividing by dt and
letting dt—0 gives the following deterministic differential equation as a model
for the dynamics of the number of adult flour beetles:
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dA*(t)/dt=A*(t)[Be " --D]. (2)

The qualitative behavior of the differential equation (2j is straightforward.
There exist two equilibria:

A*=0. 3)

A*=[log(B/D)}/C. )

If A*(t) is non-negative and B> D then the first steady-state population is
unstable while the second is stable. If D> Bthen 4§=01is the only non-negative
stable steady-state population equilibrium.

If the population actually followed (2). then all steady state distributions
would be concentrated at a single point. The data do not exhibit this property;
instead they fluctuate about an average value (see Fig. 1).

We construct the observed “stationary distribution of the population” in the
following way: in our illustrative example, the data are the number of adults
observed in each of the 12 independent replicate cultures during the 17 week
“steady-state” interval from week 20 to the end of the experiment at week 36.
Arranged in seven class intervals, the adult numbers recorded for all of the
replicates were used to establish the grouped frequency counts x,, X,, . . . » X7
where the total number of observations n=ZXx;=204. These X, values
constitute the observed grouped frequency distribution for this data set (see the
histogram in Fig. 2).
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Figure 2. Observed grouped frequency distribution (histogram). The fitted gamma
probability density function (smooth curve) and the WKB approximate stationary
density (dashed curve).

These data (see Costantino and Desharnais, 1981; Desharnais and
Costantino, 1982; 1985; Dennis and Costantino, 1988 for an extensive
presentation of additional data sets) provide the motivation for our use ofa
stochastic analysis. Our objective in studying the stochastic dynamics of adult
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numbers is to make use of the observed variability as an additional source of
information about the population.

One way of theoretically constructing such stationary distributions is to
convert (2) to a stochastic differential equation (Costantino and Desharnias,
1981: Desharnais and Costantino. 1985: Dennis and Patil, 1984; Dennis and
Costantino, 1988). We write:

dA*=A*Be " —D]dt+a(A*)"2 dW. (5)

Here dW= W(t+dt)— W(t) is the increment of the Wiener or Brownian
motion process: d W is normally distributed with mean 0 and variance dt. The
term o(4*) is a function of population size. For example, a commonly chosen
form is 6,A4'/? where g, is a constant.

If the model (5) is accepted, then we introduce the density v(a, t) defined by:

v(a, t) da= Prla< A*(t)<a+dd], (6)
and which satisfies (Gardiner, 1983):
ov/0t = — 6[a(Be ™ *— Dy]/da+ 1 8*[o(a)v]/da*. (7)

Since (7) is a diffusion equation, we will call (5) a “diffusion approximation”.

The stationary distribution for a stochastic differential equation model with
fluctuations that scale with 4* can be approximated using the gamma
probability density (Costantino and Desharnais, 1981; Dennis and Costan-
tino, 1988). In that work, the gamma density is fit to the observed data using
two parameters that characterize shape and scale [or mean and coefficient of
variation—see Mangel (1985) for a discussion of the gamma density as a
general ecological model]. Although these estimated parameters are functions
of the underlying biological parameters, there are two known quantities and
more than two unknowns, which means that we cannot estimate all of the
biological parameters from the stationary gamma model. Thus, there is a need
to proceed in the other direction: to begin with the biological model and
construct the stationary density from first principles.

That is, another way of establishing stationary distributions is by using a
stochastic birth—death process to formulate flour beetle growth (Desharnais
and Costantino, 1982). That is the approach taken in this paper. The methods
we introduce will allow us to study the validity of the diffusion approximation
and connect the fluctuation function o(4) to the underlying population
processes. Our work is similar to that of Roozen (1987), who begins with a
birth-and-death process model for population dynamics and expands the
resulting master equation to obtain a Fokker—Planck equation which is solved
by asymptotic methods. We will, however, solve the master equation directly.

We see the stochastic differential equation and birth—death formulations as
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complimentary and mutually reinforcing. Certainly from an cxperimental
point of view, it is very important to provide strong theoretical support for the
application of the concept of a stationary distribution 1a population research.

4. Formulation of the Master Equation. We assume that the number of adults
A*(t) in the population is a Markov process. Our methods are easily extended
to include all life stages, if that is what is needed to insure a Markov model.
Details are found in Peters (1987). We introduce a transition function:

PriA*(t+dt)=a+jld*(t)=a],
=p;(a) dt+o(dt), (8)

here j takes integer values. We will concentrate on single step processes for
which j= —1, 0, 1 and denote:

r¥(a)=Pr[A*(t+dt)=a+ 1|4*()=a]/dt
l*(a)=Pr[A*(t+dt)=a—1}A*(t)=a]/dt}' ®)
We define the equilibrium population ® by:
r*(@)=1*(®) (10)
and scale 4 *(t) by ®. Thus we introduce:
A(t)=A*(t)/D. (11)
The spacing between jumps in the scaled density A(t) in now:
e=1/D. (12)

Notice that ¢ becomes small as ® becomes large. We assume that the size of a
jump is small compared to the size of the system, which is represented here by
the equilibrium density ®. Let us now define /(a) and r(a) by:

I(a)=I*(®a), v (13)
and:
r(a)=r*(®a). (14)
The stochastic dynamics of 4(t) can be written compactly as:

A(t)+ ¢ with probability r(A4(t)) dt + o(dt)
A(t+dt)= { A(t)—e with probability I(A4(t)) dt + o(dt) (15)
A(t) with probability 1 —[r(A4(t))+1(A4(t))] dt + o(dt).

As before let v(a, t) da be the probability that a< A(t)<a+da. Then v(a, t)
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satisfies the following “master equation” obtained by balancing probabilities
(Gardiner, 1983; van Kampen, 1981):

v(a, t+dt)=v(a—e, t)r(a—e)dt+v(a+e, t)l(a+¢) dt+v(a, t)[1 —[r(a)
+1(a)] dt] + o(dt). (16)

In words, equation (16) states that the probability of having a adults at time
t +dtis equal to the probability of having a — ¢ adults at time t and experiencing
an increment ¢ in the next dt plus the probability of having a+ ¢ adults in the
previous time period and experiencing a decrement of ¢ plus the probability of
having precisely a adults at time ¢ and experiencing neither a birth or death in
the next dt.

To derive a differential-difference equation, we subtract v(a, t) from both
sides of (16) and divide by dt to obtain:

[v(a, t+dt)—v(a, t)]/dt=v(a—¢, t)r(a—e)+v(a+e, t)l(a+e)
—u(a, t) [r(a)+ l(a)] + o(dt)/dt. (17)
Letting dt—0 gives the differential-difference equation:
v,=v(@a—ce, t)r(a—e)+v(a+e, t)l(a+e)—v(a, t)[r(a)+(a)]. (18)
The stationary solution of this equation satisfies v, =0. We then rewrite (18) as:
0=v(a—e)r(a—e)+v(a+e)l(a+e)—v(a)[r(a)+I(a)]. (19)

We call (18) or (19) master equations. They are similar to the Chapman-
Kolmogorov equations (Gardner, 1983; van Kampen, 1981). Our problem is
to solve (19) for the stationary density function.

/

5. WKB Approximation to the Stationary Density. We will now construct an
approximate solution of (19) by exploiting the smallness of e&. We do this by use
of the WKB method (Bender and Orszag, 1983).

A WKB approximation is of the form:

v(a)~ k(a)e ~1®@/a (20)

where k(a) = Zk;(a)¢' and ©O(a) are functions to be determined. It is called WKB
after the theoretical physicists Wenzel, Kramers and Brillouin who, during the
1920s, popularized its use in solving quantum mechanical differential
equations with a small parameter. Generalizations of this ansatz have been
used since then to obtain asymptotic approximations to linear partial
differential equations (see Keller, 1978; Cohen and Lewis, 1967), as well as
difference equations such as equation (18) (Knessl et al., 1984). The ansatz (20)
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is inserted into equation (19) and the coefficients of successively higher powers
of ¢ are set equal to zero.
Let v,(a) denote the first term of our approximate solution to (19):

v (a)=[ko(a)+ O(c)]e ~(®@e] (1)

We substitute this into equation (19), collect terms according to powers of ¢
and set the coefficient of £° equal to 0 to obtain:

r(a)e®s +l(a)e " ®—[l(a)+r(a)] =0. (22)

This is the etkonal equation (see Cohen and Lewis, 1967; Keller, 1978) for ®(a);
a partial derivative is indicated by a subscript. The coefficient of ¢ vanishes if k,
satisfies the “transport” equation:

[r(a)e® —l(a)e®1ko, + [3[r(a)e®+ l(a)e " ®=]1@,, +r (a)e®—I (a)e @]k, =0.
(23)

We solve (22) by inspection, noting that its solution is (Knessl et al., 1984):

@(;z)ocexp[(— 1/¢) Ja log[I(s)/r(s)] ds.
(4]

Using this we solve (23) which is a linear, first order equation for kq(a).
Following this procedure, we find that the leading order term of the WKB
approximation to the difference equation (19) is:

vy(a)=n[l(a)r(a)] ~''* exp[(—1/e) r log[I(s)/r(s)] ds], (24)

where nis a constant chosen so that v,(a) is a probability density for population
siz. The higher order terms of this asymptotic approximation can be
computed to any desired degree of precision by using the WKB ansatz:

[+ o]

va)= Y kia)e'e~1o, (2)

i=0

In order to use this approximation to the stationéry density in (24), the
functions r and I must be specified. Equation (1) suggests that for the flour
beetle Tribolium we choose:

r(a)=B(@a)e™“®,
I(@)=D(®a). - (26)
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Desharnais and Costantino (1982) noted that if such birth and death rates were
used the origin becomes an absorbing state. In the steady state this means the
population will go extinct with certainty. To avoid extinction they used:

r(a)= B(®a+ 1)e @,
I(a)= D(®a), (27)

thus slightly increasing the birth rate. Their justification is that single species

laboratory cultures of beetles rarely go extinct. Of course, laboratory

experiments are of finite duration, but they calculated the mean time to

extinction for a birth—death process with the r and  as in (27) to be on the order

of 10%! years so that in practical terms there is a steady-state distribution.
Here we modify (27) by letting:

r(a)= B(®a+d)e”
I(a)=D(®a), (28)

where the new parameter 6, which implicitly accounts for the muitistage life
history of Tribolium, is determined in the following way. Note that r(0) = Bd, so
that even when there are no adults present there is still a chance of the
appearance of new adults. In this case J is a measure of the rate of adult
emergence from the pre-adult stages (eggs, pupae, larvae). Hence even if the
adults disappear, temporarily, there are potential adults waiting to mature. We
can relate the mean time, T, for an egg to mature into an adult to the adult
emergence rate § by noting that:

Pr{one adult appears at time t+ 1|4(t)=0]=r(0)= BJ;
Pr{first adult appears at time ¢+ j|4(t)=0]= (1 — B5)’BJ.
Hence:

T= E[time for adult to appear|4(t)=0]= ) (1—Bd)/BJj. (29)
j=1

J

From equation (29), we find that:
5~1/BT. (30)

Expression (30) is an approximation due to the assumption of independence for
an adult to appear in consecutive time periods which led to the geometric
distribution in (29). The parameter T is known experimentally so that we have
both an interpretation and a procedure to estimate ¢. :
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Performing the integration in (24) and using the r and ! in (28), v, (a) is found
to be:

vi(@)=n,[la)r(a)]~"[(B/D)[1+(5/Pa)]]1* [a+ (5/®))%e~ "2, (31)

where n, is a normalization constant chosen so that v,(a) is a probability
density. .
There is a spike at the origin since /(0)=0 and therefore

0 (0) =k, [1(0)r(0)] ™ '/? = co. (32)

Note that v, (a) can be viewed as a probability density as long as it is integrable.
For a in the interval around zero we have:

v (a)y<Ka™ '3,

hence v,(a) is integrable. However, there is no spike in the observed beetle
density since populations do not often go extinct in the laboratory. To deal
with this we define a conditional density:

vi(a)=Pr[A(c0)=xa|ld(0)> €],
=v,(a)/ J,w v,(s) ds. (33)

The motivation is that A(t) cannot be less than ¢ without being zero. Hence the
range of v{(a)is (g, 0). As ¢ tends toward zero, v (a) tends toward v (a) which is
a true probability density.

6. T. castaneum: Chicago Data. Our empbhasis in this note is to broaden the
theoretical support for the application of stationary distributions in population
biology. On the other hand, statistical inferences for the gamma abundance
model, which is obtained from a stochastic differential equation argument, can
be made from observed steady-state distributions (Dennis and Costantino,
1988). The statistically fitted gamma for the Chicago strain of T. castaneum is
sketched in Fig. 2. The WKB approximation to the stationary density with
parameter values B=0.237, D=0.088, C=0.0165 and 6=1 is plotted on the
same figure. The latter distribution describes the data fairly well. Other plots
showing the dependence of v,(a) on the parameters B, D and C are given in
Peters (1987). Most of the effects of the parameter changes can be predicted a
priori; but one interesting effect is that as C increases the variance of v,(a)
decreases. In other words, as the magnitude of the density regulation is
increased the observed fluctuations in population size are expected to be
reduced. It is heartening to report that the parameter dependencies of the

stationary solution v,(a) are in agreement with those based on the two different



STATIONARY DISTRIBUTION OF POPULATION SIZE IN TRIBOLIUM 635

gamma approximations to the stationary distribution obtained by Costantino
and Desharnais (1981) and Dennis and Costantino (1988).

7 Discussion. The methodology introduced here allows us to connect short
time changes in individual adult numbers [measured by r(a) and I(a)], with the
‘ultimate, steady-state distribution of the population. It is clear that stochastic
formulations—for these problems—are far superior to deterministic schemes
since the latter predict point equilibria which are not observed experimentally.
We believe that the birth—death formulation coupled with asymptotics
provides a number of additional advantages, when compared to approaches
based on stochastic differential equations. First, one avoids all of the
complications of stochastic calculus, measure theory and the Ito—Stratonovich
controversy. The master equation is derived directly from the underlying
stochastic assumptions. For example, it is clear if we use the general transition
distribution (8), the stationary density satisfies (after scaling, etc.):

v(a)= Y, va—g)pa—ej)+v(a)[1— ) pjla)p(a)]. (34)

No additional conceptual machinery is needed. Second, the birth—death
formulation provides a natural connection to the laboratory measurements,
since the transition rates (p;(a) or—in the simpler case—I(a) and r(a)) are
associated with short time changes in the population. From these we are able to
construct long term population distributions not just point equilibria. Third,
although the asymptotic methods produce only an approximate solution of the
problem, the methods are easy to use and the resulting eikonal and transport
equations are easy to solve.

This work was partially supported by NSF Grant BSR 86-1073 and by a
University of California faculty research grant. Marc Mangel also thanks the
John Simon Guggenheim Foundation for support.

APPENDIX

The Origin and Nature of the Diffusion Approximation to the Steady-State Distribution. Roozen
(1987) describes one way of expanding master equation (18) or (19) to obtain a diffusion
approximation. Here we describe a simpler, but less rigorous, method. To begin, we Taylor
expand equation (19) in powers of &. This leads to the infinite order differential equation:

i [(—8)" d*[r(ap(a)] & d"[’(d)ﬂ(d)]]:&

n! da" n! da" (A1)

n=]

Since ¢ is small, we assume ad hoc that [¢* d%0]—0 as -0 for n>3. We then truncate equation
(A1) after 2 terms only. This gives:
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e dz[v(a)(r(a)+l(a))] _ d[v(a) (r(a)—l(a))] -0
2 da? da e

(A2)

Equation (A2) is the equation satisfied by a probabﬂity density that aiscs ™ *m the stochastic
differential equation (SDE):

dA=[r(A)—1(A)] dt+ [e[r(4)+1(4)]]V* dW. (A3)
Comparing equations (A3) and (5) shows that we can set:
r(A)—1(A)= A[Be 4 - D]
and:
, a(A)=r(A)+1(A).
We thus have a way to connect the fluctuations, g(4), and the mean dynamics, A[Be 4—-D},in

the SDEs (A3) and (5) through the fundamental birth and death process.
We let v,(a) denote the solution of equation (A2), and find it by two quadratures

vy(a)=k, exp[ - .r h(s) ds], (Ad)
0
where:

[r'(a)+1'(a)]—(2/¢) [r(a)—1(a)] _

h(a) = r@)+la)

(A5)

To compare v,(a) and v,(a) we use a WKB approximation to the linear partial differential
equation (A2) of the form:
vy(a@)=k,(a)exp[ — ©,(a)/e)]. (A6)
When this is done we find:

O,(a)=2 J ‘ [1(s)—r(s)}/TU(s)+7(s)] ds. (A7)
0

This expression is to be compared to its counterpart in (24), which will be denoted as ©,(a):

8,(a)= f " logLls)/r(s)] ds. (A8)
0

Knessl et al. (1984) noted that ©,(a)> O ,(a) except at a=0 implying that v,(a) will be more
diffuse than v,(a). They point out that the further away from the equilibrium population the
greater the discrepancy between ©,(a) and ©,(a) and therefore, for small ¢, the greater the
difference between v,(a) and v,(a). These two densities will differ most noticeably in their tails.

One reason for this discrepancy is that in the diffusion approximation we ignored moments
higher than second order of v(a). Since r(a) and I(a) depend explicitly on ® which is simply 1/e,
truncating terms such as:

5 @*[r(a(a)]
e
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in equation (A1) will not be justified where v(a) is changing rapidly. In the tails of the distribution
v{a) changes concavity and thus the distribution will change most rapidly.
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