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In the first part of the paper, a method is developed for computing extinction
properties of populations that are subject to demographic and environmental noise
(catastrophes). The theory requires estimation of demographic birth and death
rates, rates of catastrophes, and distribution of deaths when catastrophes occur.
The colonization probability (chance of successful immigration), mean extinction
time, and the long time conditional distribution of population size are predicted.
The results can be put into algorithmic form so that workers can concentrate on
developing parameters from empirical data. In the second part, the results are
compared to the exact solution of a model (due to MacArthur and Wilson) without
catastrophes and shown to be extremely accurate. The MacArthur-Wilson model is
then extended to include environmental catastrophes. Finally, a metapopulation
model with linear birth and death rates, immigration, catastrophes occurring at
a rate independent of population size, and individuals dying independently is
proposed.  © 1993 Academic Press, Inc.

INTRODUCTION

The last decade has seen an enormous increase of interest in problems
of conservation biology (Shaffer, 1981; Soule, 1987) and in questions
concerning the dynamics of metapopulations (Gilpin and Hanski, 1991).
Central to these problems is the computation of quantities associated with
colonization by and extinction of local populations. Field data on extinc-
tions are now appearing in the literature so that it will be soon possible to
compare theories with field observations. For example, Pimm et al. (1988)

1

0040-5809/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



2 MANGEL AND TIER

present a data-base of short-term survival (10’s of years) of 355 populations
of 100 species of British land birds. With these data, they are able to
compute risk of extinction (reciprocal extinction time) as a function of
population size and species characteristics such as body size. Aebischer
(1986) analyzes the die-off of shag on the Isle of May, SE Scotland. This
population was growing nearly exponentially until a crash in 1974-1976;
the decline could be traced to an environmental disaster. Aebischer’s data
can be used to estimate birth and death rates.

Young (1993) gives data on more than 80 large mammal die-offs in
nature, including population size before and after the catastrophe, source
of the catastrophe (ranging from starvation induced by drought, winter, or
other factors, through disease, predation, and habitat change), and habitat
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FiG. 1. A sample of 10 population trajectories, each starting at the same value of X(0) =x
and subject to the same birth, death, immigration, and catastrophe probabilities, but
experiencing differing sample paths. Ultimately all populations go extinct. We define the
immigration success probability as the chance that a population crosses the line X(¢)=x,
before it crosses the line X(1)=x.. The mean extinction time is the average time (averaged
over different population trajectoties) until the population reaches X(¢)=x,. .
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distribution of the dic-offs, These data can be used to estimate the popu-
lation loss due to catastrophes. Dennis er al. (1991) show how growth
and extinction parameters of endangered species can be estimated. Their
data, for large mammals, could be used to estimate birth and death rates
and Young's data used to estimate the rate and size of catastrophes so
that a complete description of the underlying processes of birth, death,
immigration, emmigration and catastrophe is possible. A reasonable
range for the rate of catastrophes is 0.02-0.06 year ' (Truman Young,
personal communication ).

Schoener and Schoener (1983) present data showing that time to extinc-
tion of Anolis lizards on islands increases with vegatated area of the island.
They observe that “On islands where lizards have gone extinct, populations
never exceeded initial (propagule) sizes and extinction occurred in periods
ranging from 5-11 days to 3 years” (cf. Fig. 1). Schoener and Spiller (1992)
present data on turnover and persistence in island populations of orb
spiders. To obtain these data, they surveyed about 100 islands and those
islands with extant populations were recorded. Then over the next lour
years, extinction events were noted. In this manner, Schoener and Spiller
obtained information on the fraction of populations remaining as a
function of time (i.e, a measure of persistence), as a function of spider
species, and frequency distributions of population size. Harrison er al
{1988 ) study the bay checkspot butterly and argue that this population is
most accurately described as a metapopulation and infer its spatial extent.
Forney and Gilpin (1989) describe experiments used to determine the kind
of stochasticity that occurs during the extinction of populations of
drosophila. Similar approaches are used by Bengtsson (1989) and Taylor
(1990).

Theories to describe the survival and extinction of populations cannot be
purely deterministic since extinction is often due to random or stochastic
events. Three principal factors that contribute to extinction are:

I. Demographic accidents caused by uncertainties in births and
deaths.

2. Nonconstant environments caused by minor fluctuations in
habitat.

3. Catastrophes: declines caused by environmental disasters or mass
emigrations.

The risks of demographic accidents and nonconstant environments are
greatest for small populations. In contrast, catasirophes present risk to
large populations which are seemingly safe from extinction. The quan-
titative aspects of the survival of local populations are often described
by the mean time to extinction, the probability of extinction and the
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prebability of successful immigration and colonization of a population,
given its current size (Fig 1)

MacArthur and Wilson (1967, p. 68f) developed a theory which only
involves demographic stochasticity with linear birth and death rates, Their
theory predicts enormous extinction times for modest carrying capacities
and per-capita birth to death ratios only slightly larger than 1. A number
of elaborations of this theory have appeared in the literature. Richter-Dyn
and Goel (1972} described extensions of the basic theory of MacArthur
and Wilson that included more realistic density dependent birth and death
rates. They studied a number of different performance measures such as the
probability density for the population, the moments of the extinction time,
the probability that the population reaches a specified value before going
extinct, and the mean extinction time. However, they only treated only
demographic stochasticity. Hanson and Tuckwell {1978) were the first to
include explicit environmental shocks. To do this, they studied a popula-
tion undergoing logistic growth (ic, without demographic stochasticity)
subject 1o randomly occurring decrements of population due to
environmental catastrophes. The population process satisfied a stochastic
differential equation driven by the increment of a Poisson process. Hanson
and Tuckwell obtained numerical solutions, but not analytical results,
Leigh (1981) extended the MacArthur-Wilson theory to include a varying
environment using a diffusion approximation and Goodman (1987a, b)
extended Leigh's method of including environmental unecertainty.

Pakes er al (1979) modeled a population growing deterministically and
exponentially, subject to emigrations of random size at random time.
Although the emigrations can be viewed as “environmetal catastrophes,”
the model lacks demographic stochasticity (because of deterministic
growth) and does not allow colonization from the metapopulation.
They found that as initial population size approaches infinity, the mean
extinction time grows as the logarithm of initial population size.

Murthy (1981 ) modeled a population growing deterministically towards
a carrying capacity and subject to environmental catastrophes which occur
at random times (i.e., are exponentially distributed) and lead to a random
reduction in the size of the population. Trajstman {1981) extended the
work of Pakes ef al {1979) to the case in which the population has
“bounded growth,” but the growth model is still deterministic. At random
times the population is subject to emigrations of random size. Peters and
Mangel (1990) used asymptotic methods similar to the ones in this paper
to generalize the work of Pakes er al. (1979) and Trasjtman {1981 so that
the probability of extinction for any form of the deterministic growth can
be considered.

Brockwell er al (1983) considered a continuous, deterministically
growing population subject to randomly occuring  environmental
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catastrophes in which the probability of a catastrophe depends upon
current population size and in which case the decrements in population size
are not necessarily discrete. For the case of exponential decrements in
population size, they proved a theorem indicating when a stationary
probability distribution for population size will exist. For special cases in
the probability distribution of decrements (truncated exponential, umiform
and degenerate in which the catastrophe wipes out the entire population),
Brockwell ef al. determined the stationary distribution of population size
when the rate of catastrophes is constant or proportional to population
size.,

Brockwell {1985) modeled a linear birth and death process and assumed
that the probability of a catastrophe is proportional to the current
population size and that its size has fixed probability independent of the
current population size. Brockwell determined the generating function
{z-transform) for the distribution of the time to extinction { Brockwell,
1985, Eq. 2.9) and the generating function for the probability of ultimate
extinction, given that initial population size. The mean extinction time is
shown to grow logarithmically for large initial populations. This is the
closest to our work, but Brockwell's results only apply for the specific
forms of birth and death rates, whercas ours does not have such a
limitation.

Lande and Orzack {1988) used a dilfusion model to study the extinction
dynamics of populations in a fluctuating environment. Bartoszynski er al.
(1989) modeled a linear birth and death process in which catastrophes
occur at a rate independent of population size and in which each individual
has equal chanece of death during a catastrophe. In this case, the proba-
bility distribution of deaths in a catastrophe is binomial. They derived the
partial differential-difference equation for the generating function of
population size. This equation is not easily solved, so Bartosynski et al.
were only able to prove gencral properties about the generating function or
provide simulation results.

A key observation from this brief review of work relating to extinction
of populations is that if environmental catastrophes are included in the
basic MacArthur- Wilson model, the extinction times should no longer be
enormous. Instead extinction times should grow slowly with initial popula-
tion size (Fig. 2). The intuitive reason is that environmental catastrophes
can reduce a population by large amounts in short times; this keeps
extinction times bounded. Although this has previously been recognized
by some of the authors whose work was described above, until now we
have lacked a method for computing extinction times in the presence of
catastrophes. Our goal is to develop a method for computing extinction
measures for a population incorporating demographic stochasticity and
environmental catastrophes. Our approximations are accurate, easy 1o
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Frz. 2 The theory of extinction times in the absence of environmental catastrophes (due
o MacArthur and Wilson; labeled by MW keads to two qualitatively strong predictions. The
first is a “shoulder™ or point of inflection, i.c., a population size at which the extinction Lime
begine to rise rapidly, This 15 often called the Minimum Vwble Population. The second is
enormously large extinction times for modest population sizes, On the other hand, in the
presence of catastrophes, the shoulder and the enormously large times both disappear. In this
pitper, we show how to calculate the limiting value of the extinction time, as populalion size
inCreases.

compute and valid for realistic parameter ranges. Since this area of
population biclogy is actually being used in policy decisions (Shaffer and
Samson, 1985; Burgman and Neet, 1989; Murphy, 1989; Estes, 1991; Soule,
1991}, the best possible models and computational methods are essential.

In Part I of this paper, we describe an analytical theory for the computa-
tion of extinction properties of populations. Elsewhere (Mangel and Tier,
1993), we describe a purely numerical procedure for the computation of
these properties of populations. The difficulty in the purely numerical
solution of Eq. (10) is that it is not a closed system of equations (because
of the

Bix)Tix+1)

term ). Consequently, the numerical method requires additional assump-
tions, as described in Mangel and Tier (1993). The analytical methods used
in the present paper are based on the use of asymptotic methods in
stochastic processes. We show how to compute the mean extinction time
and the probability of successful colonization for models with realistic birth
and death rates and environmental catastrophes. Our results are put into
algorithmic form using symbolic and numeric computation so that they can
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be emploved by field workers. For simplicity of presentation, we focus on
cases in which the probability that a catastrophe occurs in independent of
population size, but our method can be gencralized easily. However,
throughout we assume that the distribution of deaths depends upon
population size.

In PartIl, we illustrate our method on several examples. First, we
compare our approximate extinction measures with the exact solutions of
the MacArthur-Wilson (1967) model. We find that the approximations
are quite accurate. Next, we include environmental catastrophes in the
MacArthur-Wilson model. We find that a considerable reduction in per-
sistence time occurs when catastrophes with modest rates and intensitics
are included. Finally, we describe a specific model for colonization and
extinction (the linear-birth-death-immigration-catasirophe model) that s
an alternative to the usual “r and K logistic models which have dominated
thinking in conservation biology. We explain how the alternate model may
be more appropriate for many common situations in which density
dependence is less of a regulating factor for population size than immigra-
tion and death through catastrophe. Although the two models which we
use for examples involve either linear population dynamics or extremely
simple nonlinearities (as the model of MacArthur and Wilson), the
methods we present here are fully general and applicable to any form of
nonlinear population dynamics.

I. A GeMeraL THEORY FOR THE COMPUTATION OF
EXTINCTION AND COLONIZATION PROPERTIES OF METAPOPULATIONS

We envision a metapopulation consisting of a large number of smaller,
local populations (Fig. 3) and potential, but currently empty, habitats.
Within a local population, demographic processes invelve birth, death,
immigration and emigration. In a short interval of time, these result in only
unit changes in population size. In addition, a local population may
experience a “catastrophe” in which a large number of individuals cither
emigrate or die. We concentrate on the dynamics of one of these local
populations.

The population is described by a single variable X{r), representing pop-
ulation size at time . Let AY denote the change in population from 1 to
{ + Ar, so that AX = X(t+ At)— Xit). We want to describe the dynamics of
the population, taking both demographic processes and potential
catastropheés into account.

First consider demographic processes. When A1 is sulficiently small only
one birth or death can occur during the interval of length Ar. Given that
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Fia. 3. A “metapopulation” consists of 8 number of local populations {filled ellipses) and
potential, but currently empty, habitats, Within a local population, demographic processes
imvolve birth, death, immigration and emigration In addinon, a lecal popuolation can

sulfer & “catastrophe™ and go extinct. We concentrate on the dynamics of one of these local
populatiomns.

X(it)=x, we assume that, in the absence of a catastrophe, the probability
of a birth is given by

PriAX = 1| X{r) = x, no catastrophe in the next A¢}
= Rix, At)
= [Bi{x)/(Blx)+ D(x)) (1 —exp(l —exp( —(Blx)+ D(x)) 4e)). (1)
The probability of a single death from demographic causes is
Pr{4X= —1|X(r)=x, no catastrophe in the next A:}
= Lix, At}
= [Dx)(Blx)+ Dix)) J(1 —exp{ — (Blx}+ Dix)) 46)).  (2)

Finally, the probability of no change in population size from demographic
Causes is

Pr{4X = 0| X{r) = x, no catastrophe in the next At}
=exp{ —(B{x)+ D{x)) 4t). (3)

In these equations, 8(x) corresponds to the unit increase in population in
A¢ from birth or immigration and D x) corresponds to the unit decrease in
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population from death or emigration. These could be considered the
“usual” or “typical” demographic parameters.

Equations (1}-(3) are written using exponentials because in this form
they are directly usable in Monte Carlo simulations for arbitrary choices of
Bix), Dix), and At. To analyze the limit as Ar — 0, we expand the exponen-
tials. IF o{At) denotes terms such that ofd¢)/4t — 0 as 4t — 0, we find

PridX =1|Xit)=x, no catastrophe } = B{x) 41 + o{ 41),
PridX = —1|X(1)= x, no catastrophe } = D(x) At + o{ A1),

Pr{AX =0|X(1)=x, no catastrophe } = 1 — (B{x) + D{x)) At + o{41).

These equations, however, hold only for infinitesimally small A¢, and
workers interested in simulating population processes should not use them,
but should use (1)-(3) instead.

A catastrophe is assumed to always be detrimental. To fully describe
envionmental catastrophes, we must specify the rate of catastrophes and
the distribution of deaths. Let C(x) denote the rate of catastrophes when
the population size is X{1)=x, in that

Pr{catastrophe occurs in the next 4e| X(f)=x} = 1 —exp({ — Cix) Ar).

Physical catastrophes may have C(x)= C, independent of population size,
but biological catastrophes such as epidemics may strongly depend upon
population size {Harwood and Hall, 1990). If a catastrophe occurs when
the population size is X(t)=x, we assume that y individuals dic with
probability £ v| x); this allows for density dependence in the deaths due to
catastrophes. The normalization condition on the number of deaths is
25 o @lylxd=1. (For simplicity, y=0 is allowed, but is not likely.) In
summary, the probability of y deaths from a catastrophe is given by

Pr{dX=—y|X(t)=x]}

=Jx, A=y xW1 —expl{—C(x) A1) i(4)
As described above, Q(p|x) and C{x) describe not only deaths from
catastrophe, but include multiple or group emigration.

If my(x) is the mean of the catastrophe distribution (4 ¥|x), the mean
change of the population will be

E{AX|X(t)= x| =[B(x)— Dix)— Clx)m,(x)] e+ o{dt).  (5)

mmmm
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This suggests considering the “average™ population dynamics, for a
continuous approximation x,,, described by

dx,.,

l:.lrf =H[Iu'|-:l"'ﬂ|:xw|]_' C{I:v}ml{l;v}' ‘ﬁ]

We assume the average population dynamics, given by (6), has . cady
state x,, which is much larger than | individual; usually x, = 10 will be suf-
ficient for our methods to provide accurate numerical results. Alternatively,
x, 15 the value of population size such that E{AX|[X{t)=x | =0 The
assumption that x, & | is important for our analysis and will be met for
nearly all interesting and practical conservation problems. In addition, we
assume that Bi(x), Dix) and @ v|x) vary slowly with x, meaning that a
small change in x {e.g., | individual} produces only a small change in Bix),
Mx), and O y|x), 1, their first dilferences with respect 1o x are O01/x, ).
Thus we assume that these functions are of the form Bix/x,), D(x/x,.) and
M y| x/x.). The birth and death parameters can be determined by standard
demographic metheds. For example, Peters er al. (1989) have explicitly
analyzed the dynamics of the flour beetle Tribofiven using a birth and death
formulation in which B{x)=r{x+ d)exp{ —xx} and D{x)=uwx, where
F, &, o, and e are paramters that could be experimentally determined.
Knowledge about the rate of catastrophes Cix) and the distribution of
deaths [rom catastrophes Q1 v|x) 15 more limited, but 15 becoming less so.
In this paper, we use the simplest assumption 15 that Clx)=C, a constant.
This means that the occurrence of a catastrophe is independent of popula-
tion size. This would correspond, for example, to a physical environmental
catastrophe. The function Q1 y|x) can be determined from knowledge of
the distributon of deaths when a catastrophe occurs.

We assume that extinction corresponds to a critical value of population
size x_, Le., the population is classified as extinct if Xi¢) < x_ (Fig. 1). Since
we are interested in tstudying properties related to the first extinction of the
population, we consider a process with population sizes less than or equal
to x_ as absorbing points, We adopt the following conservative criterion for
the definition of x, by noting that if £(0) =0 then “immigration™ can occur
to the local population. In case of immigration, the local population
becomes extinct only temporarily, until the next immigrant arrives but
this does not have to be accounted for in our model. This can be actual
physical immigration to the population, as in the case of a general meta-
population, or immigration from one stage of the life cyele (e.g, pupae) to
the stage that is described by X(r) (eg., adult) (Peters er af, 199)). Thus,
we can choose x.=1 if B(0)=10, since a single individual cannot find a
mate, or x.=0 if #(0)>0. One could, of course, set x_ higher than these
values to study the case in which the population falls below some pre-
determined critical value. '
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Colonization and Extinction Measures

We are interested in two measures of population performance. When a
population starts at some initial value X{0)=x, it will grow and decline
according to the dynamics described in the previous section and,
ultimately, will reach extinction, although this may only be temporary if
immigration occurs (e.g, Fig. 1) The immigration success or colonization
probability is the chance that an immigrating module establishes
itsell before extinction. This is the probability that the local population
crosses x, (defined below (6)) before it crosses x, as a function of initial
population size X{0)= x. Denoting this probability by F(x), we have

F(x) = Pr{X(r) = x, before it falls to or below x., given that X(0) = x L7

Since a population starting at X{0) = x, always exceeds or equals x, before
it falls to or below x_, we have Fix)=1 if x =x,. Similarly, ¥{x)=0 for
X=X,

Our second measure of performance is the {arithmetic) mean extinction
time, which is the average of the first time that the population falls to or
below x_, given that it starts at initial size X(0) = x. Symbolically, we write

Tix) = E[smallest ¢ such that X{¢)<x | X(0)=x}. (%)

Since a population starting with x < x_ has already fallen below this eritical
values, we have Ti{x)=0for x <x_.

The key quantity is T(x), and thus we derive the equation that it
satisfies. To do this, assume that X{7)=x, and consider an interval of time
At sufficiently small that only one of three mutually exclusive events occurs:
{i)no change in population, (ii) no catastrophe but a birth or death,
or (iii) a catastrophe. Incorporating these and using the law of total
probability gives the result

Tix)= At + (expl — (Bix) + Dix)) ) expl — Clx) 41) Tix)
+ {1 —expl —(Bi{x)+ D{x)) At} expl — Clx) A¢)
% [R(x, At) T{x+ 1)+ Lix, 4¢) T{x—1)]
+expl — (B{x)+ Di{x)) A0)(1 = expl = Cx) A1)

x._E‘..F{.x, v, 1) Tix—y). (9)

r=0

The terms on the right hand side of (9) correspond to the following: the
interval of time that the population survives, regardless of what happens at
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the end of A¢; the probability that no population change occurs in this At
times the mean extinction time from population size x, the probability that
no catastrophe occurs but that a birth or death does occur times the mean
extinction time from the new population size {x+1 with probability
Rix, A1) or x—1 with probability Lix, 4¢)), and the probability that a
catastrophe occurs times the mean extinetion time from the new population
size (x— y with probability Jix, y, 41)).

We now expand all of the quantities on the right hand side of {9) in
powers of Ar, cancel Tix) from both sides, collect terms in powers of Ay,
divide by 41 and let A¢ — 0 to obtain (the same procedure as in MacArthur
and Wilson, 1967, or Leigh, 1981)

—1=B{x) T{x+ 1)+ D{x) Tix—1)—(B{x)+ Dix)+ Clx)) Tix)
+C(x) ¥ O(yIx) T(x—y). (10)
v

A similar procedure shows that F{x) satisfies an equation analogous to
(10), with the left hand side replaced by 0. In our construction of Tx), we
determine I(x). Higher moments of the extinction time can be found by
solving equations analogous to (10) in which the right hand side describes
the x-dependence of the fth moment of the extinction time and the — | on
the left hand side is replaced by the (j— 1)th moment of the extinction
time.

Determination of the Extinction Time

We now present a thorough derivation of the method for calculating of
the mean extinction time and emphasize the algorithmic nature of our
approach. (An excellent reference on the methods that we use is Bender
and Orszag, 1978.) We begin by measuring population size as a fraction of
x, defined from (6). Thus, let

H=X'X, ar X=XM

As population size ranges from 0 to x,, n ranges from 0 to 1. Furthermore,
when the population changes by 1 individual, the scaled population size
changes by 1/x,, which we assume is small It is the smallness of this
change which our method of analysis exploits. Similarly define n.=x./x,.
Using the assumption that B(x) and D{x) are slowly varying in x, we
define bin)= B(x,n) and d{n)= Dix,n). For simplicity ol presentation, we
assume that the rate of catastrophes {but not the distribution of deaths) is
independent of population size and is thus a constant ¢ for consistency of
notation we set ¢=C and g(s|n)= Q(s|x n). By using this scaling, the
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steady state of the “average” dynamics is now n = 1. Defining r{n) = T{x n),
Eq. (10) becomes

—1 -b{n]r(n+;—l)+d{n}r(n—l)—ib{u}+dtn]+ c)rin)

Xy

+e ¥ q{:|n]f(n—xi). (11)

s} 5

Equation (11} is the fundamental equation for our analysis. We have
extended the upper limit in the summation to oo, since fin)=0il n<n..

Since x, & 1 by our earlier assumption, we begin by considering the limit
in which x, — co. In that case, there is a non-zero probability of ultimate
persistence  (Peters and Mangel, 1990}, which means that the mean
extinction time approaches infinity. Thus, we conclude

fim) = oo as X, — oo, (12)
To determine the value of f(n), we assume that it has the form
fin)= Flx,)uin), (13)

where 0= win)<1 and P{x,)— oo as x, — oo, We understand that (13)
defines the constant P and the bounded function w(n), both of which must

be determined.
Assuming that P(x,) & 1, we substitute (13) into (11) and use the result
that 1/P{x,)~0 to obtain

O~ b{n)u (n+tl) +n"[u}u(n—-xl) —(b{n)+din)+ e)uln)

ie Y qmn}u(u—f). (14)

Fam) ]

We begin by assuming that u(n) can be represented by the power series
w(n) = wg(n)+ (Lx) wy(m) =+ (1) ualm)+ -

which we substitute {14). We then expand in powers of (1/x,) and collect
terms according to those powers to find that the leading term is

[Bin)—d(n) = cmy(n)] dug/dn =10,

Since the coefficient of the derivative is not zero in the interval 0<n< 1,
we conclude that du,/dn =0 and that w,(s) is a constant, which we set to
be 1 because of the normalization following (13). However, this is only true
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if n is bounded away from n, since u,=1 fails to satisfy the condition
H(n.)=0, n<n,.. However, we already see that the extinction time does not
rise without bound, because of catastrophe reductions in population size,
and is approximated by

t(n) ~ P(xy) n>n..

We have thus captured the generally well known phenomenon of coloniza-
tion and extinction: if a propagule establishes itself from. small size, it does
so very rapidly. Once established, the mean extinction time is much larger
than the time to establishment.

Knowing that u(n) is a constant when n > n_, however, leaves two major
obstables. First, what is the extinction time when the population size is
small? Second, what is the value of the constant P(x,)? We know that
at the critical value of population size, the extinction time is 0 and we
know that it rises to P(x,) as described above. This means that there is a
“boundary layer” (cf. Bender and Orszag, 1978) near the critical value. To
find u(n) when the population size is small, ie., n—n, is close to zero, we
introduce a scaled discrete variable & that measures deviations from n.:

k=(n—n)x,. (15)

This choice of scaling returns us to the original variable, except that we
shall now assume that the values of k of interest are such that the birth,
death, rates catastrophe and the catastrophe distributions can be treated as
constants, with their values determined by the values at n,. We thus
“freeze” the coefficients at n=n_ and denote b.=b(n,), d,=d(n.), and
q9.(s)=gq(s|n.) and let U(k) denote the solution of (14) in this new variable
with the frozen coefficients. We then find that to leading order in 1/n,

k
0=b.Uk+1)+d. Uk —1)—(be+d.+c)Uk)+c ¥ q.(s)Ulk —s).

s=0

The simplification is that we now have a difference equation with constant
coefficients which can be solved by the method of generating functions or
“z-transforms” (e.g., Caswell, 1989,p. 96 ff). )

For an arbitrary function f(k), the z-transform f(z) is defined by

f(2)="Y flk)z*, (16)
k=0

where 0 <z < 1. The key results that we will need are (1) the z-transform of



METAPOPULATION DYNAMICS 15

a convolution is the product of the z-transforms and (ii) the so-called final
value theorem of z-transforms, which states that

EEi_rrnl{l—z}f{z]=f{-::c-]. (17)

This result links limiting behavior of the original function and of its
transform.

The transform of Ulk) will be denoted by U{z). To find it, first note that
U(0)=0 (ie, when n=n_ the extinction time is 0), and then multiply the
equation for U{k) by z* and sum over k to obtain

0=h, ¥ 2*Uk+1)+d, ¥ Uk—1)

k=0 k=0

oo X1 k
—[be+d.+¢] ¥ 2Uk)+e ¥ 2 ¥ q.(5) Uik —5).

k=0 = &= i)

The last term is a convolution (Caswell, 1989) so that we obtain

O=b_(1/z) E 2k +1)+d: ¥ UKk -1)

i ] kwm

~[b,+d.+e]0+cUj.,

where §, 15 the z-transform of g.(s). Note that the first sum on the right
hand side of the above equation is the same as [.':n:,-‘z:l[ﬂ’— L1)z] and that
the second sum on the right hand side is exactly 7 (since Li0y=10) so that
we obtain

O=(b. 20— U(1)z)+d 20— [b +d,+c] U+ clq,.
Solving for [' gives
O=b.Ull)z/(b.+d.2* — (b +d. + ¢) 2+ czd.). (18)

Since U1} appears, and it 5 not yet known, the construction is not
complete. To hind U(1) we must perform “asymptotic matching”™ by
recognizing that as j increases, Uj) should approach the same value as
solution wi(x), which is wix)~ 1 valid away from x_,. We then use the final
value theorem on (13) to compute the limit of U(j) and then using
L'Hopital’s rule, we find

U(1)= (b, —d.—cm, )b, (19}
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so that
U=[b.—d.—cm] 2/[be+d.22 — (bt do+ ) z+czd.]- (20)

We have thus constructed the ,-transform of U for small population sizes
which turns out to be uniformly valid over the entire state space.

Since U(n.)=0 and U(m)—1 as n— o0, W€ have determined the
colonization probability during the construction of U(n). That is,

V(x)= U(x/x)-

In order to proceed with computations, one must find U(n) from the
,-transform. The development of symbolic manipulation packages has
made this particularly easy. For example, a partial fraction inversion
algorithm is available in the symbolic manipulation language MAPLE
(Char et al, 1988). In particular, the most recent vertion of MAPLE (V)
contains internal functions “ztrans” and “invztrans” for computing and
inverting z-transforms.

Next, we must determine the constant P(x,). To do so, we adapt a
method used by Knessl et al. (1984) and Matkowsky et al. (1984) to our
problem. The idea is develop an auxiliary formula to determine P(x) that
involves the solution of a simpler equation. The method rests on the use of
the adjoint equation (Courant and Hilbert, 1962) and the procedure goes
as follows. We first multiply (11) by an unknown function W(x) and sum
from x.+1 to co. Next we shift the differences from T(x) to W(x) and
interchange the order of the summations. This yields the discrete analog of
the Lagrange identity in differential equations (Courant and Hilbert, 1962).
Knessl et al. (1984) and Matkowsky et al. (1984) show that the appropriate
choice of W(x) is the solution of adjoint equation

0=B(x—1) Wi(x— 1)+ D(x+ 1) W(x+ 1)—-(B(x)+D(x)+ C(x)) W(x)
+ 5 Clxty) Qylx+y) Wi +2) 1)

The use of the adjoint equation insures that when the procedure described
above is followed and the appropriate boundary conditions are applied,
most of the terms in the sum cancel and we obtain

Bx) Wix) T4 D= 3 W

Now using the fact that

T(x)~ P(x,) V(x),
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we find that

P(x,)= i W(x)/ [B(x.) W(x) V(x.+1)]. (22)

X=Xxc+ 1

We are left with the simpler problem of constructing W(x) which satisfies
the same equation as the stationary density of population size but without
boundary conditions. For the process which is stopped after first
extinction, the only possible stationary solution is 0. In that case, we refer
to W(x) as the conditional density of the population for populations that
are not yet extinct. This describes the long-time behavior of population size
before extinction. If reintroduction occurs and proper boundary conditions
are used then W(x) would be the true stationary density of population size.
We can easily determine W(x) numerically if the state space is bounded.
Alternatively, we can construct an approximation to W(x) using the
asymptotic method described in the Appendix. In either case, once we have
determined W(x), the extinction time T(x) is given by

T(x)=V(x) i W(x)/[B(x.) W(x.) V(x.+1)]. (23)

x=xc+1

Using the approximate construction in the Appendix, we find that W(x) is
given by :

W(x) ~ g(x/x,) exp(—¥(x/x,)x,), (24)

where ¥ and g are solutions of the ordinary differential equations (in which
" denotes a derivative)

s=0

b(n) ¥+ d(n) e =¥ 4 ¢ ' gls|n) e~ = bim)+dim)4e (25

and
A (n) g'(n) =B(n) g(n)

A(n)y=d(n)e "™ —b(n)e¥ M 4 ¥ g(s|n)se=v'™
| o (26)
B)=b'(n) ¥ —d'(myev_. 5 L

o [q(s|n)] se==¥'m

5

+(1/2) y"(n)

* {b(n) e’ ™ +dn)e V™ ¢ 2 s%q(s|n) e_w’(")}.

s=0
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Equations (23)-(26) embody the main theoretical result. A further
simplification can be obtained by asymptotically expanding the summation
in (23) when x, is large. This is described in the Appendix.

Algorithm

The theoretical results of the previous section can be summarized in the
following computational algorithm.

1. Model B(x), D(x), C, and Q(y|x). This is the essential biological
analysis. Identify the large parameter x, using the average equation (6) or
the value of x where the distributuion of the population size is peaked. It
is important that between x. and x, there should be no other rest points
of (6).

2. Scale the equaton (10) for 7(x) to get (11) and define functions b,

d, g, and c. The slowly varying assumption can be verified by requiring that
all coefficients in (11) are of the same order.

3. Construct V(x)= U(x/x,) where the z-transform of U satisfies (20).

4. Find W(x) by constructing g and ¥ using (25) and (26). This gives
the conditional distribution of populations that have survived. The mean
and variance of the size of surviving populations can then be computed
directly from W(x).

5. Find P(x,) using (22). This is the maximum possible extinction
time. This requiries computing » 7 W(x).

x=xc+ 1

6. Find T(x)~ P(x,) V(x). This is the mean extinction time from
initial population size X(0) = x.

Each of steps 3-6 can be easily implemented using a symbolic mani-
pulation package, such as MAPLE (Char et al., 1988) or Mathematica,
eliminating the need for tedious calculation.

II. APPLICATIONS

MacArthur-Wilson Model with No Catastrophes

First, we consider the model of MacArthur and Wilson (1967). Since
the exact solution for the mean extinction time is available, we are able
to demonstrate the accuracy of our approximations. The model only
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involves demographic stochasticity and no environmental catastrophes
so that C=0. The population undergoes exponential growth up to a
population ceiling of K beyond which the birth rate is zero. Thus, in
our notation,

AX if x<K
B(x)‘{o if x>K

D(x)= ux,

(27)

where we assume that 1> u. In addition, we assume that extinction occurs
at x.. If the initial population size is less than or equal to K+ 1 then the
state space for the model is {x,, .., K+ 1}. The exact solution for the mean
extinction time is

T(x)=T(x.+1) ¥ (g)l

x—xc— 1 1 X—xc—1—j ,Ll[
- VN P E) < SK,
TR e & (1> o=t

K+1 1 /1 J— X¢
T(x.+1)= _—(—) .
j=xzc:+1 JA\p

Our approximate method can be applied directly to this model if we let
the population ceiling K play the role of the large parameter x, in our
analysis. We trace through the steps of the algorithm.

1. For this example the model is given so no biological
measurements are needed and we use K as the large parameter.

2. Because of the special form of the equation the slowly varying
assumption is automatically satisfied if we simply replace x by Kn and
divide by K so that

An if n<l1

b(”)={o if n>1

d(n)= pn.

The values of 4 and u should be of the same order of magnitude (as they
are, see MacArthur and Wilson, 1967). » :
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3. From (18), the z-transform of U is

A (A—u)z
U=
pzt—(A—p)z+A

and omputing its inverse, we find that

V(x)=1 —(%‘)x_xc.

4. The conditional density can be found directly (Ludwig, 1974) and
is

1 /2\*
W(x)=—(—) X=Xg, .., K+ 1.
x \p

5. For this example, we use the discrete Lagrange identity to find

K+1 1 AX‘XC
Pix)= Y ;(ﬁ) /u—u).

x=xc+1

that

6. We thus obtain the approximate result

. T~ P(x) V(x)~ P(x,) [1 -(5) 7 (28)

Ludwig (1978) derived an asymptotic expression for 7(1) when x.=0
and K is large. If we set x_=0 and expand the sum in P(x,) for large K we

find that
K+11 A x /3' » A, K+1
E&(ﬁ) N(K+1)u~u)(li> '

Using this approximation in (28) we find that the leading term in T(1) is

Tl 1 &K+1
()N(K+1)(i—u)(u) ’

which agrees with Ludwig’s result. Hence, our method indeed produces the
leading term in the asymptotic expansion for the mean extinction time.

To illustrate the numerical accuracy of the approximation, we compare
our approximation with the exact solution (Fig. 4).
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FiG. 4. The mean extinction time 7(x) as a function of the initial population size x for
the MacArthur-Wilson model with no catastrophes. The exact solution (solid) and our
approximation (dotted) when (a) 1=2.5, p=182, x.=3, K=20, or (b) K=100 are shown.
‘The asymptotic solution is extremely accurate, even when X is only 20.

MacArthur-Wilson Model with Catastrophes

We now extend the MacArthur-Wilson model considered in the previous
example to include catastrophes. We assume the birth and death rates are
given by (27) and that the rate of catastrophes is a constant C. The
distribution of the size of the catastrophes is the exponential distribution

0(ylx)=(1—-p)p’ (29)

where p is a parameter. The mean catastrophe size is p/(1 —p) and the
z-transform of Q is §=(1—p)/(1 —zp). In addition, extinction occurs
when the population size falls below x.+ 1. We now use our algorithm to
construct 7(x).

1. Again we assume the model is known. The scaling parameter is X,
the population ceiling. For this model, the rest point x, is unstable and we
require that x, be outside (x,, K+ 1). Otherwise it must be accounted for
(see Peter and Mangel, 1990).

2. We introduce the scaling n=x/K, deﬁne'c= C/K and obtain the
scaled equation (11). All parameters should be the same order.

3. The z-transform of U is can easily be computed from (20) using
MAPLE as

1 _  bl —p—pz+pz)+cp*z
1—z (1-p)ld.pz>—(cp+bep+d:)z—b.T

U=
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where b, = Ax, and d,=ux.. For specific values of the parameters, the
inverse of U can be found and leads to a formula for ¥V(x) of the form

V(X)= 1 —klrf#xc—kzr;_xc,

where the k, are constants. A general formula can be obtained but it is
quite complicated.

4. The conditional density W(x) can be found by the approximation
(24). The function y is determined by (25) which for this example is

l1—p

——=0.
1—pe¥

ine¥ +pune V' —(An+un+c)+c

This is a cubic in exp(—y’) which has a solution e ¥ =1 or y'=0. We
choose the solution of the remaining quadratic equation as the one that
reduces to the exact solution in the previous example when ¢=0 and
hence

¢(n)=—J.nln

ne

[(,u +pl)s+pc+ \ﬂ(u +pA)s+pc) — 4p,u,1s2] s
2pus '

Similarly, g can be found using (26) which leads to

g(n)= el (@Y () ds. (30)

where of and 4 are defined in (26). The resulting integrals can easily be
computed numerically. We have chosen w(n.)=1. Alternatively, we can
compute a numerical approximation to W using (21) directly as we do in
the below example.

5. The constant P(x,) is computed using (22) where the function
W(x) is computed using the previous step.

" 6. An approximation to the mean extinction time is
T(x)~P(x)[1 —kri=—kyr; ]

We illustrate our results and hence the effects of catastrophes in the
MacArthur—Wilson model. In Table I, we use the above algorithm to
compute the mean extinction time for different values of the catastrophe:
rate ¢ and the mean number killed per catastrophe. The sensitivity of the
mean extinction time to the mean number of deaths per catastrophes
is illustrated. We have also compared our approximation to the mean
extinction time to a numerical solution of Eq. (10), which is feasible since
the state space is bounded. Clearly, our approximation is quite accurate.
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TABLE 1

Comparison of Approximate 7(K) and Numerical Result
when ¢=001, A=25, uy=182, K=30, and x,=3

Mean deaths/catastrophe Approximate T(X) Numerical
0 1408 1404
0.75 1398 1392
1.0 1394 1387
40 1162 1144
9.0 568 546

A Metapopulation Model

For the final example, we consider a model of a metapopulation
including stochastic births and deaths, immigration and catastrophes.
In particular, we assume linear birth (with immigration) and death rates,
and catastrophes independent of population size. The underlying thematic
principle for this model is that density dependent population regulation
(as in the logistic equation) may not be nearly as important for meta-
population dynamics as the processes of immigration and invironmental
catastrophe.

Our assumption about the demographic processes is that

B(x)=By,+ B;x
(31)

D(x)=D,x.

The choice that B, is non-zero corresponds to immigration from an outside
“pool,” consistent with the concept of a metapopulation. As described
above, D, can be viewed has having components composed of death and
emigration. Karlson and Levitan (1990) describe a situation in which this
model is clearly appropriate. Pulliam (1991) describes a broader class of
“sink models.”

As in the previous example, we assume that the rate of catastrophes is
a constant C and that the distribution of the number of deaths per
catastrophe is (29). The mean number of deaths is p/(1—p). In this
model, we allow the population size to take value in {x., x.+1,..}, ie,
there is no population ceiling as in the previous model. Without the ceil-
ing, the state-space is now unbounded which makes direct numerical solu-
tion of T(x) more difficult. However, our method can be applied without
difficulty. :
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1. Again the model is given and we now determine x,. If x,, denotes
the mean population dynamics as defined by (6), then

dx p

d:"=BO+BIxaV—D1xaV-—C'—1—_—p. (32)
since dx,,/dt =0 at x,, we ﬁnd
By—C(p/(1—
Xy =2 Df"_/(Bl P) (33)
This steady state is stable if
D> B, and BO>C1—f—p,

which we assume to be true. That is, on average, per capita death rate
exceeds per capita birth rate and immigration rate exceeds the mean rate
of deaths due to catastrophes. These assumptions could apply to a local
population which is part of a metapopulation but which is unable to
sustain itself without immigration. One example of such a population
appears to be the elephant seals Mirounga angustirostris on Afio Neuvo
(California) mainland (B. Le Bouef, personal communication). Observa-
tion of such a population may provide (through the immigration rate)
information on the general state of the entire metapopulation. ’

2. The slowly varying assumption means that C(p/(1—p)) and
B,> D, and B, so that the processes of catastrophic extinction and
immigration dominate the per capita death and birth rates. Thus, we define

b(ny=by+ Bn

d(n) = Dln>
where
B C
b0=‘_0, cC=—.
JC'g Xg

Since the parameter x, plays the role of a “deterministic steady state,” and
all of the parameters of the model enter into (33), we see that there are
many different ways in which the same population size x, can be achieved.
For example, as intuition suggests, when per capita birth rate is high (ie,
B, is only slightly less than D,), then populations can achieve a large value
of x, with relatively low immigration rates (B,). On the other hand, when
per capita per rates are low relative to per capita death rates, large
immigration rates are required to achieve a large value of x;.
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3. As described below Eq. (20), the colonization probability is deter-
mined by inverting

1 b.(1—p—pz+pz)+cp’z
1—z (1-p)[d.pz*—(cp+bop+d)z—b.]

U=

where b, = by + B, x. and d, = D, x,. The probability of successful coloniza-
tion by a propagule of the smallest size is

bo—cp/(1—p)
b ‘

Vix.+1)=

Thus the probability of successful immigration is independent of B, and
D, and, in this case, depends solely on the relative values of the immigra-
tion rate and the mean rate of deaths due to catastrophes. Hence the
colonization probability, in this model, is independent of demographic
processes. Some intuition about the result is that on average, the birth
rate is lower than death rate in this model so that a successful coloniza-
tion must be “driven” by immigration rates that exceed catastrophic
declines.

4. The conditional density W(x) is again found using the approxima-
tion (24). As in the previous example, (25) can be reduced to a quadratic
equation for exp(—y'(n)). Only one root of the quadratic equation insures
that y(n) has a minimum at n=1 (i.e., at x=x;). To determine y(n), we
solved (25) for ¥’(n) and integrate to find

in)= — f In [d(s) + pb(s) + pc — /(d(s) + pb(s) + pc)> — 4pb(s) d(s)] 5
ne 2pd(s)

This expression is then integrated numerically. The solution of (26) is again
given by (30). We can use W(x) to determine how the incidence function
(Hanski, 1992) of populations depends upon the various parameters
characterizing birth, death, immigration, and catastrophe.

5. and 6. The extinction time for an established population is found
from (23) and is of the form

T(x)~ P(x)[1 —kyri™ = —kory =],

where the constants &, and r; are functions of the parameters characterizing
birth, death, catastrophe, and immigration.

In Tables II and III, we illustrate the above résul_ts. The most striking
feature of the results is the stabilizing effect of immigration on the mean
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extinction time when catastrophes are infrequent (c=0.01). The mean
extinction time is not greatly effected by the increase in the mean number
of deaths per catastrophes. The catastrophe rate is increased by a factor of
10 for the data in Table IIL. Here increasing the mean number of deaths per
catastrophe decreases the mean extinction time to a greater extent than in
the previous example.

TABLE 1I

Approximate T(K) when ¢ =0.01, B, =10,
B, =19, D;=22, and x.,=10

Mean deaths/catastrophe Approximate T(K)
0 29.8
0.75 29.7
1.0 29.7
40 29.3
9.0 28.7
120 28.3
TABLE III

Approximate T(K) when ¢=0.1, B,=10,
B,=19, D;=22, and x;=10

Mean deaths/catastrophe Approximate T(K)
0 29.8
0.75 29.1
1.0 28.3
40 25.7
9.0 21.6
DiscussIoN

Most readers are probably familiar with the story about the person who
is looking for keys under the lamppost because that is where the light is,
rather than that is where the keys were dropped. The story is not as
humorous if a seriously injured individual is on the ground and needs to
be taken to the hospital. We believe that this is the situation with the
theoretical tools used in conservation biology: while it is wonderful to work
with models that have exact solutions, we should not let mathematical
expediency overrule biological considerations.

The model of MacArthur and Wilson has dominated the conceptual
development of conservation biology. This model predicts a shoulder in
extinction time as population ceiling K increases (this has lead to a focus
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on “Minimum Viable Populations”) and extremely large extinction times
for modest values of K. The MacArthur-Wilson model has a particular
advantage because exact solutions can be found. In general, when an
arbitrary population ceiling is imposed (as in the- MacArthur—Wilson
model), simpler techniques can be employed (also see Talent, 1990; and
Mangel and Tier, 1993). Our work has confirmed previous theoretical
proof that when modestly sized environmental catastrophes are included in
the MacArthur—Wilson model, the enormous extinction times disappear.
We, however, also provide a method for computing the appropriate
extinction times. In addition, our methods apply to cases in which there is
no arbitrary population ceiling and to cases in which the biological
parameters are determined not for mathematical convenience but for
realistic description.

We have additionally proposed a model of population regulation that
involves immigration, birth, death, and catastrophe. Such regulatory
mechanisms may have wide application, as in the marine system described
by Karlson and Levitan (1990) and the terrestrial system described by
Schoener and Spiller (1992). Extensions of our work will include detailed
comparisons of the theory with these kinds of field systems and elaboration
of the theory by including the state of a number of populations
simultaneously. Although some of the technical details change, the concep-
tual foundations are exactly the same. Finally, by developing a method that
can be described in algorithmic fashion, we make the technique accessible
to a range of colleagues.

APPENDIX

Approximation to W(x)

We now give details on the derivation of W(x). In order to find W(x)
that satisfies (21), reintroduce the scaled variable n = x/x, and assume that
w(n) = W(x). In terms of the scaled variable, w(n) satisfies

0=b(n—1/x,) wn—1/x,)+d(n+ 1/x,) w(n + 1/x,)

.

—(b(n)+d(n)+c)wn)+c f q(s|n+s/x) win+s/x,). (A.l)

s=0

Again, following Knessl et al. (1984) and Matkowsky et al. (1984), we
assume that w(n) has a solution of the form

w(n) = g(n) exp(—y(n)x), (A.2)
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where g(x) and y(x) are to be determined. To do this, first substitute (A.2)
into (A.1), giving

0=>b(n—1)/x;) g(n—1/x,) exp(—y¥(n—1/x,)x;)
+d(n+1/x,) g(n+ 1/x,) exp(—¥(n+ 1/x,) x;)
— (b(n) + d(n) + ) g(n) exp(—=¥(n)x,)

+c ) qsln+s/x;) g(n+s/x;) exp(—y(n+s/x,)x).
s=0
This equation is expanded in powers of 1/x, and coefficients of various
powers of 1/x are set equal to zero. This produces a nonlinear equation,
called the eikonal equation, for { and a linear equation, called the
transport equation, for g(n). The eikonal equation is

b(n) e’ "™ +d(n)e V" +c Y gq(s|n)e "™ =b(n)+d(n)+c (A3)
s=1
We have already encountered this equation (Eq. (25)) in the text. The
function g(n) satisfies

g'(n) [d(n) e~V ™ _p(n) e ™ + ¢ i q(s|n) Se—xx//'(n):l

s=0

. , © 9 ,
=g(n) I:br(n) e’ ——d’(n) e V. Z % [q(sln)] se sV’
s=0

+(1/2)y"(n) {b(n) g dm) e VP ke S sq(s|n) e~sw'<n>}],

s=0

(A.4)

which is Eq. (26) of the text. The solution of this equation is (30). The
eikonal equation may have an analytical solution for y'(n), which can then
be integrated pointwise. The function g(n) can be represented as the
exponential of an integral.

Approximation for 3 W

It is possible to further simplify the formula for P(x;) by asymptotically
expanding the sum in the numerator. We consider the situation where x;
is a rest point of (6). Since w(n)=w(x/x,), this sum can be written as

s= 3 w(x/xs)=xs[§ w(x/xcm/xs)]. (A5)

x=x,
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The summation inside the [ ] in (A.5) is, in the limit as x, — oo, the
integral of w(z) from 0 to co. Thus

S~xsf°° w(z)dz:xsfw 2(z) exp(—¥(z) x,) dz. (A.6)

0 0

Assuming that (z) has its minimum at a point z,, we apply Laplace’s
method (Bender and Orszag, 1978) to the integral in (A.6) to obtain

S~x.g(z) exp(—y(z) %) [ exp(—9"(z)(z =2, x,/2) de. (AT)

Changing variables to evaluate the integral gives

S~x,g(z,) exp(—(z,) x,) [ 2n/x " (z,) 1" (A.8)
Hence
Y. Wi(x)~gl(z,) exp(—¥(z,) x,) [ 2nx, /Y "(z,) ]2 (A9)
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