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SMALL FLUCTUATIONS IN SYSTEMS WITH MULTIPLE LIMIT CYCLES*
MARC MANGELT

Abstract. We consider the effects of small random perturbations on deterministic systems of differential
equations. The deterministic systems of interest have multiple limit cycles and may undergo a bifurcation (the
Hopf bifurcation). We formulate a first exit problem for experiments beginning near stable and unstable limit
cycles. The unstable limit cycle is surrounded by an annulus. Of interest is the probability of first exit from the
annulus through a specified boundary, conditioned on initial position. The diffusion approximation is used, so
that the conditional probability satisfies a backward diffusion equation. Approximate solutions of the
backward equation are constructed by an asymptotic method. The behavior of the stochastic system in the
vicinity of stable and unstable limit cycles is compared. When the deterministic system exhibits the Hopf
bifurcation, the above analysis must be modified. Uniform solutions of the backward equation are con-
structed. Numerical examples are used to compare the theory with Monte Carlo experiments.

Introduction. In recent years, the analysis of oscillatory nonlinear chemical and
biological systems has received considerable attention. Often the systems of interest can
be modeled by a deterministic differential equation of the form

(1.1) x=b(x,u), x(0)=xo

where x = (x, x?) and u is a parameter. In some cases, (1.1) may have multiple periodic
solutions, i.e., multiple limit cycles. In a typical case (Fig. 1b), the system (1.1) could
have asteady state P that is a focus. The steady state could be surrounded by an unstable
limit cycle U ; the unstable limit cycle surrouned by a stable limit cycle L. In this case the
system exhibits “‘threshold” behavior. If the initial phase point x, is in the region
contained by U, then the solution of (1.1) will exhibit damped oscillations and will
approach P. If x, is in the region bounded by U and L, then the solution of (1.1) will
exhibit undamped oscillations and will approach L. Phase points initially on U remain
there indefinitely, in the absence of fluctuations. The other source of threshold behavior
in dynamical systems is multiple steady states. The effects of fluctuations on such
systems was studied by Mangel (1979).

For example, the following equations have been proposed as a model of the
lac-operon (Sanglier and Nicolis (1976)):

2kb(ks(x)?+7)  ax?(ks(x®)*+k} +kb)
(ks(x®)?*+ki+ky) D', x5 ki+k3)

(kg(x')?+7) [x3 —kex?la(ks(x®)*+ k1 +k5)
(ks(x>)>+ Kk} +kj D(x'x?; k' +k})
where kg, k§, 7, a, k3, ks, ke, k3, and x2 are constants given by Sanglier and Nicolis
(1976), k' is a parameter and
(1.4) D(x', x*; k' + k%)= ko{ka(ks(x")> + 1)+ k’ (ka(x®) + ki +k5)}.

According to Sanglier and Nicolis (1976), as k} varies, the system (1.2), (1.3) exhibits
the following behavior:

(1.2)  #'=—2kg(x")*+

13) #*= —2k3(x2)2( ) kot

* Received by the editors August 28, 1978. Portions of this work were completed at the Institute of
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Virginia 22311. A previous version of this paper appeared as CNA Professional Paper 225, *“Oscillations,
Fluctuations, and the Hopf Bifurcation” (June 1978).

120



SYSTEMS WITH MULTIPLE LIMIT CYCLES 121

a. For ki > .1, the system (1.2, 1.3) has a single steady state P that is a focus. At
ki =.1 the system undergoes a bifurcation.

b. For .000248 <k} <.1, the stable focus P is surrounded by an unstable limit
cycle, which is surrounded by a stable limit cycle. At k; =.000248, the system
undergoes another bifurcation.

c. For kj <.000248, the system has multiple steady states.

Other examples of chemical systems with multiple limit cycles are found in Cohen
(1972) and Burns, Bailey and Luss (1973). Examples of biological systems with multiple
limit cycles are found in Bazekin (1975).

Equation (1.1) is completely deterministic. The fluctuations inherent to all natural
systems have been ignored. In this paper, we study the effects of fluctuations on systems
with single and multiple limit cycles. Three types of periodic behavior are of interest
here. They are: (1) A fixed, stable limit cycle, surrounding an unstable focus (Fig. 1a).
(2) A fixed unstable limit cycle, surrounding a stable focus and enclosed by a fixed,
stable limit cycle (Fig. 1b). (3) The Hopf bifurcation problems: the deterministic
dynamics depend upon a parameter u. As u | 0, a stable limit cycle coalesces with an
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FIG. 1 Phase portraits of the dynamical systems studied in this paper.
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unstable focus (at u = 0). The limit cycle disappears and the focus becomes stable (Fig.
1c). A “dual” bifurcation, in which an unstable cycle and stable focus coalesce, is shown
in Fig. 1d.

The stable limit cycle, with superposed fluctuations, was treated by Ludwig (1975),
White (1977), and Van Kampen (1976). It is included here for two reasons. First, our
treatment is slightly different from the others. Second, the treatment given here leads to
an interesting comparison of the stochastic dynamics of stable and unstable limit cycles.
The unstable limit cycle contained by a stable limit cycle arises in chemical dynamics. In
the engineering literature, bifurcations involving unstable limit cycles are sometimes
called ‘‘hard oscillations.” The Hopf bifurcation, and dual Hopf bifurcation, arise in
many situations (Marsden and McCracken (1976)). Our interest is again motivated by
chemical reaction dynamics (Haken (1978); Cohen (1972); Uppal et al., 1974).

When fluctuations are superposed upon the deterministic dynamics (1.1), a
number of questions can be posed. The type of question that should be posed depends
upon the nature of the deterministic dynamics. First, consider the case of a stable limit
cycle (Fig. 1a). Since the deterministic attraction is always towards L, the question of
most interest involves how fluctuations may drive the system away from the limit cycle.
Let £(¢) denote the random variable obtained by superposing fluctuations on (1.1). (See
§2.) In this case, x(¢) in (1.1) should be an appropriate conditional average of %(¢)
(Mangel, 1979). Let:

(1.5) v(t, x)dx=Pr{ix =x(t) = x +dx}.

Thus, v(, x) is the probability density for x(¢). It is a natural choice of a function that
describes the stochastic dynamical system obtained when fluctuations are superposed.
If we let ¢t » 00, then v (¢, x) » v(x), the equilibrium or stationary density, which gives the
probability of eventually finding the process in the interval (x, x + dx). Associated with
v(t, x) is an initial density, vo(x(0)), that characterizes the distribution of the random
variable x(0) = xo.

The initial phase point is crucial when considering an unstable limit cycle U (Fig.
2). A phase point initially in the vicinity of U leaves any neighborhood of U with
probability 1. Even if £(0) € U, fluctuations will drive the phase point away from U.
Ideally one would like to calculate the probability that, given £(0) = x, the phase point
reaches a neighborhood of the node P rather than a neighborhood of the stable limit
cycle L. In general, this problem is too difficult to solve. An alternative problem is the
following one. Let s measure distance normal to the unstable limit cycle, chosen so that
s >0 corresponds to an outward orientation.

Consider two contours:

(1.6) Si={x:s(x)=s1},  S2={x:s(x)=s3}
(see Fig. 2), with 5, >0, s, <0. Consider the probability

u(t, x) = Pr{by time ¢, X(¢) has left the annulus (S, S2)

(1.7) through $,|%(0) = x}.

This probability is a function of initial position. The stationary version of (1.7) is u(x),
which is the probability that X(¢) first exits from (S, S,) through S;.

For the case of a system exhibiting the Hopf bifurcation, (Fig. 1c), we are again
interested in the density for x(¢). Now the densityis v (¢, x; u), where u is the parameter
characterizing the deterministic bifurcation. Consider now the dual Hopf system (Fig.
1d). For small u, a phase point will leave a neighborhood of P or U and approach L with
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1
X

F1G. 2. The first exit problem for the unstable limit cycle.

probability 1. The singularity at P/U for u =0 will be evidenced by very slow
deterministic repulsion from P. Let L be a neighborhood of the stable limit cycle and let

(1.8) T(x)=E{t:%(t)e L, #(s) ¢ L, s < t|%(0) = x, £(t) reaches L}.

Thus, T(x) is the expected time to reach L, given that £(0) = x.

In order to calculate the above quantities, one first needs to introduce a stochastic
kinetic equation. This is done in § 2. First, we specify the deterministic dynamical
equations corresponding to the systems with multiple limit cycles. Second, we modify
these equations by the addition of a random function. This is the Langevin approach.
We obtain a stochastic kinetic equation that is, usually, too difficult to treat directly. We
treat the kinetic equations by the diffusion approximation of Papanicolaou and Kohler
(1974). In this approximation, v (¢, x), u(t, x) and T'(x) all satisfy deterministic partial
differential equations. A small parameter, characterizing the intensity of the fluctua-
tions, arises in derivation of the stochastic equations.

In § 3, we analyze canonical problems corresponding to stable and unstable limit
cycles and the Hopf bifurcation problems. Various incomplete special functions arise in
the analysis of these canonical problems. These functions are generalized in § 4, where
we calculate v (¢, x) and u(z, x) by the use of formal asymptotic methods, for stable and
unstable (fixed) limit cycles. The stationary solutions v(x), u(x) have interesting
interpretations. In § 5, we construct v(¢, x; u) and u(s, x; u) for Hopf-type deter-
ministic dynamical systems. We show that the solutions in § 4 break down and show how
uniformly valid solutions can be obtained. In § 6, we present numerical examples that
illustrate some of the phenomena discussed in §§ 4-5.

2. Deterministic and stochastic kinetic equations. First, we characterize the
deterministic equations that lead to the phase portraits of interest. Second, we formu-
late the stochastic kinetic equations and the diffusion approximation.
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2.1. Deterministic kinetic equations. We assume that
2.1) ' =b'(x,u), xeR*’ueR)

has a periodic solution ®. Let P be a steady state of (2.1): b'(P, u) = 0 for all . Introduce
new coordinates: s, which measures distance normal to ® (with positive outward
orientation), and # which measures distance along ®. (If ® were a circle, then s is the
radial variable and 6 the angular variable.) From (2.1), we obtain equations for s and 6,
of the form

S‘ = ES(S’ 0, M)’
6=5°G, 6, o).

The variable 6 is assumed to be periodic, with known period ®, and increases in a
counter-clockwise sense. The limit cycle is stable if

(2.2)

(2.3) d o~
gg‘(b 0,6,n)<0

and is unstable if
(2.4) %(55(0, 6, 1)) >0.

If 3/3s(6°(0, 6, u)) = 0, then the limit cycle is neutrally stable. This phenomenon occurs
at the Hopf bifurcation point.

To consider the Hopf bifurcation, we return to (2.1). Let B = (bfj(P, ), and let
A(u), A*(n) denote the eigenvalues of B. The Hopf bifurcation is characterized by the
following properties:

(1) When u <0, A () # A*(u) are located in the left-half plane.

(2) When u =0, the eigenvalues are located on the imaginary axis.

(3) When u >0, the eigenvalues are located in the right-half plane. Also, the

following condition is satisfied:

d
(2.5) 2 ReA@lu=o=717#0.
w

There are analogous (dual) conditions for the dual Hopf bifurcation. Let
(2.6) z=re®=x"+ix2

Fenichel (1975) (see also Arnold, 1972) has shown that (2.1) can be put into the
canonical form (for small w)

F=x(bir’ = myir)=b"(r, ¢, 1),

2.7 .
=2+ byr’ +myr=b*(r, 6, 1)

where r=r(s, 6), @ = @ (s, 6) are regular functions, vy, is defined in (2.5), A,>0 and
b1, by #0. The (%) sign in (2.7) is included so that both the Hopf bifurcation and dual
Hopf bifurcation can be treated. The function n(w) is a regular function of the
parameter and '

(2.8) 7n(0)=0.
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At the bifurcation point, n =0, note that

b'(0, #,0)=5.(0, ¢, 0)=b",(0, $,0) =0,

(2.9)
b,rrrr(O’ ¢a 0) #0.

These conditions will be used later.

2.2 Stochastic kinetic equation and diffusion approximation. Equation (2.1) is
approximate in that it completely ignores fluctuations. On the other hand, deterministic
equations (e.g., the “law of mass action” in chemistry) often yield correct predictions.
Such deterministic equations are successful for two reasons. First, the fluctuations are of
small intensity. Second, the fluctuations occur on a time scale rapid compared to the
macroscopic equation. Accordingly, to obtain a stochastic kinetic equation we replace
(2.1) by a Langevin-like equation for a random variable %, (¢):

d~i i~ € Lia ;
(2.10) = = b e )+ =) Y (1 @),
t a
In (2.10), Y(s) is a stationary, zero mean process, satisfying the mixing condition of
Papanicolaou and Kohler (1974). The parameter &, 0<e < 1, characterizes the

intensity of the fluctuations. In chemical systems, for instance,
(2.11) e=V,/V

where V is the volume of the reacting system and V/, is the elementary volume, i.e., the
volume of a sub-unit of the reacting system (Kubo et al. (1973), Van Kampen (1976)).
The parameter «, 0=a « 1 characterizes the time scale of the fluctuations. As a -
0, X, () converges to a diffusion process (Papanicolaou and Kohler, 1974). The density
v(t, x), defined in § 1, satisfies the following differential equation (Papanicolaou and
Kohler (1974)):

(2.12) v, =§(a""v),~,~—((b‘ +ec')o).

The probability u(t, x) satisfies

£
2

The expected time, T'(x), satisfies

(2.13) u==a"u; + (b +ec')u,.
(2.14) -1=§a""T,.,.+(b‘+ec“)T,-.

In (2.12)-(2.14), subscripts indicate partial derivatives and repeated indices are sum-
med from 1 to n. Also,

(2.15) a”(x) = fifily" + "),
i N _ Kl ii i
c'(x)=vy kaxif‘l

where

y* =I E[Y*(s)Y'(0)] ds.
0
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In later sections, we will specify the appropriate boundary conditions for (2.12)-(2.13).
Equation (2.14) is treated elsewhere (Mangel (1979)).

3. Canonical problems and special functions. In this section, one dimensional
canonical versions of (2.12, 2.13) are studied. The results will be generalized in the next
section. The stationary versions of (2.12, 2.13) and appropriate boundary conditions
are

(3.1) 0=§(av)xx—(bv)x; J'u(x)dx=1;v»Oas|x|»oo,
3.2) 0=§auxx+bux; u(x)=0, ulx2)=1, x,<x,.

We assume that the deterministic system
(3.3) X =b(x,u)

has a steady state at x =x,. The deterministic equation (3.3) corresponds to the
following degenerate ‘“planar” dynamical system. Let (r, §) denote the usual polar
coordinates and consider

F=b(r, 6;u),

6=0.
If we further require that there are no fluctuations in 6, then the system in (3.3a)
formally reduces to the one-dimensional equation (3.3). This formal reduction requires
one caveat. For a truly two-dimensional system in polar coordinates, the normalization

condition given in (3.1) would not be valid. Instead, a condition of the following form
would be required

(3.1a) J‘J' v(r,0)drdo=1.

(3.3a)

The canonical system (3.1) is studied here to motivate a solution of the more complex
problem.

Let b'(x, u) denote the derivative of b(x, u) with respect to x. It is assumed that
when u #0, |b'(x0, #)|>0 and that when =0, b'(xo, u)=0. If b'(x0, u)<O0, the
steady state is stable and equation (3.1) is of interest. If b'(xo, u) >0, the steady state is
unstable and equation (3.2) is of interest. For the rest of this section, it will be assumed
that the diffusion coefficient a in (3.1, 2) is constant. The solutions of (3.1) and (3.2) are

3.4) v(x)=keprx§—Zdz];

e Y2b
(3.5) ulx)=k exp|—| — dz] dy;
X1 ea
The constants k, k' are determined by the integrability conditions and boundary
conditions. For small ¢, we use Laplace’s method (Olver, 1974) to simplify (3.4)-(3.5).
We obtain, for u bounded way from zero,

1B Gro)l(x —xo)”
ea

(3.6) v(x) =k exp [ ] +oWe),

x _ _ 2
(3.7) u(x)=k’I exp[—-b—&%g——ﬁ)—] dy+0We).

1
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The integral appearing in (3.7) is the error integral

(3.8) E(z)=-re_’2/2 ds.

The correction term in (3.7) involves the derivative of the error integral E'(z) = e 2,

The error integral satisfies the following differential equation:
d’E_ dE
3.9 —=—z, —0=zpg=Sz=2z,=00.
(3.9 e 1 0 1
The results in (3.6) and (3.7) correspond to locally Gaussian densities. The appearance
of such Gaussian densities is due to the linearization process involved in Laplace’s
method. The use of a simple linearization requires that |o'(xo, u)| #0.

There are, however, instances in which a simple linearization cannot be used. For a
two-dimensional system, this would be true at the Hopf bifurcation point. In this section
an analogue of the Hopf bifurcation will be studied. Assume that when u =0, the
following conditions hold:

b,(x09 O) = b”(xO’ O) = 09
b"(x0,0) #0.

Hence, when applying Laplace’s method, for u near 0, we must use four terms in the
Taylor expansion of [~ b/ea ds.

Instead of the error integral (also see Mangel, (1977, 1979)) where analogous
problems for multiple steady states are treated), one finds that

(3.10)

x b"(x0, w)(y —x0)*  b"(x0, w)(y —x0)°
11 = J [—(
(3.11) u(x)=k .. exp |. 12ea + 3ed
Lo )y — x0)’
£a

)] dy + 0.

By a change of variables, we obtain that
4

X(x) 2
(3.12) u(x)~c)( exp [—Y—+M] dy
x1(x1) 4 2

where £1(x1), £(x) and n(u) are regular functions of their arguments and 7(0) = 0. The
result (3.12) can be obtained by applying Levinson’s theorem (Levinson, 1962) directly
to (3.5). Similarly, we find for the density v(x):

4
(3.13) v(x)~c'exp (—y+n—(ﬁ2y2).
4 2
Thus, we are led to a special function, the incomplete Hopf integral,
z 4 2,
(3.14) Ht(z,B)EJ exp[:t(s:—ﬁ%)] ds, Z0=z=2z;.
These integrals satisfy the differential equations:
d2H¢ 3 dHﬂ:

1 =+(z"— .

(3.15) e (z°—Bz2) 7

It can be shown that H.(z, B) are related to the modified Bessel functions K, I,
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(Abramowitz and Stegun (1965)). It can also be shown that, for 8 large, H.(z)~
E(Z(z)), where Z(z) is a regular function of z.

4. Fixed limit cycles: Stationary asymptotic solutions. In this section, we construct
formal asymptotic solutions of the time independent versions of (2.12)-(2.13) for fixed
limit cycles. Namely, u is bounded away from any bifurcation values. In the next
section, we allow u to vary and consider the case in which deterministic bifurcations
occur.

4.1. Unstable limit cycle. The unstable limit cycle is analogous to the unstable
steady state treated previously (Mangel, 1979). In analogy with that work, a solution of
the stationary version of (2.13) is sought in the form:

4.1) u(x)=Y e"g"()EW(x)/Ve)+e" " *h" (x)E'(¢/Ve).

In (4.1), g"(x), h"(x), and ¢(x) are to be determined. When derivatives are evaluated,
(3.9) is used to replace E"((///\/ e) by —FE' (z///\/ DE (///\/ e. After substitution into (4.2),
terms are collected according to powers of e. We obtain:

0= 3 " 2(g" —wh”)(b‘w,-—%wiwiw) E'w/Ve)

n=0

ij
+s"(big?+%g,, +eigh” ‘)E(W«/E)

ii

@2) +EWNe" V| bhi +algiuy+ S8 i+ g7

ij ij
— e+ ek~ yah e+ SR =R (),

If a superscript is less than zero, that term is set equal to zero. The leading term, n =0,
vanishes if the following equations are satisfied

4.3) b —%wiwiw =0,
(4.4) b'g! =
if
(4.5) b h°+— g% +a"'g%; — h%a i + g°c'pi — 'Ry —% h((wy);) = 0.

The transformation ¢=—§¢ converts (4.3) to the Hamilton-Jacobi or eikonal
equation

4.6) b'e: +%¢i¢i =0

The interpretation of the eikonal equation (4.6) in the stochastic context is discussed by
Ventcel and Freidlin (1970), Ludwig (1975), Magnel and Ludwig (1977), and Mangel
(1979).

An argument using Hamilton-Jacobi theory (Mangel, 1977, 1979), shows that
@ = ¢ =0 on the limit cycle U. Since ¢ is constant on U, ¢, = 0 there. We differentiate
(4.6) with respect to x* and obtain:

4.7 bxdi+b'bi + 2k ¢.¢1 (¢ik¢f + i) = 0.
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Since ¢ =—3¢°=0and ¢ =0 on U, ¢; = —yy; =0 on U. Thus, (4.7) becomes
(4.8) b'e; —o—i¢
. ik d0 .

Equation (4.7) is differentiated again and rewritten in the (s, #) coordinate system on U.
One obtains:

d s ss
(49) d (¢ss) + 2b,s¢ss ==—a (¢ss)2'
0
If we set W = ¢, equation (4.9) becomes a linear equation for W:
aw
4.1 —=2bW=a".
(4.10) 7 2b5W=a

The interpretations of ¢, W are as follows. To leading order, the first exit probability
u(x) will be constant if ¢(x) is constant. If x is a point off the limit cycle ¢(x)=
bss(85)?/2, where 8s is the distance from the limit cycle to the point x. Hence,
& (x)=(8s)>/2W and level curves of the first exit probability are obtained at distances
proportional to 1/ VW Thus, W can be viewed as a local variance.

We introduce the integrating factor

(4.11) I'(8)=exp [J’Oo 2b°% do’]

and seek a periodic solution (of period ®) of (4.9). We obtain:

el —ra )

The period ® of W(0) is the period of the deterministic system.

W (6) given in (4.12) is the product of two factors. The first factor involves only the
deterministic motion, through b%. The second term involves a combination of deter-
ministic and stochastic influences.

Now consider (4.4). Since b’ = dx'/dt, equation (4.5) indicates that g’ is constant
on deterministic trajectories. Following Mangel (1979) we set g° to be the same constant
on all trajectories. This constant is determined so that the leading part of (4.1) satisfies
the boundary conditions. We set u(x) =0 if x € S, and u(x) =1 if x € S;. Suppose that
S1, S> are level curves of ¢, with ¢ =, on S; and ¢ = ¢, on S,. In (3.9), we set

4.12) w(o)= [

(4.13) zo=%, zl=%
and ghen set
(4.14) g°=1/E(yn/Ve).

Then, to leading order u =0on S, and u =1 on §;. If §;, S, are not level curves of ¢, we
proceed as follows. Let 7' be the maximum value of ¢ on S; and 3 be the minimum
value of ¢ on S5, then set

(4.15) zo=ys/Ne,  zi=yP/Ne,  g°=1/E@r/Ve).

It can be shown that, if ¢ is bounded away from zero on S; and S, then u(x) is
exponentially small on S, and 1—u(x) is exponentially small on S; (Mangel (1979)).
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Next, consider equation (4.5). On the unstable limit cycle U, where ¢ =0, we
obtain
a”
2

an’ h° [
4.16) | 2 ayap =—
The periodic solution of (4.16) is

6+0 0 . . a, i.
0 _ 9 g' (a"¢ii/2+c’¢,[/g) exp{—] (a ]/2)(,[/,'(//,'615} d0'
@17) B0 = IO () Dy dsHexp (- 77° (@) 2) 0y ds}— 1}

Once h° is known on U, it can be determined off U by the method of characteristics
(Mangel (1979)).
The leading part of the expansion (4.1) is given by

(4.18) u(x) =g E(y/Ve)+ OWe).

Hence, once g° and ¢ are known, it is possible to construct contours of equal probability
of first exit.

Ui +Ci‘//i] g’

4.2. Stable limit cycle. Now consider the case of a stable limit cycle, so that we seek
a solution of the stationary version of (2.12):

(4.19) §(a‘fv>ii—((bf+ec‘>v)i =0.

Our treatment is slightly different from that of Ludwig (1975). We seek a Gaussian
solution of the form

(4.20) v(x)=e Y (zo+ 21+ 0.

After evaluation of derivatives and substitution into (4.19), terms are collected accord-
ing to powers of ¢ (see Ludwig (1975)). The leading term will vanish if ¢ satisfies

ij
(4.23) by +“7¢.¢,~¢ =0.

Note the change in sign in going from (4.3) to (4.23). If ¢ = 3¥?, we obtain the eikonal
equation (4.6), so that the analysis of (4.23) is identical to the analysis in the previous
section. We find

(4.24) A v(x)~zoexp [_—(%gs—)z] =z €xp [_2(%‘/)_2]

Again, e W/2 has the interpretation of a local variance about the stable limit cycle. Such
an interpretation has been given by Ludwig (1975).

The function zo(x, t) can be determined by solving an ordinary differential equa-
tion along the characteristics of (4.23) (see Ludwig, 1975, where details are given).
Once z, and ¢, are known, the leading contribution to v(x) is given by equation (4.24).

5. Hopf bifurcation. The analysis of the preceding section is essentially a linear
one. It breaks down at the Hopf bifurcation point, because the linear dynamics vanish at
the bifurcation point. The result of § 3 indicates a possible form of the correct asymptotic
solution. The Hopf problem to be considered here is analogous to the point source
problem for the wave equation (Hadamard (1952)). One solution of that problem, using
Hadamard’s technique, was given by Zauderer (1971). Although Hadamard’s method
could also be used for this problem, the construction given here is somewhat simpler.
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S.1. Unstable limit cycle, stable focus. We seek an asymptotic solution of the
stationary backward equation of the form
(5.1)  ux)=Xe"g"()H /e, /') + e *n"(x)H'(y/c"*, B/,

where H(z, B) = H_(z, B), defined in (3.14). When derivatives are evaluated, (3.15)is
used to replace H” by —H'(y°—By)/¢>*. We assume that B has an asymptotic
expansion

(5.2) B=X "B
After terms are collected according to powers of &, we obtain:
- i aii n n
0= £ e"VH'W/e ", B/ 64— S0t 0 ~Bo) (" ~ " (0~ o]
n i_n aii n— i _n—
+ Le"HW/e, B/sm)[b gl +>8i " +c'ei 1]
+ T e VH (e, B/ bhT + 8" ™ (0P~ Bo)
i

+f‘2—<2g?¢f + 8"y + R =20 — Bow)

—hig, (0> — Bo) — " (0 (¥ — BoW));
n+1

(5.3) +—k§1 (¥B)
a” n+l—k n+l—k, ,3
<S8 =k P~ Bow)

s (7 %ﬁw.-wxw’—ﬁolp)))}
n+1 o k-1
+ T Sowh (3 vbi(uBe)
-3 wek(cf«//ih"“"+“2+ﬁ<2h.~""‘¢, + )

& a_” n—k
_k§=:1 Bk 2 dli(/jih }

In (5.3), if a superscript is less than zero, that term is set equal to zero. The leading term,
n =0, is composed of three parts and vanishes if

ij
(5.4) by, —%wwM —Bo) =0
(5.5) b'g? =0

b'h? +%g°¢i,- — (> = Bow)a"hdy;— %h"wﬁ(w —Bo¥)
(5.6) ;
a

-h° gwiwf(awz—ﬁo) —WB)F° (W, x)+8°c 't — Wik ° (¥ — Boy) = 0.
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In (5.6), we have introduced the notation that

n+1 ol

=3 92—w,-¢,-<g"“‘k ~ B (Y - Bow)

(5.7) ]
ntt—kfpi, 4 . .3
+h (b b= b Bow)).

First consider (5.4). Since b’ vanishes at the stable focus P, we set > —Boy =0 at the
focus. This will insure that ¢ will have nonvanishing first derivatives. On the limit cycle
U, we also set > —Boy = 0. Since u(U) > u(P) we require that

(5.8) ¥(P)=0, Y(U)="B,.

When the limit cycle and focus coalesce, we obtain 0 = N/ Bo, i.e., Bo=0. The singulari-
ties of F() = ¢ — Boy now match the singularities of the deterministic system. Because
the singularities are matched, the present method can be used to produce a uniform
solution.

The value of B, is still undetermined. It can be calculated by the following iterative
procedure. Since (5.4) is a first order partial differential equation, the method of
characteristics can be used to solve it, starting just off U, where ¢ = \/@ and B is the
initial estimate for B,. We follow characteristics that approach P. If ¢ does not approach
0, then B must be replaced by a better estimate Bg). The method of false position can
be used to calculate iterates of Bo. In this fashion, B, can be determined to any order of
accuracy. An alternative procedure would follow characteristics from P to U. The
choice of method must be made on the basis of numerical practicality.

Although (5.4) can be solved by the method of characteristics, our main interest is
in experiments beginning near U. Consequently, we determine ¢ in a vicinity of the
limit cycle by a Taylor expansion. We assume that 8,>0. Equation (5.4) is differen-
tiated with respect to x* and then changed to (s, 8) coordinates. We obtain an equation
of the form:

(5.9 e 15,0, 0,u)0,~ aBoy? =0.

In deriving (5.9), we have used the fact that ¢ = \/Bo on U (so that 3://2 —Bo=2Boon U).
The coefficient a in (5.9) is obtained by a suitable transformation of the matrix a”.
Equation (5.9) is a version of Abel’s equation (Davis (1962)). We introduce a new
variable z, defined by

(5.10) ¢y=1/Bz where dB/df=>b’B.
The periodic solution of (5.9) is then

G1)  w0,6w={-28 LM 2 ds- I‘?If(((f)))/f oy
where

(5.12) B(s)=exp [J;eﬂ b%(0, 6, u) dO],

(5.13) I'(s)=1/B(s).

Equation (5.5) indicates the g° is a constant. The value of g° can be determined exactly
as in § 4. Equation (5.6) is analogous to (4.5). It is slightly more complicated since it



SYSTEMS WITH MULTIPLE LIMIT CYCLES 133

o
8
A =
6 [~
u=.9
S
ér
4
u=.8
.3\/_/\
2K
A+
PSSR S SO ST U S N N N U T U T N T S S S O W A
™ 27

6
F1G. 3. Equal probability contours for Example 6.1.

contains the unknown parameter B8;. This parameter can be determined in the same
fashion as B, was determined.

It can be shown that all of these constructions are regular at the bifurcation point
w =0. The proof is analogous to the proof given in Mangel (1977), for bifurcations
involving multiple steady states.

TABLE 1
Comparison of theoretical and Monte Carlo results for Example 6.1.

Initial point u (Theory) u (Monte Carlo)*
(1.10,0) .60 57
(1.21,.21) .70 .68
(1.50, .42) .90 .92
(1.30,3.97) .80 .79
(1.53,5.86) .90 .92
(1.08, 1.88) .60 .58
(1.19,2.30) .70 .69

* 2,500 simulations were performed.
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5.2. Stable limit cycle, unstable focus. In this case, we are interested in uniform
solutions of the forward equation (4.19). It is clear that the Gaussian ansatz in § 4.2
breaks down for u small. We seek a solution of the form
vt ex)?

4 B—T)](zo(x) + ezl(x).+- ).

Following the procedure of § 4.2, we are led to

(5.14) v(x) ~ exp [—%(

(5.15) biy; +f‘2—¢,~¢,-(¢’ —Boy) =0.

Equation (5.15) can be treated by the method of characteristics or by a Taylor
expansion. The function z°(x) can be determined by integration along the charac-
teristics of (5.15) (Ludwig (1975)). The determination of the rest of v(x) proceeds as in
the previous section.

Thus, the stationary distributions for the Hopf bifurcation problem have been
determined. These distributions are regular functions of u, the deterministic bifurcation
parameter.
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F1G. 4. Equal probability confidence contours for Example 6.2.
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6. Numerical results for fixed limit cycles. In this section, we present a number of
numerical examples that illustrate the behavior of u(x) and v(x), as determined in § 4.
For convenience, we use systems already in polar coordinates.

The theoretical results reported below for u(x) were calculated using the first term
(n=1) in the expansion (4.1). The theoretical results reported below for v(x) were
calculated using the term e “*/°z, from (4.20). The Monte Carlo results reported
below were obtained by numerical solution of the Ito equation. Use of the Ito equation
is equivalent to assuming that Y'(s) in (2.10) is white noise.

Example 6.1. In this case, the following deterministic dynamics were assumed:

6.1) F=r(r—1)(2—r)(1.1+cos 6),
(6.2) 6=1
with covariance matrix elements zero, except for a™:

(6.3) ea” =.1[r*+(2-r)*](1.5+cos 6)*
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TABLE 2
Comparison of theoretical and Monte Carlo results for Example 6.3.

Initial point u (Theory) u (Monte Carlo)*
(1.14,0) .60 .62
(1.22,.21) .70 .73
(1.49, .42) .90 .90
(1.55, 3.97) .80 .82
(1.66, 5.86) .90 .87
(1.12, 1.88) .70 .67
(1.06, 1.47) .60 .64

* 2,500 simulations were performed.

The circle r =1 is an unstable limit cycle. Let
(6.4) u(x) = Pr{process hits r = 1,98 before r =.02|x(0) = x}.

In Fig. 3, we show the u =.8,.9 contours 6r(6) where § measures distance along the
cycle and ér is the distance from r=1 to the contour. The noise and deterministic

99%

ér
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FI1G. 6. Probability confidence contours for Example 6.4.
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dynamics are in phase. In Table 1, we compare the theory with Monte Carlo experi-
ments.

Example 6.2. We now consider the system with deterministic dynamics
(6.5) F=r(r—1)(r—2)(1.1+cos 6),
(6.6) 6=1
with ea” given by (6.3). The deterministic system has a stable limit cycle at r = 1. Let
6.7) v(x) dx = Pr{process is eventually found between (x, x + dx)}.

In Fig. 4, we plot the .91, .99 confidence contours of v(x) as a function of ér(8), where ér
is the distance from the limit cycle to the contour and # measures distance along the
limit cycle.

Example 6.3. We now take 6 as above and the following deterministic dynamics
for r:

(6.8) F=r(r—1)2-r)(1.1+sin 6)

with ea” given by (6.3). In this case, the noise is out of phase with the deterministic
cycling. In Fig. 5, we plot the u = .8, .9 contours and in Table 2, compare Monte Carlo
and theoretical results.

Example 6.4. We take for the deterministic dynamics

(6.9) F=r(r—1)(r—2)(1.1+sin 6),
(6.10) 6=1

with ea” given by (6.3).
In this case, r=1 is a stable limit cycle. In Fig. 6, the .91 and .99 confidence
contours are plotted.
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