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Descriptions of superparasitism by optimal foraging
theory, evolutionarily stable strategies and
quantitative genetics
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Summary

Many parasitoids superparasitize, in which an insect attacks a previously parasitized host, laying an egg in
the host even though only one offspring will emerge from the host. In this paper superparasitism is
considered from the perspectives of optimal foraging theory, evolutionarily stable strategies, and quantitative
genetics. The focal question is: at what point in its life should an individual parasitoid begin attacking
previously parasitized hosts? Each of the three theoretical methods can be used to answer the question and
by doing so, we see how the three methods are connected. Qualitative, empirical predictions based on the
theories are described.

Keywords: superparasitism; optimal foraging theory; evolutionarily stable strategies; quantitative genetics;
evolution in function space

Introduction

Two theoretical methods commonly used in behavioural studies are Optimal Foraging Theory
(OFT) and the theory of Evolutionarily Stable Strategies (ESS). They are focused, more or less,
on the individual with the aim of predicting the behaviour of individuals. A third theoretical
method is the theory of Quantitative Genetics (QG), which attempts to predict the evolution of
behaviour in populations. Although most practitioners employ only one type of approach, there
is usually fervent belief that the approach used is the best (if not the only) one to use. Rarely have
the three methods been compared for the same problem (see Rosenzweig et al., 1987, for
discussion). Charlesworth (1990) recently compared an optimization approach for population
growth with a QG approach. However, that comparison did not consider individual behaviour.

In this paper, a particular biological problem is considered from the perspective of these three
theories. The biological phenomenon of superparasitism comprises an insect laying an egg in a
previously parasitized host, from which only one offspring will emerge. By developing OFT, ESS
and QG theories of superparasitism, one is able to understand when the three methods will give
the same result and when and why the predictions will diverge. Over a wide range of assumptions
and parameter values, it appears that the three theories give consonant predictions. This study
also shows how evolutionary ecology and population genetics are linked. Population genetics
asks, ‘What does evolution do, once the fitness function is given?’; and evolutionary ecology
asks, ‘How do ecology and behaviour determine the fitness function?’. In general, we must
consider both kinds of questions; by linking behavioural ecology and quantitative genetics, we
can make both fields stronger.
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Figure 1. Rate of superparasitism by the parasitoid Ephredrus californicus (Baker) attacking pea aphids.
Redrawn from Voelkl and Mackauer (1990).

The phenomenon

After oviposition, an insect may leave a chemical trail on the host. Such behaviour is found in
parasitoids, tephritid fruit flies, and many herbivorous insects. Roitberg and Prokopy (1987)
review host marking by herbivorous insects of three orders (Coleoptera, Diptera and
Lepidoptera). In many cases, particularly involving parasitoids and tephritid fruit flies, only one
offspring will emerge from a host (insect larvae or fruit), yet on occasion we observe oviposition
in a previously parasitized and marked host. This phenomenon is called superparasitism or
superoviposition. For many years, it was thought that superparasitism was a ‘mistake’ by the
ovipositing insect. In the early 1980s a number of investigators recognized that superparasitism
can be an adaptive strategy in the sense that by ovipositing in a previously parasitized host a
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female achieves higher expected lifetime reproduction than by rejecting such a host (reviewed in
Mangel and Clark, 1988, Chapter 4; and van Alphen and Visser, 1990). The propensity to
superparasitize changes over the course of an insect’s lifetime. For example, Fig. 1 shows the rate
of superparasitism (Voelkl and Mackauer, 1990) by a wasp that attacks aphids. The propensity to
superparasitize also depends upon the ecological and social conditions surrounding the parasitoid
(Visser et al., 1990). If superparasitism is, in fact, an adaptive strategy (van Alphen and Visser,
1990), then we should be able to assess the selection acting on it, either alone or in conjunction

with other behavioural traits.
van Alphen and Visser (1990) review superparasitism as an adaptive strategy and develop a

model based on rate maximization to study selection on superparasitism. They model two
strategies (defend a patch and never superparasitize versus allow conspecifics to enter the patch
and superparasitize); it is possible, of course, that other strategies also exist. A number of authors
have concluded that because superparasitism clearly involves the behaviour of other individuals
(van Alphen and Vet, 1986, pp. 37ff), one must use methods of game theory to analyse
superparasitism. Hubbard et al. (1987) provide one such example in which a simulation based on
the assumption of rate maximization is used to assess the fitness consequences and avoidance of
superparasitism.

van Alphen (1988) reviews the state of analysis of superparasitism and concludes, ‘Because
optimal patch times are dependent on the patch times that other parasitoids are willing to invest,
patch-time allocation and superparasitism should be analysed with an ESS rather than with an
optimal foraging approach’ (pp. 220). One objective of this paper is to ask when the behaviours
predicted by different theories would be the same. To do this, the theory of superparasitism is
developed from three perspectives: (1) the theory of optimal foraging; (2) the theory of
evolutionarily stable strategies; and (3) the theory of quantitative genetics. By doing this, we are
able to ascertain when the three approaches will give similar predictions of behaviour and when
they will not, and why the predictions are similar or differ. Charlesworth (1990) performed an
analysis in a similar spirit, but concentrated on population parameters. Here the focus is
individual behaviour.

General assumptions
The following assumptions are common to all analyses:

1. The measure of fitness the expected number of offspring accumulated by the insect through
ovipositions over the course of its life.

2. The parasitoid is solitary: only one offspring will emerge from a host, regardless of the number
of eggs laid in it.

3. The parasitoid is univoltine and all individuals emerge more or less synchronously.

4. Lifetime fitness is assessed at time T, which is fixed. Time before T is measured discretely in
unit intervals called periods. (In the Appendix, a continuous time model is developed.)

5. The parasitoid is not egg limited, so that one can ignore egg load as a state variable (Mangel
and Clark, 1988). This would occur if the parasitoid produces eggs throughout its life or emerges
with an egg complement that vastly exceeds expected reproductive opportunities.

6. There is a ‘somatic cost of reproduction’ in the sense that survival during a period in which
oviposition occurs is lower than survival during a period in which oviposition does not occur.
Supporting evidence can be found in Roitberg (1989). Handling time is sufficiently short that the
only cost for oviposition is the survival cost.

7. Marking of the host and detection of the mark by the parasitoid are perfect. Alternatives are
discussed in Roitberg and Mangel (1988).
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8. There are two host types. Host type 1 is previously unparasitized and yields, on average, f;
offspring per egg. Host type 2 is previously parasitized and yields, on average, f, offspring per
egg. Here f, < f,. The computation of f, includes an average of eggs in a previously parasitized
host.

Optimal foraging: games against nature

The theory of optimal foraging can be viewed as a game against nature, in which the parasitoid’s
actions might change the environment, but one does not consider the strategies of conspecifics.
The simplest case is one in which the parasitoid moves through a world of patches, in which only
one parasitoid visits a patch at a time. Thus when an individual encounters a patch, it already
contains a mixture of unparasitized and previously parasitized hosts. By assuming that the
number of hosts is very large, we can ignore depletion of unparasitized hosts by a single
parasitoid. This also means that the likelihood of self-superparasitism (cf. Visser et al., 1990) can
be ignored. Theoretical alternatives are discussed by Roitberg and Mangel (1988) and Visser et
al. (1990). Introduce the following probabilities:

Prob{encounter a host type i in a single period} = \;
Prob{parasitoid survives a single period, given no oviposition} = e™*
Prob{parasitoid survives a single period, given oviposition} = e (1)

The parametrization of survival as an exponential is chosen to be consistent with the continuous

time model developed in the Appendix and y > 1 is a measure of the survival cost of oviposition.

For example, y could involve increased handling time during oviposition (Mangel, 1989).
Lifetime fitness is defined as:

F(t) = Maximum expected reproduction from ovipositions between ¢ and T (2)

where the maximum is taken over oviposition decisions (i.e. to oviposit or not) in hosts
encountered between ¢ and T. The time T plays the role of a terminal time, at which point F(T) =
0.

It is easy to show that if an unparasitized host is encountered, then the parasitoid should always
oviposit. Lifetime fitness F(f) satisfies an equation of dynamic programming (Mangel and Clark,
1988) given by:

F(t) = (1— Ny — \p) e F(t+1)
+ N {fi + e F(t+1) }
+ N\, max{f, + e F(t+1); e F(t+1)} 3)

The three terms on the right-hand side of Equation 3 correspond to the mutually exclusive events
of Equation 1 not encountering a host of either type during period ¢, Equation 2 encountering a
host of type 1 during period ¢ or Equation 3 encountering a host of type 2 during period ¢. If a host
of type 2 is encountered, then the parasitoid oviposits or not according to the behaviour that gives
higher fitness. A more general form of Equation 3 would allow the parasitoid a probability of
ovipositing in a previously parasitized host. It can be shown that expected lifetime reproduction is
maximized when this probability is either 0 or 1; this leads to Equation 3.

The solution of Equation 3 gives a time f, that determines a behavioural change. In particular,
if ¢ < t, then whenever a host of type 2 is encountered, it should be rejected. When ¢ > ¢, then
whenever a host of type 2 is encountered, it should be accepted for oviposition. This time is
determined during the numerical solution of Equation 3; it may be that £, > T (i.e. never accept a
host of type 2) or that ¢, = 0 (always accept a host of type 2). An analytical description of #; can be
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found in the following manner. In the interval [¢,, T], Equation 3 becomes:
F(t) = (1_ )\1 - )\2) ew F(t+l) + )\1 {f] + e F(t+1)}
+ N\ {fo + e F(t+1)}
= [e* + (A + A) (e — e )] F(t+1)

+ Mfi + Nofa 4)
Defining the time to go s = T — ¢, Equation 4 can be written as:
F(s+1) = A + BF(s) )
with the initial condition F(0) = 0. The solution of this linear difference equation is:
s—1
Fs)= A2 B (6)
j=0

In the interval [0, ¢,—1], Equation 3 becomes:

F(t) = (1— Ay = Ny) e ™ F(t+1) + \; {fi + e F(t+1)}
+ N\, e* F(t+1)
= [e™ + N(e — e#)] F(t+1) + \fy (7

which can be written in terms of the time to go as:
F(s+1)= A"+ B'F(s) (8)
Note that B’ > Bbut A’ < A. If s*corresponds to the time ¢, at which point

T—s*—1

FT-s)=A X B,
j=0

the solution of Equation 8 is:

s—1
Fs+s*)=A" 2 (BY + (B) KT — 5% 9)
‘ o

with the understanding that s = 1. The optimal time for the behavioural change, ¢, is then
computed from the condition described by the ‘max’ in Equation 3. As is evident from the
equations, the time #, computed in this manner will, in principle, be a function of the encounter
rates, the fitnesses, and the survival parameters y and .

An analogue of Equation 3 can be used to determine a ‘fitness surface’ associated with all
switching times that run between ¢ = 1 and ¢ = T (Fig. 2). To do this, we specify a particular
value of the switching time ¢, and then solve an equation similar to Equation 3 with the term
associated with previously parasitized hosts determined by whether ¢ > ¢, or not (rather than
through a maximization). At any particular value of encounter rates (e.g. Fig. 2a) there is an
optimal switching time, although times close to optimal have fitness that is nearly the same as
optimal. In addition, when many values of encounter rates are compared (Fig. 2b), the fitness
surfaces are relatively flat for low values of encounter rates. Note too that there is an asymmetry
in the fitness curves: the fitness associated with values of ¢, larger than optimal is generally higher
than values of ¢, smaller than optimal (but the same difference from optimal). On the empirical
side, we predict that individuals which are not acting ‘optimally’ would be more likely to
superparasitize later, rather than earlier.
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Figure 2. Fitness surface associated with different values of the switching time. An analogue of Equation 3
was solved (described in the text) to determine the fitness surface. Here \;= 0.6 m, A\, = 0.4 m where mis a
parameter ranging from 0 to 1. In addition, f; = 1, f, = 0.2, e*= 0.99, e™* = 0.795 and T = 20. (a) The
fitness surface for m = 0.3. (b) The fitness surface for a range of values of m.
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Evolutionarily stable strategies: games against conspecifics

The basis of an ESS approach to superparasitism is that conspecifics in a patch may affect the
behaviour of other individuals because the conspecifics affect the environment experienced by
other individuals. To begin then, we must model how conspecifics affect the environment.
Following the usual ESS terminology, refer to the conspecifics as the ‘normal’ parasitoids and the
distinguished individual as the ‘mutant’ parasitoid. _

Conspecifics change the environment of the mutant by modifying the number of unparasitized
and parasitized hosts. Thus let:

N,(f) = number of unparasitized hosts at the start of period ¢
N,(f) = number of parasitized hosts at the start of period ¢ (10)

Since hosts are conserved, N,(f) + N,(f) = Ny, a constant. Next, let P(¢) denote the number of
normal parasitoids alive at the start of period ¢ and let t* (which is what we are trying to find)
denote the time at which normal individuals begin ovipositing in previously parasitized hosts.

In order to construct the dynamics of N,(f) and P(r), we must model the searching by
parasitoids for hosts. Searching can be characterized by a search parameter e:

Prob{individual parasitoid finds a single host in one period of search} = 1 —e*  (11)

Thus, 1/e is roughly the mean number of periods required for a single parasitoid to find a single
host. This can be related (Mangel, 1985) to the search abilities of the parasitoid and the area of
the region in which hosts are found. In light of Equation 11, we have:

Prob{a particular host is not found | P parasitoids are searching} = e~<F
Prob{a particular parasitoid finds a host | N hosts are present} = 1 — eV (12)

Assuming that parasitoids search independently and that hosts are encountered randomly, the
host dynamics become:

N, (t + 1) = N,(t) e=<P®)
Ny(t+1)=No— Nt + 1) (13)

Unlike the case of optimal foraging theory, depletion of unparasitized hosts by the population
of parasitoids is taken into account by the ESS approach. However, the dynamics still assume
that the probability of re-encountering a specific host is essentially 0; this could be modified
(Roitberg and Mangel, 1988). The host dynamics now determine time-dependent encounter
rates which are:

N.(0)
M5 %) = (1 — e*Ny) N
0
C kY — Np(t)
)\2([, t ) = (1 - C_GNO) N (14)
1]

In each of these equations, the first term, 1 — €N, is the probability that any kind of host is
encountered during period t; and the second term, either N,/No or N,/Ny, is the conditional
probability that a host of a particular type is encountered.

In order to describe the parasitoid dynamics, it helps to use the Heaviside step function, H(z)
defined by:
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1 iz=10
Hiz) =
0 otherwise (15)

Using this function, the dynamics of the parasitoid population are

Plt + 1) = PO [ (1 = e 0*) = Aol 7)) e + Ayl 17) e
+ halr: 1*) {H(t = *) e™ + H(i*=1) e®}] (16)

The three terms on the right-hand side of this equation correspond to the mutually exclusive
events of not encountering any host during period £, encountering an unparasitized host (in which
oviposition always occurs) and encountering a previously parasitized host {in which oviposition
oceurs if # = %),

By solving Equations 13-16, with initial conditions N(0) = Ny, N(0) = Npq and PO} = Py,
the normal individuals generate an environment for the mutant. This environment is character-
ized by the encounter rates Adt; (*). We can now extend the definition of lifetime fiiness given

in Equation 2 to:

Flt; *) = Maximum expected reproduction of the mutant parasitoid from
ovipositions between ¢ and T, when the normal parasitoids are
characterized by r* (17)

The maximum in Equation 17 is determined by the switching time ¢, that the mutant uscs when
the normal individuals are using the switching time (*. The dynamic programming equation for
F(t; #*) is virtually identical with Equation 3:

Fi, ™)y = (1 = &yl 1) — halty ")) e Fle + 15 17%)

+ wl ) {fy + e i+ 1))

+ halr: 1*) max{fs + e Flr + 1, 1*); e Flr + 1, 1)} (18)
with the same end condition that F(Ty*) = 0. In Equation 18, we assume thai
the mutant has negligible effect on the dynamics of the environment experienced by the normal
individuals.

As before, solution of Equation 18 generates a switching time 1, for the mutant. Since lifetime
fitness (expected lifetime reproduction) for the mutant is F(1; r*), the ESS condition is that F{1; r*)
is maximized when t,, determined in the solution of Equation 18, equals r*. Results (Table 1) are
easily obtained by numerical solution. From these results, we conclude the following:

Table 1. Comparison of switching behaviours in the OFT and ESS formulations. Parameters are f,=
L.fs=02,e*=09,e™=0795T=20

P NAD) NA0) I
OFT ESS

1 120 80 9 9
10 120 &0 9 8
20 120 80 9 7
70 120 &0 9 3
70 4200 2800 18 17
50 3000 2000 18 17
20 1200 800 18 17
10 600 400 17 17
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Figure 3. Fitness functions depending upon switching time in the ESS theory. In each panel, the fitness for
a mutant using each switching time is computed when the population uses the ESS switching time.
Parameters as in Table 1, except as follows. (a) Initial number of conspecifics = 20, of unparasitized hosts
= 120, of parasitized hosts = 80. (b) Initial number of conspecifics = 70, of unparasitized hosts = 4200,
of parasitized hosts = 2800. For (a) the switching time based on OFT is £,* = 9 while that based on ESS
theory is 1, = 7. For (b) the switching time based on OFT is #,* = 18 while that based on ESS theory is
t.* = 17. Note that in (a) the range of fitness values is about 1.38 —1.45, suggesting that selection for the
optimal value of switching time will be weak. On the other hand, the range in (b) is 2.75-3.8, suggesting
that there may be strong selection for switching values larger than 13 or 14.
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1. In general the switching time computed by OFT is larger than the switching time computed
by ESS theory. From the empirical perspective, we predict that individuals in groups will begin
superparasitizing sooner than solitary individuals.

2. Equality holds when the normal parasitoids don’t appreciably change the environment
experienced by the mutants; roughly when Ny > P(0). Note, however, that in the last four entries
in Table 1 the ratio Ny/P(0) is constant but differences in behaviour occur, so it is more than
strict inequality of numbers that determines when the OFT and ESS results agree or disagree.
3. When the two results differ, an individual who adopts the OFT result has lower lifetime fitness
than the individuals adopting the ESS result (Fig. 3). Note that the differences in fitness for
different values of switching time may not be large. This suggests that selection for ‘optimal
behaviour’ may be weak.

4. There are cases in which a pure ESS does not exist. Those are cases in which, given ¢*, the
fitness of the mutant was maximized at a switching value not equal to ¢*. In such a case, a mixed
ESS might be possible.

5. Finally, the procedure outlined here is a general procedure for dealing with conspecifics and
how they change the environment.

Quantitative genetics: evolution in function space

Recent work (Kirkpatrick, 1988; Kirkpatrick and Heckman, 1989) has laid the foundation for a
quantitative genetic theory for the kinds of behavioural problems discussed in this paper. Here,
I outline how such a theory could be used to study the evolution of the time at which individuals
in a population of parasitoids begin superparasitizing. Certain missing elements prevent as
complete a solution as for the case of OFT or ESS.

The theory involves the study of evolution in function spaces (Riesz and Sz.-Nagy, 1978;
Yoshida, 1980). Suppose that a parasitoid of a given genetic composition can be characterized
by a function P(¢f),¢ = 1,2, ... T — 1, which is the probability that a previously parasitized host
will be accepted for oviposition in period ¢ if it is encountered. The lifetime fitness of such a
parasitoid can be computed by the analogue of Equation 3. We let F{tl P(s) s = t,t + 1, ...
T — 1} denote the expected reproduction between ¢ and T, for a parasitoid that has behaviour
determined by acceptance function P(s). The analogue of Equation 3 is:

Fltt Ps)s=¢t,t+1,... T—-1} =
A=A -N)erF{t+ 1 P@s)s=t+1,...T-1}
+M{fi+em Ft+UPE)s=t+1,...T-1}}
MNP (H+e™F(@+1|Ps)s=t+1,...

T-1) :
+(1—-P@)e*rF@t+1)P(s)s=t+1,...
T - 1)] (19)
Lifetime fitness is then F{I| P(s)s = 1,2, ... T — 1}, computed by backward iteration using

Equation 19. For simplicity, I shall write F{I| P(s)} or F{I| P(t)} for F{1I P(s)s = 1,2, .. . T — 1}
Let Z denote the space of all possible acceptance functions. An example would be:

Z = All continuous functions P(f) with 0 < P(¢) < 1 (20)

Readers who are not familiar with functional analysis might want to simply consider P(t) to be
the family of all possible normal cumulative distribution functions, parametrized by the mean

and variance of the normal density.
Each function P(f) in the space Z has a fitness associated with it, determined by Equation 19.
That is, lifetime fitness is a functional which takes elements of the function space and returns a
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real number. We can study selection and evolution in this function space using the following
procedure:

1. Start with some ‘density’ of functions P(¢) in the function space Z. For each function compute
the fitness determined by Equation 19.

2. Use the fitnesses to renormalize the density of functions in Z. .

3. The density of functions in the next generation is determined by the genetic variance—
covariance, i.e. the heriditary mechanism.

In general, this procedure would be implemented as follows. We measure the density by a
function M(Z, P(¢)) dP defined so that:

M(Z, P t)) dP = fraction of trajectories in Z that are within dP
of the trajectory P(¢) (21)

The density of functions after selection is then proportional to M(Z, P(t))F{1l P(¢)}, since
F{11 P(t)} determines the selection on individuals with acceptance function P(f). The mean
function after selection P*,,(¢) = E{P(t)F{11 P(t)}}/E{F{1! P(t)}} is found by averaging in Z
using the density of functions M(Z, P(t)).

Reproduction occurs after selection. To characterize reproduction we must describe the
function P.(f) of the offspring when the parents are characterized by the functions P(¢) and
P,(t). For example, one choice might be:

Pore(2) = [P1(2) + P2(1))2 (22)

In general, we must describe an offspring function O(Pu(t); Pi(f), P(t)); this function contains
the genetic variance—covariance. Within this formalism, we are then able to describe the density
of trajectories M(Z’, P(t)) in the next generation. It is:

M(Z', Poii(t)) dPotc = [SO(Pose(t); Pi(t), Px(2)) M'(Z, Py(2))
M'(Z, Py(t)) dP1dPdPog (23)

Here M'(Z, P,(t)) is the density of trajectories in Z around P(¢) after selection. To generalize
Equation 23, we would have to specify the joint density of parental acceptance functions.
Kirkpatrick (1988), Kirkpatrick and Heckman (1989) and Kirkpatrick et al. (1990) have
extended the finite dimensional Gaussian theory of quantitative genetics to provide a procedure
that makes Equations 19 to 23 a practicable programme. Their procedure involves the following:

1. Assume that the function space is the space of Gaussian processes (Prohorov and Rozanov,
1969). These processes are characterized by a mean and a covariance function C. The covariance
matrix is assumed, as in the finite dimensional case, to be composed of genotypic G and
environmental B terms such that C = G + B

2. Specify the mean function P,,(¢)

3. The mean function after selection P*,(¢) is

P*.(t) = E[P(x) F{11 P()}VE {F{1I P'(1)}} (24)

where now the averages are taken with respect to the density of Gaussian functions in the
function space with mean P,,(¢) and-covariance function C and E denotes the average over this
function space. In order to compute P*,,(¢), we must know the fitness of functions P(f) and this
is where behavioural ecology interfaces with quantitative genetics since behavioural models
provide a means for determining the fitness associated with a given acceptance function. To
implement Equation 24, one could partition the set of possible functions (either by Monte Carlo
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simulation or by a regular search over functions), choose functions from this partition, and
average.

4. The selection differential is § = P*,(tf) — P,,(¢t). Note that in order to find the selection
differential, one needs to know P*,,(¢), which means that the fitness function is needed. As it
is usually developed, quantitative genetics treats fitness in an ad hoc manner (e.g. the assumption
of Gaussian fitness) that is external to the theory. That is, the theory is not self contained if one
wants to predict behaviours, rather than estimate selection, show that mean fitness increases or
predicts the evolution of a population mean, given a fitness function.

5. The change in the mean trajectory is then

AP, () = G C[P*, (1) —Pa(D)] (25)

This procedure can be effectively applied once the functions in Z are decomposed by an
eigenfunction expansion (Kirkpatrick and Heckman, 1989).

The objective of the eigenfunction expansion is to be able to write that the mean trajectory
in generation n is given by:

Puten) = 2 am) 40 26)

where the ¢, are eigenfunctions associated with the genetic variance—covariance matrix and
the coefficients a,(n) are to be determined. In general, they will satisfy nonlinear difference
equations. Once these difference equations for the a/(n) are determined, we can introduce a
measure of how closely the mean population trajectory approximates the optimal individual
behaviour. The mean square deviation between the two has theoretical justification and is:

D(n) = [ Py (tmydt + }(Pav(t,n) —1)2dt 7
0 t*

We are interested in the question of whether or not evolution can drive the mean function, say,
to match closely the solution predicted by OFT or ESS theory. More importantly, however, we
should be most interested in the differences in the fitness of the optimal individual behaviour
predicted by OFT or ESS theory and the fitness of the behaviour of the QG model. This is
especially important from an empirical perspective, since it is the fitness of behaviours and not
the actual behaviours themselves that is important for selection. The methods described here
allow us to compute the fitness of any superparasitism behaviour.

Discussion

The methods presented here can be generalized. For example, in many cases (Mangel, 1987)
egg complement and time are important in the analysis of the oviposition behaviour of an insect
that can attack many different hosts. The approach of OFT then leads to a decision matrix
{d;*(x,t)} describing the optimal number of eggs to lay on host type i in period ¢ when the egg
complement is x. The generalization of the method in this paper would be, for each host type,
a time t*(x), which is the ESS time and egg load at which a host of type i should be accepted
for oviposition. The rest of the analysis is similar to that in this paper. Similar extensions could
include information states and fecundity.

The procedures described above allow us to compare OFT, ESS and QG models for individual
behaviour in a manner similar to the study by Charlesworth (1990) for population properties
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Table 2. A comparison of the three methods used for the analysis of superparasitism

OFT ESS oG
Level of the model Individual Individual and Population
population
Criterion Absolute fitness Relative fitness Maximization of mean
maximization maximum population fitness
or no maximization
Selection level Phenotypic Phenotypic Phenotypic translated
to genetic
Dynamics/ No mechanism No mechanism Possible mechanism
maintenance of provided provided N depending on
genetic variation model
Genetic model Haploid Haploid Many loci
one locus one or two loci
Genetic covariance No No Yes
Constraints on Explicit Explicit Explicit and implicit
strategies
Time scale of Short term Short term Long term
predictions

(Table 2). The methods developed here also provide a natural way, via Equation 19, to
determine the fitness functional for evolution in function space. That is, one need no longer
assume that lifetime fitness is normally distributed. The assumption of normality simplifies the
analysis of evolution because the treatment of heredity is simplified, but sacrifices biology for
this simplification. Behavioural ecology allows us to compute fitnesses associated with behavioural
programmes. The interaction of behavioural ecology and quantitative genetics will strengthen
each.
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Appendix: The continuous time optimal foraging model

This appendix shows how to formulate and solve the continuous time version of the optimal
foraging model. This is done for completeness of the analysis as well as to show that dynamic
models of foraging can have analytical solutions; they may not, however, be easy.

To formulate this model, the encounter assumption is:

Pr{encounter host type i in the next dt}
= Ndt + o(dr) (A.1)
where o(df) denotes terms such that o(d¢)/dt — 0 as dt — 0. The essence of this assumption is
that the \; are no longer probabilities, but are now rates. Survival is characterized by

Pr{survive s time units into the future | searching} = e™®*
Pr{survive s time units into the future | ovipositing} = e~ (A.2)
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As in the previous optimal foraging model, let F(¢,T) denote the maximum expected lifetime
fitness accumulated through ovipositions between ¢ and T. If handling time is A, the analogue of
Equation 3 is:

F(t,T) = (1 — (\; + \p) df) e*¥ F(t+dt, T)
+ N\ dt {fy + e@+h) F(t + dt + h,T)}
+ N\, df max{e*¥ F(t + dt,T); f, + e ™@+h) F(t + dt + h,T)}
+ o(dr) (A.3)

Following the procedure of Taylor expanding in powers of dt, collecting terms according to d¢
and allowing dt — 0 lead to the differential-difference equation:

0= i%z;l. — (A + A + p) F@,T) + M{fi + e F(t+h,T)}
+ N\, max{F(t,T); f, + e F(t + h,T)} (A.4)

with end condition F(T,T) = 0.
Once again, there is a time #, such that when t > ,, it is optimal to accept host type 2. For
values of ¢t > ¢, then Equation A.4 becomes

Fi
0= ﬂ;_’tT_) — (At + N+ ) FO,T) + M{fi + e F(t++h,T)}
+ A\, {fz + e‘W" F(t + h,T)} (AS)

Sets =T — ¢, so that s measures the ‘time to go’ or the ‘time left in life’, and let G(s) = F(T — s,T).
Then

3~ — (N + 1) GE) + My + e Gls—h))

+ N\ { fo + e G(s—h)} (A.6)

The end condition on F(,T) corresponds to the initial condition G(0) = 0; in fact G(s) = 0 for
all s < 0. It is possible to solve Equation A.6 by the method of Laplace transforms (Bracewell,
1990). Let

G = _Te“"s G(s) ds (A.7)
0

be the Laplace transform of G(s). We use the following results

[ eods = 1o
0

f e—ws _(ﬁg‘ELds —_ wé
0 a5

f e G(s—h) ds = e“ G (A.8)
0
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Now multiply Equation A.6 by e*, integrate from 0 to « and use Equation A.8 to simplify

wG=—-\+N+p) G+ [1;} {Mfi + N\of2)

+ {N\; + Ny} eYwhewh G (A.9)

which can be solved for G

Glw + N\ + A+ 1 — (A + Ao} emheon) + [L](Nfi + Moo} (A.10)
This equation can be written succintly by letting

A=+ N+

B = {\; + N} ek

C={\Mfi + Nofa} (A.11)
so that

G{o + A— Bevh}y =+ C (A.12)
or

G = ¢ (A.13)

o(w + A — B eh)

Inverting this Laplace transform is easy if you know how to do it. Luckily, although I did not, my

colleague Davis Cope (Department of Mathematical Sciences, North Dakota State University)

did. All of the necessary formulas are found in Abramowitz and Stegun (1965); one just needs

to know how to look. According to formula 29.2.6 of Abramowitz and Stegun, if G is given by
- Equation A.13, then

o) fsg(s') ds’ (A.14)
c 0

for some function g(7). In this case, the Laplace transform of g(¢) is given by

. 1
8% "W+ A-—Beh (A.15)

If g(s) has Laplace transform Equation A.15, then g(s) must have the form
g(s) = e m(s) (A.16)

for some function m(s). This can be seen by noting that

J eve M mdt = [ e+ A m@)dt = (v + A) (A.17)
0 0

where ri(w) is the Laplace transform of m(s). Combining Equations A.15 to A.17, the Laplace
transform of m(s) is

Aw) = ——— (A.18)
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It is now helpful to set D = Be#” and to then rewrite Equation A.18 as

L ] (A.19)

1
m(w)_ ; 1_Qe—mh
- ()]

Now write the term in brackets in Equation A.19 as a power series, so that

% = _1_ m 2 no-nhw
o) = =| > (e ]
L n=
2] Dn '
— T eho (AZO)
n=0

Formula 29.3.63 in Abramowitz and Stegun (1965) shows that m(¢) is given by

[=¢]

miy= S L (= nhy u(e - nh) (A21)

n=0 n!

where u(z) is the step function defined so that u(z) = 1if z > 0 and u(z) = 122 if t = 0 and u(z)
= 0 if z < 0. Thus g(¢) is given by

g(s) = em(s) = e i D: (s = nh)" u(s — nh) (A.22)
n=0 N.

and from Equation A.14

G(s)=C j.g(s’)ds’ = je"“' i — (s' = nh)" u(s' — nh)ds’ (A.23)
0 0 n=0 M

Exchanging the order of integration and summation, changing the integration variables, and
integrating, shows that

Gi) = (Mfi + Mfs} 2 ——DT—C"A”hy(n + 1,5 — nh) (A.24)
n=0

where, D = {\; + \;} e A =\, + \, + pand y(r,u) is the incomplete gamma function
defined by

yru) = [etrd (A.25)
0

Properties of the incomplete gamma function, including methods for its computation, are given
by Abramowitz and Stegun (1965, p. 260). Equation A.24 thus represents a complete solution
for the lifetime fitness for times ¢ > , (i.e. for values of s < T — t;). However, the switching time
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has not been determined. Equation A4, howewver, shows that the swilching time can be

determined by finding the time s, satisfyving the condition
Gls,) = fo + ¢~ ™ Gis,—h)

from which i, = T — 5,. We thus have a complete solution of Equation A4 for times greater than

tp. The salution for times kess than £, is compuied in a similar fashion.

(A.26)



