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NEW METHODS FOR THE PROBLEM OF COLLECTIVE RUIN*

CRAIG STEVEN PETERST aAND MARC MANGEL?

Abstract. The problem of “collective ruin” arises in a number of different situations in operations
research and is particularly well suited as a model of risk business such as an insurance company. The
problem of collective ruin is formulated in terms of dynamical stochastic processes for a risk reserve Z(t).
The reserve grows according to a deterministic process B(Z(t)), the insurance premiums, and is decremented
according to a compound stochastic process, claims. The integral-differential-difference equation is derived
for the probability of survival to time ¢ and a number of different methods for the solution of the stationary
version of the equation, which corresponds to probability of surviving forever, are described. In particular,
asymptotic techniques are developed based on the WKB method and its extensions for the solution of a
broad class of risk problems. This greatly extends the classical work of Feller, Cramer, and others who were
only able to treat the case in which B(Z(t)) is constant.

Key words. asymptotic approximations, WKB method, turning point, collective ruin
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1. Introduction. The collective ruin problem concerns the state of a risk business
such as an insurance company. Seal [12] characterises the essential properties of a
risk business as a risk reserve, a premium income, and an outgo of claims. For example,
consider the following simple model for the operation of an insurance company. An
initial sum of capital is set aside. It is augmented by the collection of premiums from
policy holders and depleted by the payment of claims against the policies insured. The
sum of this initial deposit plus the total premiums collected minus the total of all
claims paid is called the risk reserve of an insurance company. Let Z*(¢) denote the
amount of the risk reserve at time t. The problem of collective ruin is then the
computation of the probability that Z*(¢)=0 for either a finite time 0=t=s or for
the infinite interval t=0. Although the problem has been worked on by luminaries
such as Cramer [3] and Feller [4], many questions remain concerning the solution of
the problem—as well as formulations of the various extensions. Citations to more
recent work can be found in papers of Asmussen [1], [2] and Siegmund [13]-[15].

Assume for simplicity that the premiums collected over a time interval of dt equal
B dt units of money. It is possible that 8 could depend on time and the current value
of the risk reserve. A fledgling company might increase its premiums over time starting
with low premiums to attract new customers and then gradually increase its rates to
market values. The premiums and hence 8 could depend upon the amount in the risk
reserve. If Z*(¢) falls slowly but steadily with time it might be an indication that the
risk reserve will need more income, i.e., a larger B, to survive over the long run.

The occurrence of a claim corresponds to the unforeseen (though not entirely
unexpected) loss to a policy holder. The uncertainty of a claim includes a random
occurrence time and a random size. To separate the random elements of the claim
process let C,={t;|a claim occurs at ¢, <t} and X, equal the size of a claim occurring
at t. We assume that the number of claim occurrence time in C,, referred to as the
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claims number process and denoted N,, is a Poisson process with parameter A. The
claim sizes X, will have a distribution function F(x) (i.e., P(X,=x) = F(x)).
If S, denotes the accumulated claims process, then
N

(1-1) S, = Z Xl,

i=1
is a compound Poisson process, (see Karlin and Taylor [6]). The risk reserve now can
be written

t
(1.2) Z#(t)=Z+J B(Z*(1)) dr—S8,
0
where Z*(0) = z. The dynamics are represented by the stochastic differential equation
(1.3) Z*(t+dt)-Z¥(t)=dZ*(t)=B(Z*(t)) dt —y d=
where

(1.4) dor = {1 with probability A dt+ o(dt)

0 with probability 1—A dt+ o(dt)

and y is a random variable with distribution function F(x). The interpretation of (1.3)
is that an incremental change in Z*(t) involves a certain income of 8 dt units of money
and with probability A dt a payout of a claim of y units of money where y is unknown
but is drawn from a distribution function F.

In this paper, our main interest will be the computation of the probability that
the risk reserve remains nonnegative. In the next section we discuss the deterministic
flow of the risk process, since this will guide our thinking about formulation and
solution of the full problems. In § 3, we formulate the problem for the probability of
survival. After scaling we are lead to partial differential integral equations for the
quantities of interest. We solve these equations in §§ 4 and 5 using WKB or ray methods
(Keller [5]) and generalized ray methods (Mangel and Ludwig [7], Mangel [8]),
respectively. In § 6, we conclude with a discussion and some directions for future
research.

2. Deterministic risk flows. In this section, we eludicate the average of the risk
reserve process. To do this, we average the dynamics of (1.3) with respect to the Poisson
process (claim occurrence times in the risk reserve analogy) and with respect to the
size of the independent random variables (the size of the claims in the risk reserve
analogy). We obtain the following dynamics for the average and thus deterministic
process, Z,,

(2.1) dZ,(t)=E{B(Z*(t))} dt — A dt
where
Z,(t)=E.,E{Z*(1)}
E,.{ydm}=yAdt
E,{yA dt} = pA dt.

Dividing (2.1) by dt and letting dt tend towards zero gives the following differential
equation describing the deterministic process:

dz,

(2.2) I EiE,{B(Z* (1))} — Ap.
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If B(Z*) is nonlinear then in general E; E,{B(Z*)}# B(E.,E,{Z*}), but if B(Z*) is
linear, as it will be in the two principal cases investigated here, (2.2) may be written

daz
(23) — =B(Z) A
t
For example, if B(Z*) is identically a constant 8 then (2.3) is simply
dz,
2.4 —=B—-Au.
(2.4) 2 Bk

Interpretations of B, A, u will be given later, but here they are assumed to be positive.
If B<Au then dZ,;/dt <0 and the deterministic process is drawn inexorably toward
zero, and therefore the probability of ultimate survival for the actual process Z*(t) is
intuitively zero. If B> Au then dZ,/dt>0, then the deterministic process is driven
away from the origin. Thus intuitively the possibility exists for Z*(¢) to remain
nonnegative forever. This is by no means certain since the actual process Z*(t) ends
if it ever falls below zero.

The situation for general B(z) can be illustrated by considering the specific situation
B(Z*)=pB+yZ*. In this case, (2.3) becomes

dz,
(2.5) d—t"=(ﬁ—w)+vzd.

If B> Au then (for y>0), then the deterministic system does not have a rest point.
If B < Ap, then differential equation (2.5) has a positive rest point, Z, ..., given by

(26) Zd,rest = (/\/“l' - ﬁ)'

|-

If B> Ap then the phase line of (2.5) is shown in Fig. 1(a). The phase line of the
deterministic process is referred to as the deterministic risk flow. Deterministic risk
flow as depicted in Fig. 1(a) shall be referred to as case A. For 8 < Au, the phase line
of (2.5) is shown in Fig. 1(b). Deterministic risk flow as depicted in Fig. 1(b) shall be
referred to as case B. To the right of this rest point we expect the real process to behave
much as it did in case A because the flow of the differential equation (2.6) is away
from the rest point, though a large enough claim could bring Z*(¢) below Z, ... To
the left of the rest point, matters are different, the principal difference being that
0<Z*(t)<Z, q is not an absorbing state for case B flows. To the left of Z, ., the
flow of the average process is toward the origin but now Z*(¢) can move against the
flow and even exceed Z, . by a series of nonevents (i.e., claims not occurring).

3. Survival and extinction of the risk process. To characterize survival of the risk
process, we define R(z, t) as the probability that the risk reserve remains nonnegative
through time ¢ That is, let

(3.1) R(z, t)=Pr{Z*(s)z0forall 0=s=1¢|Z*(0)=z}.
We can think of R(z, t) as the probability that the sum of independent random variables,

S,, does not exceed the barrier Z, where Z, satisfies

dz,
(3.2) d—Zt=ﬁ(Z(t)).

If B(Z(t))=p, a constant, then the solution to (3.2) is simply Z,=Bt+z where
Z,(0) = z. The barrier need not grow as a linear function of Z(t). For example, if
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(a)

(b)

0 Zd,rest Zq4

F1G. 1. The deterministic risk flows. We show the phase lines of interest for the averaged system dZ,/dt =
B(Z;)—Au. In case A (panel (a)), the deterministic flow is always towards the right, so that the stochastic
Sluctuations and deterministic flow are in opposing directions. In case B ( panel (b)), the deterministic flow has
an unstable rest point to the right of the origin. We denote this point by Z, .., . The deterministic flow is towards
increasing Z, if z> Z, ., and towards the origin otherwise.

B(Z(t))=B+yZ(t), where B and y are constants, (3.2) has the solution Z,(t)=
—B/y+(z+B/vy)e”.

Before deriving an equation for R(z, t), we scale Z*(t) by writing Z*(¢) = kZ(1t).
The rational is that in practice one might expect an insurance company to deal with
large sums of money in each transaction. A typical value of k might be 10,000. Let
e =1/k; then the risk reserve dynamics become

(3.3) dZ =e(B(Z(1)) dt—y dm).

As ¢ tends toward zero so does dZ, and thus in the limit neither the claims nor the
premiums have an appreciable effect on the risk reserve. This makes sense since as €
tends toward zero, k tends toward infinity and the size of the original risk reserve
Z*(t) becomes infinite. Hence we will construct a large Z solution.

R(z, t) satisfies the following master equation, obtained by applying the law of
total probability

(3.4) R(z,t)=E;{R(z+dZ, t —dt)}

where E,, is the expected value operator over all possible jumps dZ of Z. For
convenience we suppress the dependence of B on Z(t) and note that the stochastic
differential dZ has only two values, either B8 dt — ey or ¢ dt, making the computation
of E,, particularly simple. Thus (3.4) can be written

R(z,t)=(1—-Adt)R(z+eB dt, t—dt)
(3.5) z/e+Bdt
+A dtj R(z+eB dt—ey, t—dt) dF(y)+ o(dt).

0
Taylor expanding, for small dt with ¢ fixed, R(z+e¢eBdt, t—dt) to order dt and
simplifying yields

z/e+pBdt

(3.6) R,=—AR+eBdtR,+Adt J R(z+eBdt—ey, t—dt) dF(y)+o(dt).

0
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Dividing by dt and letting dt - 0 gives

z/e

3.7) R/(z,t)=—AR(z,t)+eBR,(z,t)+ A J R(z—ey, t) dF(y).

0

The presence of a derivative indicates that a solution of (3.7) will contain one arbitrary
constant. To determine this constant add the condition that

(3.8) lim R(z, t)=1.

z->00

Equation (3.8) indicates that for an infinite risk reserve the probability of survival is
one. In addition, we have the interval condition that R(z, t) =0 if z <0.
We define the probability of ultimate survival R(z) by

lim R(z, t)= R(z).

The integro-differential equation for R(z) is

z/e
(3.9) 0=—AR(z)+eB(z)R'(z)+A J R(z—¢ey) dF(y).
By analogy to (3.8), we have
(3.10) lim R(z)=1

Z->00

and the interval condition R(z) =0 if z <0. The value of R(0) must be determined as
part of the solution of (3.9).

In the next section we show that if 8(Z) is constant, (3.9) can be solved by means
of the Laplace transform. However, for general B(Z), the method of solution by
Laplace transform does not work. The literature on risk theory (e.g., Seal [12])
essentially treats only the constant coefficient problem, even though this is highly
unrealistic. Our contribution will be to provide a method that can be used to solve
(3.9) for arbitrary B(Z).

We now turn to the asymptotic solution of (3.9). The form of the solution depends
upon the flow of the deterministic system.

4. Asymptotic solution when the flow is always to the right (case A). We motivate
the form of the asymptotic solution by the study of special cases: i) solution by Laplace
transform and ii) a case in which we can convert the integral equation to an ordinary
differential equation.

4.1. Solution of the constant coefficient problem by Laplace transforms. One way
of solving (3.9) for constant 8 is by Laplace transforms. To do this, set n =z/¢; (3.9)
becomes

mn

(4.1) 0=—AR(en)+BR'(en)+A J' R(en —ey) dF(y).

0

Set r(n) = R(en); then (4.1) becomes

n

(4.2) =*Ar(n)+Br’(n)+AJ r(n—y) dF(y).

0

For an absolutely continuous claim distribution function F(x) the Laplace transform
of this equation is

(4.3) 0=—Ar"(s)+B[r"'(s)—r(0)]+Ar"(s)F"(s)
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where

r/\(s)=J’°O e_s-qr(n) dn, FA(S)=‘[°Oe_Sy dF(y) dy
0 o dy
(4.4)

on e~snr'(7’) d'I] = SI‘A(S) —r(O).

0

Solving for r"(s) yields

A —Br(0)
4.5 =
(4.5) r(s) A —AF"(s)—Bs
In order to invert r*(s) to recover r(n) we need to know both r(0) and F"(s). Consider
r(0) first. The final-value theorem in the theory of Laplace transforms [16] shows that

lim sr*(s) = lim r(n).
50 n->0c0
For this problem lim, . () =1, so that

) fim BT _
(4.6) lim 51" (s) =l sy — s

We use I’Hopital’s rule once to evaluate the limit in (4.6) and obtain
A
(4.7) r(0)=1 _E m

where w is the first moment of F(x).

The parameter A has the interpretation as the average number of claims per unit
time. Since u is the average cost of a claim, Au is the average payout per unit time;
B is the average income per unit time so that Au/B is the ratio of an insurance
company’s average payout per unit time to its average income per unit time. If Au/B
is greater than 1, then we intuitively expect that the insurance company will eventually
be ruined.

With #(0) known and F"(s) expressible in the form of an integral, (4.5) can be
inverted in the general case of an arbitrary claims distribution by expressing r(n) in
terms of (Spiegel [16]) Bromwich’s integral formula as

a+ioco
(4.8) r(n)=L,JV er"(s) ds n>0
27 Jo_ioco
where o is a real number chosen so that the complex integration is performed along
the line s = o lying to the right of all singularities such as poles, branch points, or
essential singularities.
For some distribution functions, F"(s) can be found explicitly by performing the
integration analytically. A robust class of distributions for which this is possible is the
gamma distribution, i.e.,

o0

e *x*' and I‘(V)=J t" e dt

0

v

o
I'(v)

Specific solutions will be given for »=1 and v =2.

dF(x) =
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For v=1 the gamma distribution reduces to an exponential distribution and
dF(x)=ae “ dx and F(x)=1—e . For the exponential distribution

(o4
F(s)=——o
(s) sta
(4.9)
1
==
o
so that
(4.10) r0)=1--2
. - Ba .
Then r"(s) given by (4.5) becomes
1 A 1
(4.11) r'(s)=———

s Bas+(a—A/B)

The inverse Laplace transform of r"(s) is
A —a-/B)
(4.12) r(n)=1—-—-ce ",
Ba
That (4.12) is the solution of (4.2) can be verified by direct substitution into (4.2).

Replacing 1 by z/ ¢, it is obvious from the form of (4.12) that as & - 0 there exists
a boundary layer near the origin. For v =2, we find that

A _ o
4.1 d (s)_(a+S)2
(4.13) )
p==
o
so that
(4.14) r(s) = —B(1-2A/Ba)(a”+2a,+57)

~ s[(2Aa — Ba?) + (A —2Ba)s — Bs>]

After a partial fraction decomposition and inverse Laplace transform, we obtain

r(n)=1 —2—)‘[; e!/2Bmem [cosh (V(A*/487) +(xa/B) 1)
(4.15)

(A/2B)+(a/2)
J(A*/4B*) + (ra/B)

sinh (V(1*/48%) + (Aa/B) n)]-

For large n, we obtain

A A [X Aa (A/2B)+(a/2)
wio rm=1—geew((sg-e) Vg5 ) o
Note that both (4.12) and (4.16) take the form

(4.17) r(m)~1—k(n)e ™

for appropriate choices of k(n) and ¢(n).
In choosing parameter values we are restricted by the condition that r(0)=
1-2A/Ba>0; see § 2. Therefore if a company models the claim size distribution with
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a gamma distribution » =2 it will necessarily require more income (i.e., larger 8) than
if it modeled its claim size distribution with an exponential distribution where the
requirement is r(0) =1—A/Ba > 0. This is to be expected since the mean of the claim
sizes doubles from 1/« to 2/a.

4.2. Conversion to an ordinary differential equation. If » in the gamma density is
an integer, another way of solving (3.9) is to convert it from an integral equation to
a differential equation (Knessl et al. [7]). When we do this, a differential equation of
order v+1 is obtained. The method will be illustrated for the exponential claim
distribution.

To employ this method, we must return to (4.1), which we multiply by e*” to obtain

n
(4.18) 0=—Ar(n) e*"+Br'(n) e " +A J r(p—y) e dy.
0

Now differentiate with respect to 7
0=—-Ar(n)ae® —Ar'(n) e*"+ Bar'(n) e“"+ Br'"(n) e*”

+—£i— [)\ J" rHw) e dw].

dn
A
(4.20) 0=r”(n)+<a—ﬁ> r'(n).

(4.19)

Collecting terms gives

There are two undetermined coefficients, so two conditions are needed to uniquely
specify the solution. One solution is r(n) -1 as n - c0. The other is obtained by setting
1 =0 in equation (4.5), yielding r'(0) = (A/B)r(0). Hence r(7n) can be written

(4.21) r(*q)=1—2;\;exp (—(a—%) 1;).

Note that this method can be used if 8 is nonconstant (but the distribution is a gamma
with integer parameter); the differential equation (4.20) will change but the method
is still appropriate.
For example, if we consider the case in which B8(z) = B + yz, then (4.19) is replaced
by
0=—Ar'(n) e " —Ar(n)a e +(B+ yen)r'(n) e*" + yer'(n) e*"

(4,22) +a(ﬂ+7€n)r'(n) ean_}_l\a?d_d; I:J‘n r(w) emu dw]

0

Differentiating and collecting terms yields

ye—A
(4.23) r”(n)+[a+ ]r’(n)zo
B+ yen
which has the general solution
n
(4.24) r(n)=r(0)p' J jepe’ (Bt ye¥Y 71 ds+r(0).
0

Using the same two conditions as before leads to the following system for #'(0) and r(0)

(s e}

1=r(0)g!~ /" J' e (B+yes) N7 ds+ r(0)

0

0=—Ar(0)+ Br'(0).
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Solving for r'(0) and r(0) yields the following solution for r(n)

AB~ M) [ o™ (B+ yes)M " ds+1
AB~M ) [% o™ (B+ yes) T ds+1°

(4.25) r(n)=

4.3. WKB solution for the probability of survival. We will now show how the
general problem (3.9)—for arbitrary B(z), but deterministic risk flow from the origin
(case A)—can be solved by WKB method if ¢ is small. To begin, since R(z)=0 for
z <0, we can extend the region of integration in (3.9) to infinity. This gives

o0

(4.26) 0=-AR(z)+eB(z)R'(z)+A J R(z—ey) dF(y).

0

Based on (4.12) and (4.16), we seek a solution of (4.26) in the form
(4.27) R(z)~1—k(z) e*V*

where k(z) =Y., ki(z)¢' and ¢(z) must be determined. Here we will explicitly derive
and solve the equations satisfied by ¢/(z) and k¢(z). The functions k;(z) for i=1 are
obtained in a similar fashion. Substituting (4.27) into (4.26) gives

0=—-A(1—kye” )+ e,B(z)(—kg—M> e’’e
€

(4.28) oo
+A J [1—ko(z—gy) e dF(y).

0

Now expand ky(z—e€y) in a Taylor series for small ¢ to obtain
k !
0=—-A(1—-ko e“’/‘)+eﬁ(z)<—kg—ﬂ> el
€

(4.29) w , e
+2A J. [1—(ko— eyky) e/ s /DY dF(y) + O(¢).

0

(z)/e

Setting the coefficient of e equal to zero gives the eikonal equation (Keller [5])

oo

(4.30) 0=A-B(2)y'(z)—A f e dF(y).

0

The moment generating function for the random variable Y is given by

(s e}

(4.31) \ M(«lf'(Z))EJ e dF(y)=E{e”™""}

0

so that the eikonal equation can be written as

B(z)

(4.32) Y Y'(z)=1-M(¥'(2)).

Thus, we solve a nonlinear first-order equation for y(z). Clearly ¢'(z) =0 is a solution
of this equation, which we reject. For the cases we consider, there is one positive
solution of (4.32); there may be negative solutions, which we also reject.
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Setting the coefficient of £ e/ in (4.29) equal to 0 gives the first transport equation:

0= k6(Z)[A jm ye ' dF(y)-(B+ YZ)]

0

(4.33) ) -

o e ar (|
which has solution
(4.34) ko(z) =k exp (J p(€) df)

where k is a constant and

Q)25 e dF ()
MY ye @ dF(y)—(B+yE)

(4.35) p(§)

To leading order, we have
(4.36) R(2)~1—ky(z) e e,

This solution involves two unknowns—« and the integration constant from (4.34). To
find these, we match using the method of matched asymptotic expansions (Nayfeh
[10]) to the inner solution obtained by solving (4.26) with z frozen around 0. We will
illustrate the matching procedure with two examples, both using B(z) =B + yz. First
consider the exponential claims distribution. We find that the eikonal function is

A
(4.37) Y(z)=—In(B+yz)—az+c
Y
where ¢ is a constant of integration. The solution to (4.33) is
—A
(4.38) ko(z) = K [Ji—f"——]
Btyz—A/a
Thus to leading order, the outer solution is then
B—\a ] < A z c)
4.39 R(z)=1-k|——— —1 +yz)—a—+—|.
(4.39) (2) [B+*yz—)\/a exp st(B yz) ast-
The inner solution of (4.26) is (from § 4.2)
A A
(4.40) r(n)=1———exp <<——a) n).
Ba B

The standard matching procedure shows that we should choose
A A
k=— and c=——In(B).
B ve

Hence the solution of (4.26) for this case is
A —A A

(4.41) R(z)zl——[-—é——/—a~] exp (——1n<1+—7—2)—a5).
Ba |LBtyz—A/a ve B €

Numerical comparison shows that there is not much difference between (4.41) and
(4.12) for y=.1.
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As a second example, choose B(z) = 8+ yz still, but let F(y) be a gamma density
with » =2. Then the eikonal equation becomes

oA _ a’ ]
(4.42) l/I(Z)—.ﬁ‘*"YZ [1 (a+t[/'(z))2

which has solution

1(* A AP dar
(4.43) ¢(2)=5J0 [B+’yw~2ai\/|:ﬁ+'yw] +B+'yw} do + (0).

In (4.43) the negative square root is rejected since it leads to a divergent integral in
(4.30). The outer solution is

1 {* A
R(z)=1-K exp (ZI [B+yw*2a
0

(4.44) \/ A P 4ar :
i [B+vw] +B+w]d‘"+L ”<§)d§>

where K =k e”“¢ and p(¢) is defined as before. When we perform the matching, we
find that

(4.45) k=2 [1+—)‘—/—2§~1Lﬂ/—2—].

_;3; VA*/4B*+ A /B

For the parameter values A =1, 8=2.01, a=1, y=.1, e =.1, we find that the
difference in survival probability for the models with and without interest can be highly
significant for the gamma distribution with v =2. For example, at z=1 the former is
.99 versus .6 in the latter, and at z=.25, the former is .7 versus .2 in the latter. This
shows the importance of developing methods that can be used to deal with the case
of nonconstant coefficients. We believe that this is especially true if we want to deal
with claim distributions more complicated than the exponential. Another way to think
of the difference between v =1 and v =2 is that for the exponential distribution the
WKB expansion reduces to the boundary layer expansion for small z Thus, there
really is no boundary layer when »=1. On the other hand, there is a significant
boundary layer when v =2.

For an arbitrary claims distribution and arbitrary B8(z) an explicit solution such
as (4.44) is not always possible, yet a numerical evaluation of the asymptotic solution
is quite feasible. In this general case, (4.32) is solved numerically for ¢(z) and this in
turn is used in the numerical solution of (4.33). The matching is performed in the same
fashion but only a numerical value of K is obtained. In the past, authors such as Seal
[12], Cramer [3], and Feller [5] have solved common cases such as an exponential
claims distribution and income proportional to time (i.e., 8(z) identically a constant).
The WKB method has provided a procedure for determining an asymptotic solution
to (3.9) for a much richer class of models for risk reserve dynamics.

5. Asymptotic solution for an interior rest point (case B). We now construct the
asymptotic solution of (3.9) when the deterministic dynamics have an interior rest
point. For this case, (4.33) has a singularity when the coefficient of ky(z) vanishes. We
call the value of z at which this coefficient vanishes a turning point and is denoted
Zur - The WKB solution breaks down (NayFeh [10]) near the turning point. To motivate
our asymptotic solution, we once again study the case of the exponential claims
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distribution with B(z)= B+ yz. From (4.38) we see that the solution to the transport
equation fails to exist near

(51) Ztum=l<i_B)'
Y \«x

By comparing (5.1) and (4.10) we see that if z,,,> 0 then r(0) <O0. If 7(0) <0 then
A/Ba>1 and e ““*#"=1 for all n=0 and thus r(n) as given in (4.12) is strictly
less than zero for all n = 0. We conclude that the solution given by (4.12) is meaningless.
For the exponential claims distribution, however, we can use the method of § 4.2 to
convert the integral equation to an ordinary differential equation. When this is done
for arbitrary B(z) we obtain

(5.2) eR"(z)+h(z)R'(z)=0
where

N A £ﬁ'(z)]
(3) h) [ B B

The differential equation (5.2) has the boundary condition of R(z)->1 as z— 0. To
construct the leading term in the asymptotic expansion of the solution, and to motivate
our subsequent work, we add the condition that R(0)=0. With these boundary
conditions the solution to (5.2) can be written as

z z' h
J exp (—JV his) ds) dz'
Zurm €

(5.4) R(z) =% s .
I exp(—'[ @ds)dz’

0

Ziurn

From (5.4), we have that R(0) is exactly 0. In general R(0) is asymptotically small,
i.e., there is always some chance of surviving, but R(0)>0 as £ 0.

Let 2., satisfy h(z..y) =0. Note that z,., # Z..» but to O(1) they are equal. Hence
if the dependence of h on ¢ is made explicit by writing h(z) = h(z, €), then we see
that h(Ziew, €) = h(Zuem, 0) =0. To determine the behavior of (5.4) near z,,.,, we use
Laplace’s method to evaluate these integrals. We find that

J‘z ( h,(Zturn’ 0) (zl_ Zturn)z) ’
exp| — dz

_ 2 €
5.5 R(z)~ .
(5:3) (2) J“’ (h'(zmm,O) (z'—zmmf) ,
exp| — dz

o 2 £

Inspection of (5.5) suggests that the independent and dependent inner variables (i.e.,
near the turning point) are

(56) | n=E 2 G 0)

Ve n >
5.7 =R T turn ) -
( ) r(n) ( h,(zturn,o)_'_z

Thus the inner solution, #(7), may be written

(5.8) r(n)~\/——;—_7—T Jn e P (g,

—0

The scaling in (5.6) indicates that the inner region is of width O(&'/?).
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We construct outer solutions to the right R,(z) and to the left R,(z) of the turning
point. These are given by

A
;_B A az ¢
(5.9) R(z)=1-K,|—— exp(—ln(ﬁ+yz)——+—’)
ﬂ—i+vz 7 °e
03
A
;_ﬁ A az ¢
(5.10) R(z)=K, | —2— eXp(—ln(B-lHyz)———-—f——l)_
A ye € €
L BT

One way to obtain a uniformly valid approximation is to match approximation (5.8)
to WKB approximations (5.9) and (5.10) which determines the constants K,, ¢, and
K,, c., respectively. Performing the matching yields

A
cC,=¢=—— In (B + yz(urn) + QAZiyrn
Y

1

Kl = Kr =_.

2
This procedure, however, will not work for arbitrary claims distribution, since
conversion of the integro-differential equation to an ordinary differential equation is
not possible in general. The value of the canonical problem has been to suggest that
the solution R(z) to (4.26) is approximately given by (5.8) for z near z,.,. That is,

based on (5.8) we assume (Mangel and Ludwig [8])

(5.11) R(z)= noz; e"g,(2)E (%) + s"HI/Z)h,,(z)E’(%)

where {g,(z)} and {h,(z)} and ¢(z) are to be determined and E(z) is the error function
(5.12) E(z)=Jz e 0P ds

(5.13) E"(z)+zE'(z)=0.

Mangel and Ludwig [8] construct an asymptotic solution to the backward Kolmogorov
equation for processes whose deterministic dynamics have a phase line identical, up
to translation, to the phase line of the deterministic dynamics resulting in a turning point.

Inserting ansatz (5.11) into (4.26) the leading order terms are, after some computa-
tions,

—A[Ego+VE E'hol+ B[Ve ' E'go+ eEgly+' &> E'hly—/e ' WE'h,]
(5.14) +A J'°° [E Ve E’i[l —ey""“’]+0(\/?)j|[go—syg6+ 0(e9)]

+Ve [E'+ET1—e""]+ O0(e)][ho— eyhi+ O(e*)] dF(y) =0.

Collecting terms that are O(e'/?) and equating them to zero gives

(5.15) (go— who)[ﬂw'—A J %U -] dF(y)] =0.

0
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Thus the eikonal equation for ¢ is

e}

(5.16) B(z)Y'(2)¢(z) — A J [1-e"PYDTdF(y) =0.

0

Collecting terms that are O(e) and equating them to zero yields

(5.17) [B(z) = Aunlgo(z) =0

which is analogous to the transport equation. To leading order in & the approximation
(5.11) becomes

(W(2)/Ve) ,
(5.18) R(z)~ go(2) J e U7 (g

where (z) is determined by (5.16) and gy(z) is determined by (5.17).
To solve (5.16) use the transformation (Mangel and Ludwig [8])

(5.19) b=

to transform (5.16) into
(5.20) B(z2)¢'(z)—A J (1—e") dF(y) =0.
0

Once equation (5.20) is solved for ¢, transformation (5.19) implies that
(5.21) W =+v2.

Both square roots in (5.21) are needed to describe R(z) over the real line. The function
s must pass continuously through zero as z passes through z,,, since R(z) behaves
continuously. To accomplish this, take advantage of the arbitrary constant in the
solution of ¢ and choose it so that ¢(z,.,) =0. Note that —E(z) = E(—z) and that

127 z=zym

satisfies the transport equation (5.17), since by definition B(zym)—An =0. Thus the
approximation (5.18), with (z) given by (5.21), is our leading order uniformly valid
asymptotic approximation. The value of the constant for gy(z) is chosen so that R(z) > 1
as z-> 00, Far away from the turning point, an expansion of the error function shows
that our uniform solution reduces to the solutions in (5.9) and (5.10).

For the case of an exponential distribution, we find that

Btyz
B + yzlurn

6. Discussion and conclusions. We have shown in § 4 how to solve equation (3.9),
at least asymptotically, for arbitrary claims distribution and arbitrary 8(Z) for all Z
for which E,E,,{B(Z)}—Awn=0. We have also treated the case of linear 8(Z) and
arbitrary claims distribution and solved asymptotically for R(z) for all possible deter-
ministic risk flows. For the case in which E,E; {B(Z)}—Au <0, we introduced a
second asymptotic solution. If the deterministic dynamics have a single rest point for
z>0, then the method developed in § 5.3 will provide a solution. If the deterministic
dynamics have multiple rest points, then the solution using the error function will not
be uniformly valid. Either we must patch together a number of error function solutions,
or use a more complicated ansatz (see Mangel [9] for a discussion showing how to
use the Airy and Pearcey functions).

(5.23) qS(z):%ln [ :l —a(z—=2zZym)-
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In solving for the probability of survival for nonconstant premium dynamics, new
collective ruin problems can be posed. For example, an optimal control problem can
be formulated by looking to drive R(z) to a target state by controlling 8(z). A solution
of such a control problem could be used to determine an optimum premium policy
or to compare different premium policies.

Many real insurance processes are characterized by seasonal or multiple claim
intensities, so that A is a vector. Our methods are easily adapted to that situation
(Peters [11]). However, the problem of computing the time dependent probability of
survival remains open.
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