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Dynamic information and host acceptance by a tephritid fruit fly

MARC MANGEL and BERNARD D. ROITBERG* Department of Zoology,
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ABSTRACT. 1. Female apple maggot (Rhagoletis pomonella Walsh) flies
held in field cages usually oviposited in an unparasitized (non-pheromone
marked) fruit when it was encountered.

2. Oviposition in a previously parasitized (pheromone marked) fruit de-
pended upon the time since the last oviposition (TSLO) and the percentage
of infested fruit encountered during search for oviposition sites.

3. Previous theories of host acceptance suggest that the acceptance or
rejection of a host should depend dichotomously on time since last ovi-
position and the fraction of marked hosts in the last five encounters.
The experiments, however, show considerable variability and are thus not
consistent with the theory.

4. A new theory for the experiments is introduced. This model involves
physiological (egg complement) and informational state variables and
leads to intuitive understanding of the experimental results. In particular,
the model shows how the plasticity in oviposition site selection may arise
from fitness maximizing behaviour. Alternative models are also discussed.
All of the models stress the importance of physiological and informational

states.

Key words. Tephritid flies, oviposition strategy, foraging, learning.

Introduction

An organism searching for oviposition sites, and
ovipositing when one is encountered, can often
be viewed functioning as a ‘decision maker’.
That is, the organism encounters a potcntial
oviposition site, assesses the quality of the site,
and then decides whether or not to oviposit. In
principal, this decision depends upon the
physiological state of the organism, and the
general state of the environment. (The actual
interplay of these two will differ for different
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organisms; see Singer (1982) and McDonald
(1986) for discussion about butterflies and
mediterrancan fruit flics, respectively.) In this
paper we study the interplay of host quality,
physiological state and informational state for
adult female apple maggots  Rhagoleris
pomonella Walsh. This tephritid fly attacks
healthy (non-rotting) fruit. The fly also oc-
casionally (to be specificd below) super-
parasitizes fruit by ovipositing in a host that has
alrcady been parasitized and marked with
pheromone by a conspecific. Superparasitism
has becen observed in the field (Roitberg et al.,
1982) and in the laboratory (Roitberg &
Prokopy, 1983). In general, R.pomonella dis-
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criminite against previously parasinized hosts by
detecting the marking pheromone deposited by
a female during a previows oviposiiien and no
ovipositing. Howewer, if the delav betwoen
cwipositions s sufficiently high. &, posmonelle
females will sccept hosts that have been previ-
cusly parasitized (Roaberg & Prokopy, 1983).
A delay of about Whmin leads to oo four-Told jump
in the proclivity to oviposit in marked froit and o
delay of B0 min lcads to nearly all fics accepting
provicusly  parasitized  (pheromone marked)
fruit {see Fig. | of Roitherg & Prokopy. 1983).
Flics in natural settings or semi-nataral feld
capes face @ sitwation i which  they  will
cacounter mixtures of unparisitized amd previ-
ously parasitized hosis. [n principal , host accept-
ance decisions then depend upon the density of
hosts and the msture of clean {unparasitized)
and marked (previously parasitized ) hosts. Since
flics can never completely assess host density,
some proxy must be used. One choice would be
the time since the last oviposition [which we de-
note by TSLO). A measure of the misture of
clean and marked hosts is the fraction of marked
hosis in the previows & encoumters, {In view of
the experiments described in the next secton.
we chose M=5.) Recently developed theorivs of
host seceptance (Iwasa e ol 19840 Mangel.
1987a. k) con then be apphicd and lead 1o results
summarized in Fig. 1. These theories are based
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FIG. |, Theoretical predections of host acceptance in
the plane determined by the time ance Bst cviposimion
(TSLCY) and fracton of marked hosts in the last five
encounters (FRAC), According to the theory (lwasa
et arl., 1984}, if a marked host is encountered for the
combination of events above the ling, the fAy should
owipewil in the marked hose. 1T o marked host is
encountered for points below the line, the fy showld
reject the marked host

on the assumplion that host acceplande s
determined by behaviours  that  maximize
wecumulated lifetime fitness {expected numbes
of progeny) through ovipusition decisions, with
clean fruit and marked frum having dfferent in-
crements in fitness. The theores ko consider
the epg complement of the Ny and survivorship
owver the fv's lifetime. In Fig. 1 we label the plane
TSLO—fraction of marked hosts i the last five
cneounters (FREACY and divide it into two re-
gions. For the combination of events falling
above the line a marked host should be accepted
for eviposition when encountered., but for the
combination of events falling helow the line a
marked host should be rejected when encoun-
tered. The intuition associated with Fig. T rela-
tively straight-forwird: marked hosts shoukd be
accepled only when the mixture of hosts is such
that marked hists predeminate or when host en-
counters are rare. In the third scotion we will
compare experimental results with the theoreti-
cal predictions bised on Fig. 1.

In this paper we further study the mole of
physiological and informational variables in the
behaviour of R powionella Temales, using re-
cently developed methods {Mangel, 19570.bj o
modicl the field hehaviour of females, Ower re-
sults not only show  the intcrplay  of  the
phvsicdogical and informational states, but ialso
the matural and sonsistent way in which plasticiy
of behaviour may be produced by optimality
mechinsms,

Materials and Methods

The source of Lirvae was K. pemonells miggot-
infested  fruit collected  from haswthorn
{Cravaeeus noelfis) trecs in Amherst, Massa-
chusents, The protocol Tor raising the flies 1s
deweribed in Roitberg & Prokopy {1983). The
cxperiments were conducted usang @ field cage
containing a tree with a canopy of about | m®
volume. The number of Fruit in the tree varied
between cight and sixty-four, in clumps af four
{that is two to sixteen clumps), Each froitin the
tree was numbered. Funther detuwils of the ex-
perimental protocol are described in Roitberg of
af, {1982} The data reported here are not given
in Rasitberg o af, (1942]).

Flics were taken from the Liboratory into the
ficld and allowed 1o expericnoe two oviposilions
i the feld cage: this provided an acclimition
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period for the flies. After the first two oviposi-
tions the clock was set equal to zero and at sub-
sequent host encounters the type of fruit (clean,
indicating no previous oviposition: or marked.
indicating a previous oviposition and marked by
a pheromone) and the time since the previous
oviposition was recorded. Females were fol-
lowed until they left the tree. For the time course
of our cxperiments and density of the frut,
oviposition in clean fruit appeared to not be
limited by egg complement. The data collected
thus consist of (1) times of oviposition in fruit.
(2) the type of fruit in which the oviposition
oceurred, and (3) the type of fruit in which a
rejection occurred. From these, we can compute
the time since the last oviposition and the frac-
tion of marked fruit in the last five ¢ncounters.

Results

The data will be reported according to the fol-
lowing scheme. For cach oviposition in a fruit,
we recorded the time since the last oviposition
(TSLO). whether the current fruit is un-
parasitized (clean, C) or previously parasitized
(pheromonc marked, M) and the fraction of
marked fruit in the last five fruit encountered.
we found essentially no relationship between
acceptance of a clean host, time since last

100
Accept
80
o 60 " ]
o -
x Reject
40 =
20 | 1]
o R N TN N UUN WA NN SN -
[} 2 4 6 8 10
TSLO (min)

FIG. 2. Ovipositions by female R.pomonella in
marked fruit in a tree in a field cage, as a function of
time since the last oviposition (TSLO) and fraction of
marked hosts in the last five encounters (FRAC). We
also show the theoretical line drawn in Fig. 1. Approx-
imately half of the points are in accordance with the
theory and half do not agree with the theory.

oviposition and fraction of marked fruit in the
last five encounters. That is, females essentially
alwavs accepted a clean fruit when it was en-
countered. (A regression of fraction of marked
fruit in the last five encounters against time since
the last oviposition gives a slope of ) and a value
of r=0.01:i.c. a straight line explains essentially
nothing about the oviposition decision in clean
fruit.) We observed 120 instances in which a fly
encountered a marked fruit and rejected it.

We also observed a small number (2% of
the total number of ovipositions) of super-
parasitisms in which a fly oviposited in a marked
fruit. Fig. 2 shows results for ovipositions in
marked fruit. In this figure, we have redrawn the
line from Fig. 1 and also plotted points that show
the value of time since the last oviposition and
fraction of marked fruit in the last five encoun-
ters. Half of the experimental points are in
accordance with the theory; those are the points
falling above the line. On the other hand, half of
the experimental points are in disagreement with
the theory: those are the points falling below the
line. We can think of a number of possibic expla-
nations for the discrepancy. First. it might be
that the theoretical line is wrong and that the
slope is too high. We could redraw the theoreti-
cal line so that all points fell above it. This is not
very satisfying, however. since the line was
drawn using our best paramcter estimates. (We
used laboratory based survivorship data to com-
pute the line. If survivorship in the ficld 1s lower
than in the laboratory, then the slope of the line
would be lowered. However, to move the line so
that all points fall above it requires an unreason-
ably low survivorship (Mather & Roitberg,
1987, and references therein).) Second, it might
be that the flies are considerably sub-optimal, in
which case the points below the line correspond
to mistakes in host acceptance. Third, it might
be that the system is so noisy that the points
falling below the line correspond to ‘noise’ of an
unidentified source. The sccond and third expla-
nations are as unsatisfying as the first.

The alternative explanation, which is the one
we propose here, is that the variability can tell us
something about the behaviour of the flies and
the interaction of the flies and their environ-
ment. Thus the scatter in Fig. 2 could be called a
kind of ‘behavioural plasticity’. The question
that we address in the next section is how such
plasticity might arise and what can be learned
fron it
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A model for the experiments

We now introduce an explicit model for the ex-
periments described in the previous sections. In
particular, we will suggest a framework for mod-
elling the experiments and show that this
framework provides an explanation for the ex-
perimental results. We stress that there are other
frameworks (modifications of the model given
here) that could also be used; these are discussed
in the Conclusions, where we also make certain
experimental predictions.

The model uses a state variable approach for
the analysis of the behaviour of the fly (Mangel
& Clark, 1986; Mangel, 1987a,b). We define the
state variable X(7) by

X()=egg complement of the fly at the startof
period ¢ (1)

in which time is measured discretely, so that we
will consider increments of time equal to 1 unit.
We assume that the periods are sufficiently short
that the fly can encounter at most one fruit in a
single period. The X(r+1) equals cither X(f) (if
no fruit is encountered during period ¢ or one
fruit is encountered, but rejected) orX(1)—1 (ifa
fruit is encountered and accepted for oviposi-
tion). If a fly ovipositis in a clean fruit, its total
lifetime fitness is incremented by an amount f;
oviposition in a marked fruit leads to increment
f.. We assume that within host intraspecific
competition causes f,,<f.. It will be seen that the
equations for total lifetime fitness that charac-
terize the behaviour of the fly depend only on the
relative values of f; and f,, and not on the abso-
lute values. Averill & Prokopy {1987} recently
published data that can be used to compute these
increments in fitness, assuming that fitness is
measured by the expected number of progeny.

The probability that a fly survives from period
t to period ¢+1 is denoted by p(r). If T denotes
the total lifetime of the fly, we use a model of the
following type

p(O=[(T+O)"—(+ ) V(T+1)="] (2)

where v is a parameter. If it is moderate, say
about y=3, then the survivorship curve is rela-
tively flat for many values of ¢ starting from /=0
and then drops rapidly to 0 as ¢ approaches T.
This is similar to much of the life-table data gen-
erated for fruit flies (see, e.g., Carey, 1984; Roit-
berg, unpublished).

In addition to the physiological state variable

represented by egg complement we introduce a
state variable that summarizes information
about the environment. Let S; denote the state of
ith previously encountered fruit. Thus, $;=C if
the fruit was unparasitized and $;=M if the fruit
was previously parasitized and pheromone
marked. The vector S()=(5.5:,53.34,5¢) then
represents the states of the last five fruit encoun-
tered. To find the dynamics of §(r) we adopt a
‘sliding window’ model for the memory of the
fly. (In the appendix, we describe a more general
model for information about the fruit, and show
how the general model and the one presented
here are connected.) That is, cach time a new
fruit is encountered, the memory window shifts
by 1 and memory of the fifth fruit is lost. Thus, if
no fruit is encountered during period
1, S(t+1)=8(t). 1If a clean fruit is encountered
during period ¢, and 8(¢) is given above, then
S(1+1)=(C,5:.5,.5:,8,) whereas if a marked
fruit is encountered during period ¢, then
S(t+1)=(M,5,5:,53,5:). In this way, we are
able to treat information in a dynamical fashion
during the foraging process. Gould (1984) pro-
vides data that suggest honey bees might use
such a sliding window model. McNamara &
Houston (1987b) described alternative models
for the adaptive use of memory.

Now consider a female that starts period ¢ with
a complement of eggs given by X(¢)=x and infor-
mational variable ${¢)=s. We assume that this fly
stops foraging for oviposition sites at the end of
period T—1 and ask for the behaviour that
maximizes accrued fitness through oviposition
decisions. Thus, introduce a fitness function
defined by

F(x,s,t, T)= maximum value of expected
fitness through oviposition between period
¢t and T, given that X(r)=x and S(1)=s

3

First we note that there is an ‘end-condition’
for this function, because we assume that there is
no oviposition in period 7. Therefore, no addi-
tional fitness can be accrued beyond T and s0 we
set F(x,s,7,7)=0. An equation for the fitness
function can be derived by comparing the state
of the organism between period ¢ and period
t+1. Three events may occur. First, no fruit is
discovered during period 7, in which case neither
the state variable nor the informational variable
changes. Second, a clean fruit may be disco-
vered. We assume that the insect will always
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oviposit in a clean fruit, so that the state variable
representing egg complement is decreased by 1
unit. The informational state variable is shifted
according to the rules described above. Thus, if
the sequence was {§,,5,,5:,5,,55} it now becomes
{C,51,55,5:,8,4,}. Third a marked fruit may be en-
countered. In this case, the insect ‘decides’ to
oviposit or not using the current time, current
value of the state variable, and current value of
the informational variable. In addition, the in-
formational state variable is updated according
to the rule given above.

To derive the equation for the fitness function,
we must model the encounter rates with the two
kinds of fruit. Consider a cluster fruit, which we
will call a patch. We presume that there are N
fruit in the patch, that the insect can visually de-
termine the value of N (Roitberg, 1985) and let
p. denote the probability of encountering a fruit
of either type in a single period. We use a ran-
dom search model (Mangel, 1985a) so that

pe=1—cxp(—Ne) (4)

In this equation, e is a parameter representing
the search effectiveness of the fly. Its reciprocal
is the mean time to find a single fruit, if only one
fruit is present; thus € can be determined by ex-
perimental measurement. (For more details, sec
Mangel, 1985a.)

When a fruitis encountered, it may be clean or
marked. We must now model the way in which
the fiy estimates the fraction of clean fruit in the
environment. To do this, introduce a ‘counting
function’ given by c{s;)=1/5if 5; corresponds to a
clean fruit and ¢(s;)=0 if s; corresponds to a
marked fruit. The rationale behind the counting
function is this: The sum of the ¢(s;} over the five
entries in the information vector is 1, if all five
entries in the memory window are Cs, and is 0, if
all five entries in the memory window are Ms.
Thus, for example, the probability that an en-
countered fruit is clean is estimated by 3¢(S))
and the probability that an encountered fruit is
marked is estimated by 1-3,c(s;).

Given the information vector S(f)=s, the
probability of encountering a clean fruit in
period t is then estimated by p,3;c(s;) and the
probability of encountering a marked fruit in
period ¢ is p{1—Zc(s;)). At this point, it be-
comes necessary to differentiate between the in-
formational state S(r)=s and the estimate of frac-
tion of clean fruit in the environment. The infor-
mational state is fixed and is certain —that is, the

model we are developing here involves perfect
discrimination between unparasitized and

.parasitized hosts, so that the fly is certain that

clean fruit are clean and marked fruit are
marked. On the other hand, the fraction of clean
fruit in the environment is estimated by 2.c(s;)
and since it is an estimate, there is uncertainty
associated with this estimate. Dealing with the
uncertainty is one of the great difficulties of
stochastic dynamic programming (Mangel,
1985b). Here we assume that the fly behaves as if
the estimate were perfect (no variance or uncer-
tainty in the estimate}; in Appendix 2 we discuss
alternatives to this assumption.

The equation for F(x,s,t, T) (Mangel & Clark,
1986, 1988; McNamara & Houston, 1986), is then

F(x,s,0, TY=(1—pJp(N}F(x,8,t+1.7T)
+p Z(sHf+p(DF(x—1,5,1+1,T)]
+p(1=2c(s))ymax{f,+p(DF(x—1,8,t+1.7);
p(OF(x,8m 1+ 1.T)}
. (5)

In this equation, s, and s,, are defined in the
following way. If s=(s5,5.53,55,55), then
s;=(C,s5,,51,5184) and $,=(M,5,5:,53,54). The
three terms on the right-hand side of Eq. (5) re-
spectively correspond to not encountering any
kind of fruit, encountering a clean fruit and
ovipositing in it, and encountering a marked
fruit and deciding whether or not to oviposit in
it. When an encountered fruit is accepted, the fly
obtains an immediate increment in fitness
(hence the presence of f. and f,, on the right-
hand side of Eq. (5)) and uses one egg (hence the
x—1 on the right-hand side of Eq. (5}). This
equation is solved ‘backwards in time’, meaning
that we start by setting t=7—1 on the left-hand
side of Eq. (5), evaluating F(x,s,7—1.T) using
the right-hand side of Eq. (5), then decrease  to
t=T-2, and proceed in this fashion until r=1
(the first period of the problem). Further details
can be found in Mangel (1987a, b). Although the
actual fitness function may be of interest, for the
experiments described in the previous section, it
is the decision associated with the encounter of
the marked fruit that we want to consider. This
decision is determined directly during the evalu-
ation of the dynamic programming equation. An
important aspect of the decision actually comes
from the information updating. That is, consider
two sequences in which 40% of the last five fruit
encountered were marked, for example:
MM CCC and M,C,C,C,M. In these sequ-
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ences, the first entry corresponds to the most re-
cently encountered fruit. Each of these sequ-
ences has 60% clean fruit, Suppose that another
marked fruit is encountered. The first sequence
is updated  according 10 the rule
MM, C,C.C—MMM,C,C but the second
sequence is updated according 1o the rule
M,C,C,C,M—M .M, C.C.C. That is, although
both fruit correspond to 40% marked fruit be-
fore the information state is updated, after the
updating one sequence corresponds to 60%
marked fruit, but the other still corresponds to
40% marked fruit. Thus, it is entirely possible
that in the plune of “TSLO/Fraction of Last Five
Infested’, the two sequences lead to different be-
havioural decisions. Thisrmeans that although
the fly is essentially making simple decisions
based on quantitics that it treats as determinis-
tic, when the dataare plotted asin Figs 1 or 2,the
appearance will be one of stochasticity.

This is, in fact ¢xactly the case. Fig. 3 shows
that now the "TSLO/Fraction of Last Five In-
fested’ plane is divided into three regions. Inone
region, oviposition in a marked fruit is never
optimal. In a second region, oviposition in a
marked fruit is always optimal (i.c. maximizes
accumulated lifetime fitness). In a third region,
oviposition in 3 marked fruit is sometimes
optimal. Ths raiddle region corresponds to the
region of scatter below the line in Fig. 2.
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FIG. 3. Division of the *“TSLO/Fraction’ plane into re-
gions in which it is optimal t0 always oviposit, never
oviposit, and sometimes (depending on details of the
informational state) oviposit. Parameters for the cal-
culations are T=20, p,.=0.28, v=3, f.= 1, f,=0.2, and
the maximum number of eggs available per day is ten
eggs. This figure is drawn for the case in which three
eggs remain.

In Fig. 4 we have replotted the data from
Fig. 2 (the stars) and the boundary curves of Fig.
3 All but two of the data points fall in the
‘accept’ or ‘maybe’ regions. In addition, we have
plotted fiftcen quasi-randomly selected in-
stances {circles) in which a marked fruit was re-
jected by the fly. These all fall in the ‘maybe’ or
‘reject’ regions. The model has provided infor-
mation and intuition for a successful interpreta-
tion of the data; this is the main point of the
modelling exercise. The apparent ‘noise’ repre-
sents behavioural plasticity of optimally be-
having organisms. Finally, we point out that we
observed thirty instances in which a marked fruit
was rejected but FRAC=100%. According to
the simple theory based on Eq. (5) — in which
there is no uncertainty in the estimate of the frac-
tion of clean fruit in the cnvironment — flies
should always accept marked fruit when
FRAC=100%. The observation that they don’t
indicates that a more complicated theory such as
the one developed in Appendix 2 and taking un-
certainty of estimates into account is necessary
for a full understanding of this behaviour.

One could usc the model to generatc quantita-
tive hypotheses that can be tested either in the
laboratory or the field; we are currently working
on such experiments. Two approaches would be
the following: We could use the theory to try to
construct a new measure — as an alternative to
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F1G. 4. Comparison of observations from Fig. 2 and
the theoretical curves from Fig. 3. Instances in which a
marked fruit was accepted for oviposition are indi-
cated by a star. Also shown are fifteen quasi-randomly
sclected (see text for details) instances in which a
marked fruit was rejected (circles). Note that nearly all
acceptances fall in the ‘accept’ or ‘maybe’ regions and
that the rejections fall in the ‘maybe’ and ‘reject’
regions.
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‘Fraction of the last five ¢ncounters that were
marked” - in which decisions were indced
dichotomous. Alternatively. our theory suggests
that decisions arc dichotomous, but in a space
larger than time since last oviposition and a
simple measure of history. Our theory suggests
decisions are dichotomous in egg complement/
time since last oviposition/3;c(s;) space. In the
appendix we describe a model in which recent
encounters arc weighted more heavily than past
encounters.

Discussion

Our experimental results suggest that female
R.pomonella respond to physiological (time and
egg complement) and informational constraints
or variables when selecting oviposition sitcs. We
have provided a model that incorporates both
kinds of variables and provides a successful
explanation of the observed ficld data. particu-
larly the behavioural plasticity of the flics when
making oviposition decisions. Our results also
show the importance of thinking clearly about
the meaning of ‘optimality’ when viewing
biological systems. If the external observer has
an inaccurate model of optimal behaviour, then
it may appear that the organism is highly sub-
optimal, when this is in fact not the case (scc,
e.g.. McNamara & Houston, 1987a, for a further
discussion of this point). Our results suggest that
we should be able to construct a quantity involv-
ing physiological state (egg load) and informa-
tional state for which decisions are essentially
dichotomous (i.e. the ‘maybe’ region in Fig. 3
shrinks to ().

The theory that we have presented doces not
provide a unique explanation of the behaviour of
the flies. Other theories based on informational
variables would work as well. For example, we
could assume that flies are simultaneously es-
timating the probability of encountering any
fruit at all and the fraction of clean fruit in the en-
vironment. The estimation procedures would be
similar to the ones given in this paper. The key to
the plasticity of behaviour, however, is the in-
corporation of an informational state into the
host acceptance analyses.

The experimental and theoretical results pre-
sented in this paper address the question of ‘why’
female R.pomonella would oviposit in marked
fruit. We have shown that a consistent explana-

tion of the behaviour can be obtained by con-
sidering maximization of lifetime fitness, subject
to physiological and informational constraints.
The role of theory is to guide our thinking about
what the flies are doing, why they are doing it,
and how we can and should characterize their
behaviours. The simple theory present here
could be extended to address a variety of other
issues, such as patch exit decisions and the be-
haviour of flies when a number of different kinds
of fruit are available. The concomitant question
is now ‘how’ do the female R.pomonella make
the decisions? It is almost surely true that they
do not opcrate using dynamic programming
algorithms such as those given here, though they
may employ simple ‘rules of thumb’ (Roitberg &
Prokopy, 1982). But this leaves the question of
how the rules of thumb are developed and
retained and how the flies might solve the
dynamic optimization problem presented to
them by nature.
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Appendix 1: A general learning model

In this appendix, we generalize the sliding
window model developed in the paper. The
generalized model is likely to be appropriate in
situations other than the one described in the
paper. To begin, we expand the information vec-
tor S(¢) to include all fruit that the fly has en-
countered during the current foraging bout.

Once again let s; denote the ith element of the
vector 5(t), so that s;=C if the ith most recently
encountered fruit was clean and s;=M if the ith
most recently encountered fruit was marked. In
this general model, one estimates the probability
that an encountered fruit is clean in the following
way. Let p.(5(¢),n} denote the probability that
the next encountered fruit will be clean, given
the vector S(t) and that there are n fruit included
in this vector. The estimate for p (S(¢).n ) 1sthen

LS, n)=(s +wsatwissHwisi+ . w' s, )/
(1+w+w?+.. w" ).

In this equation, w=1 is a given weighting
factor; it represents the rate at which past en-
counters are forgotten. If w=1. then all previous
cncounters are remembered ‘forever’ and if
w<l, previcus encounters are ‘forgotten’ at a
geometric rate. The denominator in this expres-
sion is simply a weighting factor. It can be
simplified by noting that

1Hw+wi+  w = (1w {1 —w).

We can then write that
pAS(H) my=(s+wss+ w5 ) (1—w)/(1—w™)

Becausec of the geometric scries. it is ex-
tremely simple to derive an updating equation
for P.(S(z+1),n+1) in terms of p{S(r}.n). This
equation is

pdS(t+ 1), n+1)=5,{1-w)/(1 —w )
+wp (S(0).m)(1—w"(1—w" 1)

where s, denotes the state of the n+1st fruit
encountered in period +1.

If this informational picture were emploved in
the dynamic modelling, the information variable
would be represented by the number of fruit
N(t) encountered up to the start of period r and
the current estimate of p.(5(¢).n); denote this
latter quantity by P.(r). The objective function
would then depend upon the egg complement
X(t)=x, the number of fruit encountered
N({t)=n, and the current estimate that an en-
countered fruit is clean P.(f)=p, . It is clear that
this model would also lead to a region of appa-
rent behavioural plasticity if the data were sum-
marized using only TSLO and the fraction of
marked fruit in the last five fruit encountered.

The sliding memory model developed in the
paper can be thought of as a special case of this
more general model in which w is actually a func-
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tion of i, with value 1 if n=5 and value 0 if n>>5.
Unlike the model described in this appendix,
however, the dynamics of the sliding memory
model arc more complicate and all of the five
fruit must be tracked.

Appendix 2: Dynamic programming equation
with uncertainty in the estimate

In this appendix we show how the dynamic
programming Eq. (5) can be modified to include
uncertainty about the fraction of clean fruit in
the environment. Although there is an underly-
ing true fraction of clean fruit in the environment
(p) the fly’s estimate of this value () need not
be perfect. This estimate that the fly develops for
p depends on the encounter history of the fly.
The uncertainty in the estimate means that the
fly has probability distribution for p given the
estimate p. Some of the ways that this distribu-
tion could be constructed are Bayesian analysis
(Mangel, 1985b; Walters, 1986; Mangel &
Clark, 1988), maximum likelihood analysis, or
linear operator models (McNamara & Houston,
1987b}). We will not describe methods for the

construction of this distribution here, since they
detract from the main attention of the paper and
appendix.

What happens to the dynamic programming
equation in the presence of uncertainty about
the fraction of clean hosts in the environment?
Given p and a procedure for estimating the dis-
tribution, the probability of any particular value
of p can be computed. This value is then inscrted
into Eq. (5} instead of Z;c(s;}. We then obtain

Flx s, T)=(1-p.)p(t)F(x,5,t+1.T)
+Ealpeplfetp(HF(x— 1.8+ 1.T)]
+p(1—pImax{f,,+p(t)F(x—1.8,./+1.7);
p(OF(x, 800+ 1.T)} ]

In this equation, E,; denotes the expectation
over the true values of p, given the information
p. This equation takes uncertainty into the esti-
mates of j into account. It leads to boundary
curves similar qualitatively to the one shown in
Fig. 3. Equation (5) is obtained by assuming that
the distribution of p, given p, is a spike, at p=p.
By doing this we avoid many of the complexities
of stochastic dynamic programming {Mangel,
1985b).



