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SEARCH FOR A RANDOMLY MOVING OBJECT*

MARC MANGEL*Y

Abstract. After a brief discussion of the operational origin of search problems, the mathematical problem
is formulated. The mathematical quantity of interest is the joint density for location of the object sought and
unsuccessful search. When the object moves according to a diffusion process, this joint density satisfies a
parabolic equation. After the introduction of scaled variables, the search equation can be approximately
solved by the “‘ray method”’. The interpretation of the terms in the approximate solution is discussed. The case
of constant diffusion and drift parameters and piecewise linear searching paths arises often in operational
situations. This case is considered in detail.

1. Introduction. There are many operational instances in which a searcher seeks a
moving object. For example, the tuna purse seine fishing fleet spends a considerable
amount of time at sea searching for tuna schools [1]. The coast guards of maritime
nations hold thousands of open ocean search and search and rescue missions each year.
The search for naval vessels received considerable attention during World War II [2],
and is still of interest. These operational problems are loosely characterized as follows.
The object sought (called the target from now on) moves. The location of the target at
the beginning of the search is not known precisely, but is described by a probability
distribution. The search is characterized by a function that gives the probability of
detecting the target, given the position of searcher and target. The mathematical
aspects which are important to search planners can be divided into descriptive and
optimal categories. In the descriptive problems, one wishes to characterize the joint
density for target location and unsuccessful search. In the optimal problems, one wishes
to choose a search plan that extremizes a given functional, e.g., the probability of
detection [3].

Search planners are often constrained by computational limitations. Hand-held
calculators and minicomputers are the most that an analyst can expect. Simplicity and
speed of calculation are important factors when one is trying to implement a technique.

The traditional approach to search problems has been to convert from the search
path to “search effort” [2], [3]. Search effort is typically measured in effective area
searched or in time spent searching (in [2] and [3] the use of search effort is discussed in
detail). The use of search effort may be warranted if the time available for the search is
large, or if there are many searchers involved. In other cases, the use of search effort
may not be appropriate.

In the last few years, a good deal of work has been done deriving necessary or
necessary and sufficient conditions for optimal search tracks or optimal effort allo-
cations (see, for example, [3], [4], [16], [17], [19]). Most of these results appeared as
general, and sometimes very abstract, theorems. The more concrete problem of
calculating the joint density for target location and unsuccessful search is still outstand-
ing; this problem is treated in the present paper.

In this paper, it is assumed that the target moves as a d1ffus1on process. For
simplicity, the target-is assumed to move in the plane and the searcher in space. The
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descriptive search problem is to find the joint density for target location and unsuccess-
ful search. Let (X (¢), Y (#)) be the position of the target at time ¢ and let S(¢) = (S, (?),
Sy(#), S.(2)) be the position of the searcher at time ¢. The joint density of interest is
denoted by f(x, y, t, S), and is defined by

fx,y,t,8)dxdy =Prob{x=X({t)=x+dx,y=Y(t) =y +dy,

(1) search along S(7), 0= =¢, was not successful}.

Once f(x,y,t S) is known, the conditional density, given unsuccessful search,
p(x,y, tS), is

__ fxy59)
@) p(x,y,tS)= .Uof(x’ y,t,8)dxdy’

In (2), D is the domain in which the target moves. The probability of detection by time ¢,
P, is

(3) P, = I—JIDf(x, y, t,S) dx dy.

In this paper, the search for a moving target by a single searcher is studied. It is shown
that the density f(x, y, ¢, §) can be approximately calculated by asymptotically solving
the equation that the density satisfies.

In § 2, the search equation for f(x, y, ¢, S) is given and interpreted. This equation
was derived by Hellman [5]. The components of the equation involve a covariance
matrix representing diffusion, a drift vector and a detection function. It is possible that
all coefficients depend on space and time. In the simplest case, the drift and covariance
are constant, but the detection function is still a nonlinear function of space and time. In
§ 3, deterministic target motion is considered. In this case, the covariance matrix is
identically zero. The search equation reduces to a first order equation, which is solved
by the method of characteristics. The classical result [2] for a stationary target is
obtained by specialization. In § 4 the search equation is put into nondimensional form.
Since the use of nondimensional equations is not common in operations research, the
scaling is discussed in detail. In § 5, the scaled search equation is solved approximately
by using the “ray method” of J. B. Keller and co-workers [10]-[12]. The use of the ray
method in search problems is new.

The ray solution shows clearly how the operational components of motion and
search interact. The density f(x, y, ¢, S) is asymptotically separable, in that it is a product
of terms representing an initial value, motion and search. The case of constant drift
vector and diffusion matrix and a piecewise linear searching path is of sufficient
operational importance to deserve a separate discussion. In § 6, this case is considered.

It should be admitted from the outset that any ‘“‘theory of search” is a simple
abstraction of a complex operational system. A useful theory should show the interplay
of the simple auxiliary models and the complex operational systems. Neither abstract
mathematics nor purely numerical approaches provide information on this level. The
approximate techniques introduced here do provide information on this level.
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2. Search equation, target motion model, and detection model. Since the target
moves as a diffusion process, f(x, y, ¢, S) satisfies the following search equation [5]:

2 2 2
. =3[ty 0425 @i v, 00+ ante 0
_%(bl(x’ y, t)f)_%(b2(x’ Y, t)f)_(/’(x’ y, I3 S)f’
(5) f(x7 Yy, O? S)=p0(x’ Y)-

Equations (4) and (5) contain information about the target motion model and detection
model. The function po(x, y) is the initial density for the location of the target:

(6) po(x, y)dxdy =Prob{x =X (0)=x+dx,y=Y(0) =y +dy}.

The components of the right-hand side of (4) describe target motion and search. The
matrix (a;(x, y, t)) is a measure of the stochastic or diffusive part of the target motion. It
will be called the covariance matrix [6]. In many cases of practical interest, the
covariance matrix is a constant matrix. In that case, it can be considered diagonal. In
other cases, e.g., if the target is a lifeboat drifting in a rapid current, the covariance may
depend upon position and time. It is possible that (a;;(x, t)) is so small that it can be set
equal to zero. The vector (by(x, y, t), ba(x, y, t)) represents the deterministic or mean
component of the target motion. It will be called the drift vector. There are many
operational situations where the drift vector is constant. When both the drift and
covariance are constant, the target motion will be called homogeneous. The case of
homogeneous target motion is explicitly treated in § 6. There are operational situations
in which the drift vector is not constant. For example, in the Straits of Florida off the
eastern U.S. coast, the drift vector strongly depends on position. Another possibility is
that the drift depends on a random variable. For example, in the fleeing datum problem
([2, p. 16], also see [7])

bi(x,y,t)=c cos a, ba(x, y, t)=c sin a.

Here, the target moves with known speed ¢ but unknown bearing «; e.g., a uniform
distribution for « may be assumed.
The detection function ¢(x, y, ¢, S) is defined so that

(7) ¢(x,y,t S)At =Prob {detection in (¢, t + At)| X (t) = x, Y (¢) =y, S(t) =s}+o(At).

The exact form of the detection function depends on the physical detection apparatus.
For airborne visual detection, a proposed model is [2]

kS, ()
[S.(6)*+ (S, (8) — x)*+ (8, (1) — y)*T'*

) ¥(x, y,48)=

The parameter k in (8) depends upon the particular target type and environmental
conditions. The U.S. Coast Guard has tables that can be used to find k as a function of
prevailing environmental conditions. For surface search, a proposed model is [4]

9) Y(x, y, 4, 8) =k exp [-B{(x — $:(1))*+(y - S, (1)},
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where k and B are parameters that depend upon the environmental conditions. A
possible model for two-way radar search is

1 1 b
(10) wix, y, b S)=—§1n(1—5erfc(a—17)),
where
(11) R=[S.(t)"+(S.()—x)*+ (S, —y)*]"?

is the target to radar distance, S, is the scan time of the radar, erfc (u) is the
complementary error function and a, b, are parameters characterizing the radar.
Equation (10) is derived by applying the statistical theory of detection to the radar
equation (see [8], [8a]).

In actual airborne search operations, the path that the searcher uses is approxi-
mately piecewise linear. Two typical search patterns are illustrated in Fig. 1. When the
searcher uses a piecewise linear path, the search will be called linear search. Linear
search is considered in more detail in § 6.

$(0)
S(0)

F1G. 1. Two types of searching paths. (a) A path in which the end point is not fixed. (b) A path in which the
end point is fixed.

3. Deterministic target motion. When the covariance matrix is zero, the target
moves deterministically. The search equation becomes

of 9 )
1 —=—— - -
(12) - o (by(x, y,1)f) 3y (b2(x, y, ) ) = (x, y, 1, S)f,
(13) f(x,y,0,8) =po(x, y).
Performing the differentiation in (12) gives
of ., of , of
14 =+ b —+by—=— .
( ) ot blax b2ay (¢(x, Y, t, S)+V b)f’
where
V . b =a_é.1_+%'
dx dy -

Equation (14) can be solved by the method of characteristics [9]. Along the solution
curves of

dx
Et-=b1(x7 y, t)’ x(0)=x09

7}
d_i)=b2(x7 y, t)’ Y(O)=Y0,

(15)
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(14) becomes

» b 3,494V,

f(0) = po(xo, yo).

Denote the solutions of (15) by (x(# xo, yo)y (% X0, y0)). In the (x, y)-plane these
solutions are a curve or ray that emanates from the point (xo, yo). The solution of (16) is
then

f(t’ x(ta Xo, y0)9 Y(t, X0, yO))

17) — 5 (X0, o) €Xp [_'[: (V- b) dT] exp [—J;: Y(x(7), y(7), 7, 8(7)) d’T:I‘.

In (17) x(7) and y(7) are shorthand for x(7, xo, yo) and y(7, xo, yo).
Two special cases of (17) are of interest. If the deterministic flow is divergence free,
so that V - b vanishes, (17) becomes

(18) £(t, x(t, X0, yo), ¥(t, X0, Yo)) = polxos yo) exp HO W(x(r), y(), 7, S()) dr].

If the target does not move, so that b =0, then x(¢) = xo, y(¢) = yo and
t
19) Ft,%,3)= pol, y) exp [ =[x, 3,7, 5() d]
0

Equation (19) was derived in [2] by a different method.

Note that (17) is “‘separable” in the sense that the density is a product of a term
representing an initial value, a term representing target motion and a term representing
search.

4. Scaled search equation. In the next section, it will be shown that the search
equation (4) can also be solved in terms of rays and the associated ordinary differential
equations. This ray method has been successfully used in a variety of other problems
[10], [11], [12]. The approximate solution begins by introducing a small parameter &,
obtained by scaling the dimensional equation (4). Let T,, L. and a. be characteristic
values for time,.length and covariance matrix. For instance, T, could-be the time
available for the search, L? could be the variance of the initial density (or L. some other
reference length), and a, could be the maximum value of ||a].

Let dimensionless variables , £, §, b, 4, ¥ and & be defined by

t=iT, x=%L, y=7JL,

bi(x, y, ) =bi(%, 9, L/ T.,

ai;i(x, y, t) = d;(%, $, Nac,

e=aT./L:,  ¢(xy,48)=¢@P,1,S/L)/T.

(20)

It is assumed that 0 <e « 1. This will be true for many operational problems. It is also
assumed that b; and ¢ are order 1, rather than order &. The technique given below can
also work when b; and ¢ are order &.
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In terms of the scaled variables, the search equation (4) becomes
9 a2 2
T2 2 anp+a-t 5@+ Az(azzf)]
(21)

a A a A A
——(b1f)——=(b2) —yf.
af( 1f) aﬁ( 2f)—Yf.
It is assumed that the initial density takes the form'

(22) f(£,9,0,8)=exp (-®(%, )/¢) kgo £“mi (%, 9).

The scaling chosen here appears to be a natural one. If £ =0, then (21) reduces to the
search equation in the case of deterministic target motion. Also, ¢ is the ratio of the
diffusion coefficient of the target motion to the diffusion coefficient constructed from
the characteristic parameters.

5. Ray solution of the search equation. The equations of interest are (21) and (22).
They will be solved by the ray method; see [10], [11], [12]. Since the details of the
method are presented in the references, some details may be eliminated here. In the
sequel, the hats will be dropped.

A solution of equation (21) is sought in the form

(23) fey,1,S)=exp (= (x,y,0)/e) L e“gi(x, v, 1, 8).
In this equation ¢(x, y, t) and the functions g (x, y, ¢, §) are to be determined. The

ansatz (23) will asymptotically, for small ¢, satisfy the search equation if ¢ (x, y, ¢) and
go(x, y, t, S) satisfy the following equations [10], [11]:

t
ai’+b1(x 2 t)£+bz(x ¥ t)a¢ ult 1) )<a¢)
ot 2 ax
24 9B\ (3 (x, y, 1) (36 *
;9220 ), D) (00
Tan, y,t)( )(6y) 2 (ay) 0,
ago (bl+a116¢+a126¢)ag0+(b2+a126¢+a226¢)8g0
ot dox ay/ o dx dy/ dy
23 ¢ ¢ ¢
- ai 9 & L9 )
= (¢(x,y,tS)+V b+ ey o+ TRV Va

In (25), V¢ - Va is shorthand notation for

dai %+3a12 %_}_3012 @_*_3022 Ll
ax d9x dy ox 9x 9y 9y 9y

Equation (24) is solved by the method of characteristics. Set p = d¢/dx, q = dp/dy,
and define H by

(26) H =b1(x, y, t)p +ba(x, y, t)q +%a11(x, Y, t)p2 +a(x, y, pq +3a,,(x, ¥, t)qz.

! Any initial density can formally be put into the form (22) by setting ® = —¢ In pg, ho=1 and h; =0 for
k = 1. There are instances in which this procedure is not effective. In those cases, it is best to work with the
adjoint equation to (21). Details are given in [13].
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The characteristic equations are

% _ %I, x(0) = xo,
% _ %I , y(0)=yo,

@7) %*%{’ p(0)=g o
fa_ o1 =3

do_ds, dx, dy

dt

ot pdt th,' ¢ (0) = D(xo, yo).

The last equation can be written as

dé _,
(28) =

_—-=§[a11(x1 Yy, t)p2+2a12(x1 Yy, t)Pq +a22(x9 Y, t)qz]'

333

The solution of (27) gives a ray, (x(¢, xo, Yo), y (#, X0, y0)), in the plane. When this method
is numerically implemented, a point (x, y) at time ¢ is picked. The rays are inverted to
find xo(¢, x, y) and yo(#, x, y). This is the starting point of a ray that goes through (x, y) at
time . Equation (28) is then integrated from (xo(¢ x, ¥), yo(4, %, y)). In this way,
d(x, y,t)=d(xo(t, x, ¥), yol(t, x, y)) is constructed.
Along the rays generated by (27), (25) becomes

g0 _ —(¢(x, y, 8 8)+T(x, y, 1))go,

(29) dt

80(0) = ho(x0, yo)-

In this equation
(30)

The solution of (29),

'x,y,t)=V-

9 9 9
b +%a11-4422+a12——£—+%a224g+v¢ -Va.
ox 0x dy ay

gO(x’ Y, t S) = go(xO(X, Y, t, S), YO(X, Y, f, S)),

is obtained by a simple integration. Combining this result and (28) gives

f(x, Y, t, s) = ho(X()(x, Y, t), YO(X, Y, t))

- exp

(31)
- exp

- exp

-

_l‘b(xo(x, Y, t), Yo(x, Y, t))]
£

’- t
_j F(X(T, Xo, yO)’ Y(T, Xo, }’0), T) dT]
L 0

T—jo (x(, X0, 0), (7, Xo, ¥o), 7, S(r)) df] +0(e).

The asymptotic form of f(x, y, ¢, S) is thus a product of a term representing the initial
value, two terms representing target motion, and a term representing search.
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The ray procedure described here is the simplest one; it does not work in all
instances (see, e.g., [10] or [12]). Some limitations will now be discussed.

If the domain D is bounded, then (31) must be modified to satisfy the boundary
conditions. Such modifications are discussed in [10] for the general case and in [14] for
the application to search problems. In addition, when there are boundaries present,
there may be rays which are reflected from the boundaries. In general, the probability
density at a given point is obtained by summing over all the rays which reach that point.

If the rays intersect or have an envelope (analogous to a caustic [15]), the simple
procedure given here may break down at some points. In those cases, a more
complicated ray ansatz is needed. The technique given here or some small modification,
however, will be applicable to many problems of operational interest.

6. Homogeneous target motion and linear search. When the drift vector and
covariance matrix do not depend on position, the motion is spatially homogeneous.
When they are constant, the motion is homogeneous. The operational problem of
homogeneous target motion and linear search is so common that it warrants a separate
discussion. In addition, the ray equations simplify enough that they can be integrated by
hand. First assume that the drift is spatially homogeneous, b = (b1(¢), b2(¢)), and that the
covariance is constant, a1 = constant, a1» = d2; =0, a»; = constant. The ray equations
(27) become

dx

E=b1(t)+a11p, x(0)=x0,
d
:5 = by(t) +axgq, y(0) = yo,
dp _ _ 92’

(32) dt 0, p(0)= 0% | xorye)
dq od
— =0, 0)y=— s
dt 1 Y | (x0,y0)
d
7‘? —Haup+ang®,  $(0)=0(xo yo).

Denote &, =od/ox, ?ID,, =9d/ay. The solution of the ray equations is

X(f) =X+ J bl(T) dr+ a11¢’x (XO, )’o)t,
0

(33) y(B)=yo+ j bo(r) dr +az®, (xo, Yol
, 0

t
& (t) = D(xo, yo) +E[411¢’x (0, )’0)2 + a2, (xo, Yo)z]-

In order to find xo(x, y, t) and yo(x, y, t) one needs to solve the simultaneous equations

t

(34) Xo+ a1, (xo, yo) = x(r)—j bi(r) dr,

0

(35) Yo+ @D, (X0, yo)t = y(t)—L by(r) dr.
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Let us assume that the solution (xo(x, y, t), yo(x, ¥, t)) is known. Then,

b (x, y, 1) = DP(xo(x, y, 1), yo(x, y, 1))

(36) N % [(x — o b1(7) d7—x0(x, y, ))* R fo b2(7) d7 — yo(x, v, t))2]'

ait at

The function f(x, y, ¢, ) has a Gaussian component. That this is true can be seen by
going back to (21), setting ¢ =0, Fourier transforming and calculating the Green’s
function. In order to calculate go(x, y, t, S) two integrals are needed. The first integral
involves I'(x, y, ¢). In this case

. 2 2
(37) I'(x,y, t)=—7+—‘——2-

In this case, it is easy to explicitly find I'(x, y, ¢) by using the chain rule. An alternate
procedure, described in [10] and [11], uses the Jacobian of the transformation from ray
to physical space to simplify the equation for go(x, y, £, S).

As a particularly simple example, let us assume that ®(x, y) has the special form

(38) ®(x, y) ——x +§y
Equation (37) simplifies to

B
(39) T(x,y,t)= S 1var a1

The second integral needed to determine go(x,y,# S) is the integral of the
detection function. Partition the interval (0, ¢) into pieces (t=0, t1), (¢1,%2), ",
(t:-1, t..=t), and assume that the search path is piecewise linear (which was called linear
search earlier). The position of the searcher in the interval (-1, ¢;) is assumed to be

Sx (t) = Sx (tj—l) + vxj(t - tj—l)y
(40) Sy (£) =8, (t;-1) + vy (t — t;-1),
S (1) =S, (tj-1) + v (t—ti-1).

In this equation, S(#,) is the position of the searcher at time #,_; and (vy, vy, v2;) is the
velocity of the searcher. It is assumed to be constant for t;,_; =t =¢;
The integral of the detection function becomes

(41) j' U(x(7), y(r), 7, S()) dr = j b(x(r), y(r), 7, S(r)) dr.

j=1J¢_

To show how this formula can be used, assume that the searcher is trying to visually
detect the target. Then ¢/ (x, y, ¢, S) is given by (8). Also assume that the target motion is
homogeneous, so that b; and b, are constant. Finally, assume that the altitude of the
searcher is constant, so that S, (¢) = h, say. This last assumption does not cause any loss
of generality, but it does help compact the results that follow. With these assumptions,
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the integral of the detection function is

t

Jiwﬂﬂw@xnﬂdr

- KRR +48, (1) + 07— 1) — 0~ Ba(r — 1)
(42) o —a119,(xo, yo)(7— j—1)}2
+{8, (ti-1) + 0y (T = ti-1) = yo—ba(7T — tj-1)
—an®, (xo, yo)(r—i-)Y’T > dr.
Define A;, B, and C; by
A; = B2 +[S.(ti-1) — xo(x, y, ) +[Sy(§-1) = yo(x, y, )T,
B; =2[S,(t;—-1) — yo(x, y, t)][vy; — b2 — a2:®y (x0, yo)]
+2[8.(ti-1) — xo(x, ¥, £;))[vx; — b1— a11Px(x0, Yo)],
C; = (03— b1— a1 ®x (x0, Y0))* + (vy; — b2 — a22®y (%0, y0))*.

(43)

The integral of the detection function becomes

t

[ va@ v, ns@ar

_ J"f khdr
1 [A, + Bi(T - tj_l) + Cj(T - tj_1)2]3/2

(44, 45)

2(2Q(tj—tj_1)+Bj) _ 2B, ]
Q;(A;+B(t;— i)+ Ci(t;—-0D)"* QAT

In (45), Q; =4A,C;— B;. It is easy to show that Q; > 0 as long as the searcher is moving.
The functions A;, B; and C; depend on xo(x, ¥, £), yo(%, ¥, t;). Thus, (34) and (35) need to
be solved for the evaluation of the integral of the detection function. These results can
be combined with (31) to give

f(x, y,t, S)=ho(x0(x, y, 1), yo(x, y, t))

= kh[

! 1 (x—byt—x0(x, y,0)°
'e"P[‘;‘D(Xo(x, ¥, 1), yo(x, ¥, L E=h o(x, 3, 1))

2¢ ant
_ _ 2
(46) __1_ (y b2t YO(X, Y, t)) ]
2¢e apt
exp|-[ TG, y), 7) ]
0
. & 22G(ti—4-1)+B)) __2B; ]
exp[ igl kh(oi(Ai+Bi(ti_ti—1)+Ci(ti_ti—1)2)l/2 QiA}/z) .

Equation (46) is a general result that holds for homogeneous target motion and linear
search with visual detection. In order to use (46), the initial density must be specified.
Then ho(xo, yo) and ®(xo, yo) are known. Next, one evaluates (xo(x, y, t), yo(x, y, t)) by
using (34) and (35). Then ¢ (x, y, t) is calculated and integrated. Next, go(x, y, t, S) is
evaluated. To do this, two pieces are needed. The first is I'(x, y, ¢) and the second is
knowledge of A;, B;, and C;. When these are known, gq(x, y, ¢, §) can be found.
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7. Discussion. The technique introduced here for the solution of the search
equation can be easily implemented numerically, since only ordinary differential
equations are involved. In fact, it is possible to calculate the density f(x, y, £ S), in a
problem of operational interest, using an HP-67 programmable calculator. When the
target motion is homogeneous and the search is linear, it is possible to obtain exact
solutions of the ray equations.

In many cases the drift vector is not known with complete certainty, but has a
certain distribution. Such motion is called conditionally deterministic [3]. The tech-
nique developed here can be applied to these problems too. The search equation is
solved for f.(x, y, t, S) conditioned on the drift vector. Then f.(x, y, t, §) is integrated
against the density of the drift vector.

In[17], Lukka derives necessary conditions for the search track that maximizes the
probability of detecting the target by a fixed time T. In addition to having to find
f(x, v, t, S), one needs the solution of the equation adjoint to (4), and then the solution
of a two-point boundary value problem. The ray method can also be used to solve the
adjoint equation [13], and to simplify the integrals arising in the boundary value
problem. Thus the work presented here represents part of the solution of the optimal
track problem.

An alternate procedure for optimal search track calculation is to work directly with
the probability of detection given by (3), and to find the optimal track by some sort of
nonlinear programming procedure. In [18], this program was attempted, but was
hampered by a limited ability to calculate thedensity f(x, y, ¢, §). The method intro-
duced here reduces this limitation.

Previous work on moving target search problems has been quite theoretical or
numerical. There has been little use of approximate methods such as the ray techniques
introduced here. Thus, the present work complements previous work. The approximate
methods have an advantage in that one can see more clearly how the various
components of the problem interact.
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