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SMALL FLUCTUATIONS IN SYSTEMS WITH
MULTIPLE STEADY STATES*

MARC MANGELTY

Abstract. We consider the effect of small random perturbations on deterministic systems with multiple
steady states. The deterministic systems of interest may have two stable nodes and a saddle point. As
parameters vary, two or three of the steady states coalesce. This work is concerned with the long time behavior
of the system, when it starts near the deterministic separatrix. The separatrix is surrounded by a tube that may
contain two stable steady states. The quantity of basic interest is the conditional probability of first exit from
the tube through a specified boundary, conditioned on initial position. We use the diffusion approximation, so
that the conditional probability satisfies the Kolmogorov backward equation. Formal asymptotic solutions of
the backward equation are constructed. The solutions are obtained by a generalized *“ray method” and are
given in terms of various incomplete special functions. In the appendices, we construct asymptotic solutions of
the equation satisfied by the mean value of the first exit time.

1. Introduction. The evolution of natural systems is often described by a deter-
ministic differential equation:

(11) x‘=bi(x’ 77,5), xi(0)=xé), i=1,~--,n,
In equation (1), n and & are parameters. A steady state is characterized by b'(x, 0, §) =
0,i=1,---,nIf b(x, n, §)is nonlinear, the system may possess multiple steady states.

As the parameters n and & vary, it is possible that the steady states coalesce and
annihilate each other, or exchange stability.

The variable x in (1.1) is a macrovariable: it describes the average state of a large
system and is obtained by averaging over many independent, microscopic subunits.
Equation (1.1) provides only an approximate description of the evolution of the sys-
tem. In particular, it ignores fluctuations that are inherent to all natural systems. If
the system has multiple stable steady states (Po, P), fluctuations may drive the system
against the deterministic flow so that Po(P,) is reached from an initial point which
deterministically is attracted to P,(P,). In this case, the quantity of basic interest is the
probability of a specified outcome, conditioned on the initial data. In this work, the
behavior of the conditional probability is determined by solving the diffusion equation
that it satisfies, for the case of noise of small intensity.

Many physical, chemical and biological systems fit into the framework of fluctua-
tions superposed on a deterministic differential equation. Examples are: 1) Lasers, in
which fluctuations are caused by the quantum nature of radiation (Graham (1974)). 2)
Tunnel diode circuits may exhibit multiple steady states. Fluctuations are caused by the
random motion of electrons (Landauer and Woo (1972)). 3) The mean field ferro-
magnet exhibits multiple steady states below the critical temperature (Griffiths, Weng
and Langer (1966), Goldstein and Scully (1973)). 4) Isomerization, autocatalytic, chain
and substrate inhibited reactions in open vessels may exhibit multiple steady states
(Perlmutter (1972), Higgins (1967)). Fluctuations are caused by the random motion of
the molecules, which may lead to a birth and death description of the reaction process.
5) Membranes may exhibit states of high and low conductivity, separated by a threshold
(e.g. Lecar and Nossal (1971a, b)). 6) The equations used in theoretical ecology may
exhibit multiple steady states (Bazekin (1975)). Fluctuations are caused by the elemen-
tary birth and death processes. The theory developed in this work is applicable to all of
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the above systems. Elsewhere, we discuss autocatalytic reactions and substrate
inhibited reactions (Mangel (1977a)).

This work is concerned with the effects of fluctuations on systems initially in the
vicinity of an unstable steady state. We assume that the unstable steady state is a saddle
point, so that a deterministic separatrix & exists. The separatrix divides the phase plane
into two domains of attraction of the stable steady states (Fig. 1). The solutions of (1.1)
exhibit a discontinuity of the following type. As ¢ - 00, phase points initially on one side
of & approach P,. Points on the other side of & approach P,. Points initially on &
approach the saddle P;.

When fluctuations are included in the kinetic equations, the deterministic descrip-
tion must be modified. With probability 1, all phase points leave a vicinity of & and
approach P, or P,. More importantly, phase points which are deterministically attrac-
ted to Po(P;) might approach P,(Py). Our goal is to calculate the probability of this
event, as a function of initial position.

In § 2, we discuss the stochastic set up for this problem. The deterministic kinetic
equation is converted to a Langevin-like stochastic equation. We use the diffusion
approximation, so that the desired probability satisfies a backward diffusion equation.

We will construct formal asymptotic solutions of the diffusion equation. Our
technique is a generalization of the “‘ray method” of Luneberg (1948), Keller (1958)
and Cohen and Lewis (1967). In § 3, we study the exact solution of a one dimensional
equation. We are lead to certain canonical integrals. These integrals are used in § 4-6 in
the asymptotic solution of the two dimensional backward equation. In the appendices,
we show how to construct the leading term in the asymptotic solution of the equation for
the first exit time.

The theory given here has applications to chemical, physical and biological
systems. These applications are discussed elsewhere (Mangel and Ludwig (1977),
Mangel (1977a)).

2. Stochastic kinetic equation, backward equation and the exit problem. The
macrovariable x(t) is the average value of a stochastic variable x(¢) and evolves
according to

2.1) x'=b'(x,n, 8)=b'(x), x'(0) = xb.

The random variable x(¢) will satisfy a stochastic kinetic equation. Ideally, we would
derive this kinetic equation from basic principles. For instance, for physical and
chemical systems, we would start with the Liouville equation and reduce it to a
stochastic kinetic equation. This reduction has been performed only on the simplest
system (Sinai (1970)). Instead, we shall use a Langevin method (Lax (1966)) and add a
stochastic term to the right hand side of (2.1). We assume that the random effects occur
rapidly, and are characterized by a time scale 7, small compared to the macroscopic time
scale ¢, on which measurements are made.
The increments in 7 and ¢ are related by a parameter a:

(2.2) Ar=At-a?,

where a? will characterize the fast time scale. The random~ process generated by the
microscopic motions is assumed to be a mixing process Y. In most of the physical
literature (e.g. Mori (1965), Ma (1976)), it is assumed that

2.3) E[Y*(s)Y'(0)] = 6" (s)
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where 8 (s)=0 unless k =/ and s = 0. We shall not make this assumption and define
(2.4) ¥ = j E[Y*(s)Y'(0)] ds.

0

In the case that (2.3) holds, Y (r) is the “white noise” process. We assume that the
stochastic variable %(f; «) satisfies
dii(t;a)_ oi(®) »

@2.5) w7 =b'(£)+Ve . Yiead), i=1,---,n

Langevin was the first to use a kinetic equation of the form (2.5) (Lax (1966)).
Such equations have been used in the last fifty years by most physical scientists working
in this field. The use of (2.5) represents an approximate, somewhat ad hoc, way of
treating stochastic effects in macroscopic systems. Equation (2.5) is the stochastic
kinetic equation that will be used in the rest of this work. We assume that E (a}?i )=0.

The parameter ¢ appearing in (2.5) characterizes the intensity of the fluctuations.
We assume that ¢ is small. In most chemical systems, for instance, ¢ = V./V, where V., is
the characteristic volume of a subunit and V is the volume of the whole system (Keizer
(1975), Van Kampen (1976)). For the case of stochastic mechanics (Nelson (1967))
¢ = h*/2m, and is small for macroscopic or meso-macroscopic particles.

There is considerable argument and confusion about the relationship between
(2.5) and (2.1) (Van Kampen (1976)). Namely, if we average (2.5), we obtain
E{ ax } dx

(2.5a) —l=—=E{b'(%).

dt dt

For nonlinear systems E{b‘(%)}#b'(E{£})=b'(x) in general. A solution to this
“paradox” is the following.
First, we rewrite (2.1) as

(2.5b) x'(t+dt)—x'(t)=b'(x) dr.

In (2.5b), there is an implicit conditioning that x (¢) = x. If we construct a probabilistic
model that allows the calculation of

E{Z' (t+dt)—% )| %(t)=x}
(2.5¢) =x'(t+dt)—x'(r)
=b'(x)dr;

then when (2.5) is averaged, we obtain (2.1).
In particular, suppose that

b(x)=b"(x)—-b"(x)

with b*, b~ >0. We assume that

(2.5d) Pr{(t+dt)—%(t)=£1|X(t)=x}=b"(x) dt + o(dt),
(2.5¢) Pr {all other transitions} = o (dt).
Then
dx " -
@.50) gLnOE{d—’t‘}=%=b ()= b"(x)=b(x)

and we obtain the deterministic equations as an appropriate conditioned average of
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stochastic equations. Keizer (1975) uses an equivalent procedure, without introducing
(2.5d, e).

This type of conditioning is a backward approach that we will follow throughout.

The field o(x) is assumed to be known. It characterizes the x dependence of the
fluctuations. Since (2.5) is not derived from first principles, we need to provide a
prescription for the calculation of o(x). Elsewhere, we discuss how o(x) can be
calculated for chemical systems by a birth-and-death approach (Mangel (1977b)).

For the remainder of this paper, we assume that o (x) is known. We assume that
X(0; a)= xo remains a deterministic initial condition.

As a >0, X(t; «) converges to a diffusion process £(¢) (Papanicolaou and Kohler
(1974)). Let E denote expectation with respect to the diffusion and set:

(2.6) u(t, x)= E{uo(x(¢))|£(0)= x}.

Then u(t, x) satisfies the backward equation

if

2.7) u,=f—261——u,',~+biu;+ac"ui

where

(2.8) a’(x)= ok (x)oi(x)y* + "),
i ki 0 i

(2.8a) c'(x)=v 'akg(m)-

The function uo(x) in the definition of u(s, x) is the initial data for (2.7).
If Y(r) were white noise, the resulting diffusion equation would be

i
€a ;
—u;i+b'u.

2.9) u, = >

If a” is independent of x, then equations (2.7) and (2.9) are identical. Elsewhere
(Mangel (1977a)) we present a numerical comparison of solutions of equations (2.7)
and (2.9). Our results indicate that (2.9) is an excellent approximation to (2.7) if the
boundaries are nonsingular.

The fundamental equation derived above is (2.7) or its time independent version

Y

(2.10) O=%u;j+biui+eciui.
Equation (2.10) must be supplemented by boundary conditions if the problem is to be
properly posed. We surround the separatrix by a tube with boundaries I, II. If u =Qon I,
u =1 on II, then u(x) is the probability that £(¢) first exits from the tube around the
separatrix through boundary II. Alternatively, let 7(x) be the first time that £(¢) hits
either boundary I or I1, given that £(0) = x. Let u(x) = Pr {£(7(x)) € II}; Matkowsky and
Schuss (1977) show that u(x) satisfies (2.10), with u(x)=0 for x eI and u(x)=1 for
x €ll. In order that the asymptotic solutions satisfy the boundary conditions, the
boundaries must have certain regularity properties. These conditions are formulated in
§4.

A first exit problem of this type was studied by Levinson (1950). He noted that the
solution relies heavily on the characteristics of the reduced (¢ = 0) problem

(2.10a) ' u.=b'u,.
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These characteristics are determined by:
(2.10b) X'=b'(x),

i.e. the deterministic trajectories. Levinson treated the problem in which 5(x) did not
vanish in the domain of interest (i.e. characteristics do not intersect). Visik and
Lynsternik (1962) treated the problem in which the characteristics intersect at one point
and all characteristics point outwards. Matkowsky and Schuss (1977) treated the
analogous problem when the characteristics point inwards. Here we treat the problem
in which (a) b(x) may vanish at up to three points in the domain of interest, (b) two
characteristics never leave the domain.

We distinguish three cases of increasing complexity.

1) The normal case in which the separatrix tube contains only the unstable steady
state.

2) The marginal case in which the separatrix tube contains the unstable steady
state and one stable steady state. As one parameter varies, the two steady states
coalesce and annihilate each other (the marginal bifurcation). After the bifurcation,
only one stable steady state remains. This steady state is not in the separatrix tube, so
that the deterministic flow is always across the tube in the same direction (see Fig. 2).
The first exit problem as formulated is of little interest. A more interesting question
involves the expected time to reach boundary II, given that X(0)=x, T(x). Let d(x)
denote the distance from the point x to II. Let

(2.11) T(x)EJ.ootu,(x, 1) dt

where u(x, t) satisfies (2.7) with boundary conditions u(x, £)=1onII, u; >0 as d > o,
u(x, 0)=0unless x € II. Then u(x, t) is the probability that X(¢) has reached II by time ¢,
given that (0)=x.

T (x) satisfies (Gihman and Skorohod (1972))

ea’

2.12) :

Ty+b'T,+ec'T; = —u(x)
where u(x) is the probability of eventually reaching I1, given that £(0) = x. T'(x ) satisfies
the boundary conditions

(2.13) T(x)=0, xell; T <00 as d > 0.

3) The critical case in which the separatrix tube contains the unstable steady state
and both stable steady states. As two parameters vary the three steady states move
together and coalesce (the critical bifurcation). The remaining steady state is assumed to
be stable.

In § 4-6, we shall give explicit characterizations of normal, marginal and critical
type dynamical systems. Our classification scheme generalizes the one of Kubo et al.
(1973), who only treated one dimensional problems.

Recently, Matkowsky and Schuss (1977), Schuss (1977) and Williams (1977) have
studied stochastic exit problems. They were interested in the exit distribution and mean
exit time from a domain containing a simple, stable steady state. Their results are
obtained by matched asymptotic solutions of (2.7). There is little overlap between their
work and this one.

3. Three canonical integrals. Equations (2.10) and (2.12) are singularly perturbed
elliptic equations. The equations are further complicated by the fact that 5(x) vanishes
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at one or more points in the separatrix tube. We seek approximate solutions of the
equations. We will use formal asymptotic methods for the calculation of the first exit
probability. Similar methods apply to the first exit time (Appendix A). The form of the
asymptotic solutions will be suggested by the analysis of a one-dimensional version of
(2.10):

ea(x)
3.1) 0=Tuxx+b(x, n, 8)u, + ecu,.
The analysis of (3.1) will lead to three canonical integrals which will be used in the
solution of (2.10).

The use of the canonical problems helps to identify the characteristics of the
multidimensional problem. This is an essential idea of the ray method of Luneberg
(1948) and Keller (1958). Our results are a generalized ray method.

The reduced (¢ =0) deterministic system is

(3.2) X =b(x,n,8)=b(x)

which may have three steady states, xo, x; and x, (Ist case). As 7, § vary, two steady
states coalesce (2nd case) or all three coalesce (3rd case). The 2nd case is the marginal
type steady state, x,,, characterized by (Kubo et al. (1973))

b(xm)ZO; b,(xm):(); b”(xm)¢07
3.3)

n=Nm, 6=06.

The third case is the critical type steady state, x,, characterized by (n = 7., 8 = §.)
3.4) b(x)=b'(x.)=b"(x.)=0, b"(x.)#0.

Equation (3.1) must be supplemented by boundary conditions. We choose l1, 150
that x, € [/, 2], where x; is the unstable steady state. If u (l1)=0, u(l;)=1, then u(x)is
the probability that the process first exits from [/, l;] through the right hand boundary.
The solution of (3.1) is

[, exp [=[i; [2(b(s)+ec(s))/ea(s)] ds] dx’
fizexp =[5 [2(b(s)+ec(s))/za(s)] ds] dx'"

When ¢ is small, the behavior of (3.5) will be determined by the 2b/(ea) term.
Thus, we shall consider the simpler integral

(3.6) v(ﬂ:fe"p[‘f | 528

1

(3.5) u(x)=

ds] dx’.

By using (3.6) rather than (3.5), the algebraic details of the analysis are simplified, but
the main points remain unchanged. The two results will differ by terms O(g) or less. Our
analysis will be based upon Laplace’s method (Olver (1974), Bleistein and Handelsman
(1975)). It is assumed that a(x) >0 for x €[I;, I,].

3.1. Normal case: The error integral. In the normal case, only one steady state is
contained in [/4, l]. The main contribution to (3.6) will come from the minimum of

a(s)

Since ¢'(x1)=0 and ¢"(x1)=2b"(x1)/a(x1)>0, the minimum of o(x') is at x' =x;.

(3.7) ¢(x’)=J ds.
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Using a Taylor expansion of ¢ about x; in (3.6) yields

* b'(x1)
X [_ ea(xy)

(3.8) u(x)=kj (x'—xl)z] dx'+0(e),

I

where k is constant. Differentiation of (3.8) gives

(3.9) vx(x)~k exp [—;b;(x—xl)z].

For small ¢, v, is very small, except in a region around x;. Hence, we obtain an internal

boundary layer about x; of width O((ea(x1)/ b'(x1))"/?). A change of variables converts
(3.8) to
: x(x) .
(3.10) v(x)=kJ exp (—s%/2¢) ds + O(Ve).
The integral in (3.10) is the error integral
(3.11) E(z)=j e % ds.
The function E(z) satisfies the following equation
d’E dE
(3.12) 37:—222‘, Z0=2z=2;.

The error integral is closely related to the normal distribution function (Abramowitz
and Stegun (1965)).

3.2. Marginal case: The Airy integral. In § 3.1 we assumed that b'(x1) does not
vanish. This assumption is not valid at a marginal or critical type steady state. Thus, the
error integral no longer adequately represents the asymptotic behavior of the prob-
ability. The cause of the breakdown is clear: the error integral corresponds to linear
dynamics, but the dynamics at the marginal and critical steady states are totally
nonlinear.

Apparently, this breakdown of mathematical method has not been appreciated in
the physical literature. The use of the error integral at a marginal or critical type steady
state leads to an “‘infinite variance”, i.e. E (%)= c0. This result has nothing to do with
the physics of the problem, but is due to the misuse of the mathematics. (This topic is
discussed in detail in Mangel (1978).)

In order to obtain an expansion at a marginal type steady state, amore complicated
special function is needed. We use a third term in the Taylor expansion of ¢:

b'(x1) b"(x1)

(3.13) d(x)= ¢(x1)+m(x —x1)2+§(—x—1)(x —x:1)*+O((x —x1)*).

A change of variable converts (3.13) to

LAY

20) By’—ay+B81+0("

(3.14) ¢

where y is a regular function of x and &, B are functions of b'(x1), b"(x1) and a(x,); a
vanishes when 5’ vanishes. Another change of variables converts (3.6) to the form

(3.15) U(x)zcjimexp[—é(érs—ar)] dr+0(z~:2/3)
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where ¢ is a constant and a = (b"/a)"/?d. The integral (3.15) can be obtained by
applying Levinson’s result directly to (3.6) (Levinson (1962)). Differentiation of (3.15)
gives

(3.16) v;~exp[—l(l,\?3—ai)J.
e\3

Hence, for small ¢, v; will be very small except in a region around the origin where
3%%—af is O(e). Thus we obtain an internal boundary layer of width O(¢'/?).
The integral in (3.15) is an incomplete Airy integral

(3.17) A(z,a)=J. exp (—3s° +as) ds.
The function A(z, a) satisfies the differential equation
2
A dA
(3.18) d—-gz-’i)=—(zz—a)————(—z-’-g—2, Z0Sz=2z;.
dz dz

Equation (3.17) is analogous to the incomplete Airy function, which arises in diffraction
problems (Levey and Felsen (1969)). The asymptotic properties of A(z, a), for large «,
can be determined by Laplace’s method and repeated integration by parts (Olver
(1974)). We obtain

k
(3.19) A(z,a)~£_)E(z~)+O(l/a)

2Va
where Z is a regular function of z and k(a) is a function of a:
(3.20) k(ar)=exp [B)a"].

The result (3.19) ignores endpoint contributions, and is obtained by assuming that
—v/3a < z,. The condition on z, can be further weakened, but it will not be necessary to .
do so in this work.

3.3. Critical case: The Pearcey integral. The analysis in § 3.2 is not valid at a
critical type steady state, since b"(x., 1., 8.)=0. Thus the Airy integral does not provide
an adequate asymptotic representation. In order to obtain the expansion of (3.6),
another term must be used in the Taylor expansion of ¢ (x'). If a Taylor expansion of ¢
up to (x —x;)* and two changes of variable are used, then (3.6) can be put into the form

(3.21) v(x)=c J’M exp E(%y“—%yz—gy)] dy+0(>"*)

where c is a constant, X(x) is a regular function of x. The parameters «, 8 are functions
of b'(x1), b"(x1), b"(x1) and a(x;), and vanish at the critical bifurcation. In this case, the
boundary layer around x, clearly has width O(s'/*).

The integral in (3.21) is the incomplete Pearcey integral

z 1 as?
3.22 P(z. a, :j [_4___ )]
(3.22) (z,a,B) zoeXp (4s 5 Bs) | ds
and satisfies
d*p

dP
3.23 (P —az—B)= =
( ) 2 (z7—az—B) > 20=2z

IA

Z1.
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An integral analogous to (3.22) was discovered by Pearcey (1946) during his investiga-
tion of the electromagnetic field at a cusped caustic. The asymptotic properties of
P(z, a, B), for large a, B can be determined by Laplace’s method. Let § be the middle
root of

(3.24) s’—as—B=0
and
54 52
(3.25) ¥ =Z—a5—Bs".
Then we find that
%E(il), a large, |B| small, i.e., |8%/a’« 1,

(3.26) Pz, a B)~
e’k(a, B)A(z1, 1), a large, |B|large, ie. B>=0(a?).

In (3.26),

2

(3.27) k(a,B)=(—:ﬁl—/—gexp[—§<3—s~;~a>3-§;—2].

The parameter 7 is given in terms of @ and 8. The functions Z; and z; are regular
functions of z and a or a and B. The results given in (3.26) are obtained by ignoring
endpoint contributions to the integrals, so that we assume ro <z, and z; <r4, where rg
is the minimum and r, is the maximum root of

4 2
N N

(3.28) Z—a—z-—ﬁs‘:().

When « is small and | 8] is large (i.e., a>/B%« 1), the main contribution to (3.22) comes
from the endpoints z, and z, so that simple exponential estimates are obtained (Olver
(1974, p. 80)).

Asymptotic analysis of the exact solution of a one dimensional version of (2.12)
leads to special functions that satisfy inhomogeneous versions of (3.12), (3.18) and
(3.23). The results given above indicate that it may be possible to solve the two
dimensional problems (2.10, 12) by an asymptotic method. The separatrix would be
surrounded by a boundary layer. Outside of the boundary layer u(x) is approximately
constant and inside the boundary layer, u(x) changes rapidly. The width of the
boundary layer will depend upon the type of deterministic dynamics. Consequently, we
shall construct formal asymptotic solutions of the backward equation in the normal,
marginal and critical cases. Although the solutions will be formal, the numerical results
indicate that they are satisfactory.

The results obtained in this section could also have been obtained by the use of the
method of matched asymptotic expansions (Nayfeh (1973)).

Remark. Dual problems and their special functions. There are three dynamical
systems which are closely related to the ones discussed above. A study of the canonical
problems leads to three ‘“dual” special functions. The three cases are:

1) The dual normal case consists of a single, stable steady state in the tube. Instead
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of the error integral, we are lead to a special function E(z) that satisfies
d’E_ dE

(3.29) 22 24

20=z=2z;.

2) The dual marginal case is the same as the marginal case, except that the roles of
Qo and P, are reversed. We are lead to the dual incomplete Airy integral A (z, a), which
satisfies
A, dA
—=Z"—a)—/—, Z0=z=2;.
dz* ( @) dz 0 !

3) The dual critical case is identical to the critical case, except that the critical type
steady state is unstable. We are lead to the dual incomplete Pearcey integral P(z, «, B),
satisfying

(3.30)

2
P dP
(3.31) d——=—(zs—az—B)—, 0=z =2z:.
2 dz
4. Asymptotic solution of the first exit problem in the normal case.
4.1. Normal type dynamical systems. The reduced (¢ = 0) deterministic system
corresponding to equation (2.10)

(41) x'i=bi(x)

is assumed to have three steady states, Py, P;,and P,. Let By = (bf,-)l p, denote the matrix
obtained by linearizing b(x) and evaluating the result at P,. We assume that B, and B,
have two negative real eigenvalues and that Py and P, are bounded away from the
separatrix tube. The matrix B has one real positive and one real negative eigenvalue.
The eigenvector corresponding to the negative eigenvalue has positive slope. A
deterministic system satisfying the above postulates will be structurally similar to the
one sketched in Fig. 1.

It is assumed that a(x) is bounded above and is positive definite on the deter-
ministic separatrix.

FIG. 1. The first exit problem in a dynamical system with multiple steady states (the normal type dynamical
system is shown). One wishes to calculate the probability that a phase point initially in the tube defined by
boundaries 1, 11 exists through boundary 11.
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4.2. The asymptotic solution. The analysis of the one dimensional problem in § 3
indicates that a possible formal solution of the backward equation is

4.2) u(x)=Y e"g" ()EWx)/Ne)+e" " *h" (x)E'(¢/Ve).
In (4.2), E(z) is the error integral:
4.3) E"(z)=—-zE'(z), Zo=z=1z,.

The limits zo, z; are chosen so that (4.2) will satisfy the boundary conditions to within
asymptotically small correction terms. The ansatz (4.2) was used by Mangel and Ludwig
(1977). The theory of that paper is a special case of the theory presented in this section.

When derivatives of u(x) are evaluated, equation (4.3) is used to replace E” and E”
by products of E’ and ¢/ Je. After derivatives are evaluated and substituted into (2.10)
terms are collected according to powers of . We obtain

0= £ &" V(" ~h™)( bt~ i) E' /)
+e(bler +5gi ! + g | EWVe)
4.4) ,

+€n+1/2{ b'h,n +aiig?(lll‘+9‘2—gn((li]'+gnci(l/i_Cihnl//[lll+cih?_l _lllaijh?(l/j
aii n= aii n
+?hn' 1_7}' ()i -

In equation (4.4), if the superscript of g” or h" is less than zero, that term is set equal to
zero. The leading term, n =0, is composed of three parts and vanishes if

i a’
4.5) b lbi_?d’i‘//jd/:(),
(4.6) b'gi =0,
i a’ ij ij i i a’
@7) bhY+=- g+ agl— hia i+ 8¢ — 'y~ h(Wy)) = 0.
Equation (4.5) is analogous to the eikonal equation of optics. It is obtained

independently of g"(x) and h"(x). Since b' = dx'/dt, equation (4.6) indicates that
dg”_

da
Thus g° is constant on trajectories. In § 4.3 we show that the constant is the same on all
trajectories. Once ¢ and g are known, h° can be calculated from equation (4.7). Here

we explicitly treat equations (4.5)—(4.7). Higher order terms are treated in an analogous
fashion (Mangel (1977)).

4.8)

4.3. Determination of ¢ and g°: Contours of probability.
4.3.1. Determination of ¢(x). The transformation ¢ = —34? converts equation
(4.5) to

i

4.9) bf¢,.+92-¢,.¢, —0.

Equation (4.9) is the Hamilton-Jacobi equation or eikonal equation (see also Cohen
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and Lewis (1967), Ventcel and Freidlin (1970)). It corresponds to a Hamiltonian

(4.10) H(x,p)=3a"pip; +b'p,,
and Lagrangian
(4.11) L(x, ¥)=%a;(x' —b")¥' —b"),

where (a;;)=(a”)"! and

4.12) H(x,p)+L(x, x)=xp:

According to Hamilton—-Jacobi theory, ¢ (x) is the minimum value of the integral of the
Lagrangian taken over all paths joining x, and x. If x, is the saddle point, then ¢ =0 on
the separatrix, since L(x, )=0 if x' = b'. Thus ¢ = ¢ =0 on the separatrix &,

Since equation (4.9) is nonlinear, it may have solutions in which ¢ (x) is nonzero on
the separatrix. Consequently, by setting ¢ =¢ =0 on &, we are imposing an extra
condition on ¢ (x). This condition can not be determined directly from equation (4.5) or
(4.9). If ¢ is nonzero on ¥, then the first derivatives of ¢ must vanish on &. In this case, it
is not possible to construct a solution that approaches zero on one side of the separatrix
and one on the other side.

Equations (4.5) and (4.9) with initial data on & represent singular characteristic
initial value problems. We will show that the singularity (the saddle point) allows the
unique determination of ¢(x). Elsewhere, we give an existence proof for this type of
initial value problem (Mangel (1977a)).

The most interesting experiments begin in the vicinity of the separatrix.
Consequently, we will now determine ¢ (x) by a Taylor expansion, for points near <.
Elsewhere, we show how (x) can be calculated in the entire plane by the method of
characteristics (Mangel (1977a)).

When equation (4.5) is differentiated and evaluated on &, we obtain

ij
4.13) Wbt~ Sw =0, k=12,

where dy,./dt = b’y Since ¢ is constant on %, the tangential derivative of ¢ vanishes.
Then equation (4.13) can be used to derive an equation for the normal derivative of :

dy. avn
(4.14) 7;+5¢//n— > =0 on%
In equation (4.14)
(4.15) b(t)=[(b*)’bL —b B> (b +bh)+ BV b2/ (B +(5%))
é: 1107214 1N2/22\2\ A 12003 1\372 | 7 1,72\3
4.16) 2 [a () +@ ) ®B))—2a ()b +b (b7))

+a®((b1)*(67)*+ BN/ (B + (6.

Equation (4.14) is a version of Abel’s equation (Davis (1962, p. 75)) and is solved by
introducing z(¢) defined by

(4.17) Un=[B0z(1)] 7,
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where B'(t)= bB. The solution of 4.14)is

© s —-1/2
(4.18) Un(t) = H 4(s) exp [—2 J' b(s") ds’] ds}
Equation (4.18) satisfies the condition
4.19) ()= \/2;—3(53

which is consistent with (4.14) at the saddle point (where ¢ =00 and dy,/dt =0). The
higher derivatives of ¢, up to order r can be calculated in an analogous fashion, if
deterministic equations are C".

4.3.2. Determination of z,, z, and g°. We first suppose that the boundaries I and I1
are level curves of (x), say ¢ = ¢yonIand ¢ = Yy on II. We set zo= ¢y and z; = Yy; in
(4.3). To leading order u =0 on boundary I, and u = 1 on boundary II if

1
4.20 O —

(420 8 E(@Wu/Ve)

Inlight of (4.8), g°=1/E (¢u/ \/;) on all trajectories that intersect boundary II. Since all
trajectories in the lower half plane intersect at P,, g°=1/E(4u/ v €) on all those
trajectories. In particular, g° has the above value on the trajectory from P; to P,. Thus,
8o has the above value on the trajectory from P; to P,. If this were not so, equation (4.8)
would be violated when ¢ is replaced by —. Since all trajectories in the upper half plane
intersect at Py, g°=1/E (/Y ¢) on all of these trajectories. Thus, g° is constant in the
entire phase plane.

If s (x) is not constant on I and II, then u (x) will not be 0 or 1 on the boundaries, but
will be close to O or 1. Let ¢, ¢/} be the minimum and maximum values of Yyonl. Weset
2°=y}. Thenon, u(x) is not zero, but

_ wine
(4.21) u(x)=g°E(yi/Ve)=g° J' e "% ds.
vi/Ve

An integration by parts yields

—((W9)2/¢e) e—((w})2/s)
W

Thus, if ¢{ and ¢ are bounded away from 0, u(x) will be exponentially small on

boundary I. This restriction is an implicit assumption about the boundaries. (Also see

Appendix B for an alternative treatment.)
If 1 is the maximum value of ¢ on I, we set

1
CE@i/Ve)

An argument similar to the one above shows that on boundary II:

(4.22) u(x)gJE[ ]g0+ 0.

(4.23) g°

—(¥p2/e e—(-lll‘l)2/s 0 32
- g +0(™),
Y n ]
where ¢ is the minimum value of ¢(x) on boundary II.
With the above choices of zo, z; and g°, the ansatz (4.2) will satisfy the boundary
conditions to within exponentially small correction terms.

4.24) 11—u(x)|§JE[e
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4.3.3. Contours of probability. Once ¢ and g° are known, the leading term in the
expansion of u(x) is
(4.25) u(x)~ g’ E@W(x)/Ve)+O("?).
Since ¢, vanishes on the separatrix,in a vicinity of the separatrix
(4.26) W(x)=Ya(x,) 61+ O(8n”)

where x; is a point on the separatrix and én is the distance from x; to x.
Contours of equal probability are obtained when ¢(x) is a constant. Thus, to
leading order, we obtain contours at distances én = 1/, from the separatrix.

4.4. Completion of the first term: Evaluation of h°. Since ¢ = 0 on the separatrix,
equation (4.7) becomes
dh’ a" v

an_ a4 ,04 — % 4 0 0.0y
4.27) w2 h” b ) vig —g ¢ .

At the saddle point, dh°/dt vanishes. Equation (4.27) can then be solved for h°(P;):

i, 0 0 i,
(4.28) ho(pl):f_ﬁw =K.
a iy P

The solutidn of (4.28) which satisfies (4.29) is

07 p)@"/ 2y +c'w)g’ ds+ K

4.29) ho(r)= o0 ,
where
(4.30) po)=exp| [ Zuwar]

and K is given by equation (4.28).

Once h°(t) is known on &, equation (4.7) can be used to calculate 4° in the plane.
Since the separatrix is a characteristic curve of (4.7), the problem as posed is a
characteristic initial value problem. Elsewhere, we show how the above problem can be
converted to a noncharacteristic initial value problem and h° calculated everywhere in
the plane. The existence proof for solutions of (4.7), with initial data on the separatrix is
analogous to the existence proof given in Mangel (1977a). In a vicinity of the separatrix,
h(_) can be calculated by a Taylor expansion exactly as (x) was calculated.

5. Asymptotic solution of the first exit problem in the marginal case.
5.1. Marginal type dynamical systems. The deterministic evolution of the macro-
variable is governed by

(5.1) x=b(x,n)

where n € R' is a parameter. Equation (5.1) may have three steady states, Qo(n), Q1(n)
and P,. Let B, be the matrix (bf,) evaluated at Qp, Q1 0r P, k =0, 1, 2. We assume that:
1) For all values of n, B, has two real negative eigenvalues. Although P, may
depend upon 7, P, is always bounded away from the separatrix tube.
2) Asn |0, the distance between Qo(n)and Q1(n) decreases. When n =0, Q, and
Q; coalesce and annihilate each other (i.e. when 1 <0, (5.1) has one real and two
complex steady states).
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3) When 1 >0, By has two real negative eigenvalues and B, has one real positive
and one real negative eigenvalue. When n =0, Bo= B has one zero and one real
negative eigenvalue. The eigenvector corresponding to the negative eigenvalue has
positive slope. The double point Qo(0)/Q1(0) is called a saddle node (Andronov et al.
(1973)).

A deterministic system satisfying the above assumptions will be structurally similar
to the system sketched in Fig. 2.

n>0 x! n=0 x! n<0 x!

FIG. 2. The marginal type dynamical system. When n >0, there are two steady states in the separatrix tube.
Asn |0, the two steady states approach each other and coalesce atn = 0. Whenn <0, the two steady states in the
tube are annihilated.

The above conditions can be reformulated by a change of coordinates. Define the
y' axis in the direction of the eigenvector of the nonnegative eigenvalue of B;. The y?
axis is in the direction of the eigenvector of the negative eigenvalue of B;, with the
origin at Q;. Then

(5.2) y=b@,m)
is the deterministic system in the new coordinates. The system is of the marginal type if:
1) det (65(Q1,0)=0,
2) 61(Q1,0)=513(Q1,0)=0,
3) 6%(Q1,0)#0,
4) 541(Q1, 0)—5731(Q1,0)#0.

(5.3)

5.2. The asymptotic solution.

5.2.1. Breakdown of the error approximation. If one wishes to use the theory of
§ 4 to solve the backward equation, then ¢(x), the argument of the error integral, must
satisfy

(5.4) biyg, 2L f""’"

¢ =0.

In the marginal case, b(x) vanishes at two points Qo and Q;. In § 4.3 we showed that
¥(Q,)=0. Itis clear that /(Qo) must be less than (Q1). Thus, at Q,, the ; must vanish
or be infinite and ¢(x) is no longer a regular function. If ¢(x) is to be regular, the error
integral must be replaced by a more complicated special function.
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5.2.2. Uniform solution in terms of the Airy integral. The analysis presented in § 3
indicates that the uniform solution of the backward equation in the marginal case can be
given in terms of the Airy integral and its derivative. In analogy to § 4.2 we seek a formal
solution of (2.10) of the form

(5.5)  u@®x)=Ye"g"x)AW/ "> a/e?*)+e" PR (x)A (Y/e?, a)e?).

In equation (5.5), the parameter @ and functions ¢(x), g"(x) and hA"(x) are to be
determined. The function A(z, B8) is the Airy integral and satisfies

d’A dA(z,

2 =—(z2—B)—‘(12 B), Zo=z=12z;.

When the derivatives of u(x) are evaluated, equation (5.6) is used to replace A” by
proceducts of A’ and (> — a)/e*. Following Lynn and Keller (1970) we assume that

5.7) a=Y ae”.

After derivatives are evaluated and substituted into the backward equation (2.10),
terms are collected according to powers of £. We obtain:

(5.6)

0= gos"““A’(g"-(w2~ao)h")(b"w, W -a0s w.«zf,)

+ ¥ £"A<b'g,'-’+——g,, +c'gh” 1)
n=0 2
i

+ ¥ e"+2/3A’(bihf'+cig"wi—ci¢;(1//2——ao)h"+cih§'_1 +4

2 ) g Ui

a:] N aii

+a'gly+=hiT — (W —ao)a ki — k'S (W~ ao))

(5.8)

n+1

tZ “"{ H_l k(”‘/" W —a0)> ./,,w,)

+_¢il//j(gn+l_k _(¢2_a0)hn+l—k)}

n+1

T R S as))

In equation (5.8), if a superscript is less than zero, that term is set equal to zero.
The leading term (n = 0) is composed of three parts and will vanish if

(5.9) bt~ bt (4~ @) =,
(5.10) b'gi =0,

b'h? = KO ("~ a0~ ~ ao)a kW
(5.11) . .
—al%d’il//i(go_(‘/fz—ao)ho)"'%gol//ij +c'yig® +c'wih°(Y* — a0) = 0.

Equations (5.9, 10) were used in obtaining (5.11).
From equation (5.9) we see that (x) will be a regular function of x. The field b(x)
vanishes at two points Qo, Q. We require that ¢? = a, at these two points. Since
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¥(Q1)> ¢(Qo) for the problem as formulated, we set ¢(Qo) = —Vag and ¢(Qy)= Vao.
Here, we explicitly treat (5.9)—(5.11). Higher order terms can be treated in an
analogous fashion (Mangel (1977a)).

5.3. Evaluation of the parameter ao. The substitution I3 =—%¢//3 +a0¢1/—§a(3)/ 2

converts (5.9) to the eikonal equation (4.9). An argument analogous to the one in § 4.3
shows that ¢ = Vao on the entire separatrix &. The parameter ay must be determined so
that (5.9) is satisfied with initial data ¢ =va, on the separatrix and the additional
condition that ¢ =—Va, at Q,. The one additional condition allows the unique
determination of ay.

The following iterative procedure can be used to determine . An initial choice of
ao, @& is made. We set Y= —\/Z(@ at Qo. Equation (5.9) is then solved by the method
of characteristics (Courant (1962)). When the method of characteristics is used, the
phase plane is covered by a family of trajectories called rays. The rays are generated
from the system of ordinary differential equations

dx’

(5.12) d—s=bi—aiipf(¢2—ao),
dy dx'
5.13 w_ax
( ) ds ds P
dpi i ij af]l-c 2
(5.14) G5 - bwpit2aypipip. = pipi ("~ ao),

where p; = 4. Some of the rays emanating from Q, will hit the separatrix &, If  # \/;(()65
on ¥, then a$” must be replaced by an improved estimate of ao, . The method of
false position (Dennis and More (1977)) can be used to calculate increments in ao. The
above procedure can be repeated until a, is determined to any desired accuracy. As the
estimates a§" approach the true value ao, the rays will begin to bend and run parallel to
the separatrix, which isitself a ray. An indication that a ray is approaching the separatrix
is that bic,b,- = ¢~ 0. This criterion can be used in numerical determination of ay,.

An equivalent procedure would follow rays that emanate from the saddle Q, and
approach Q. If ¢ does not approach —Va D as the ray approaches Q,, the estimate of
a$” must be modified. A priori it is not clear which technique is preferable. The decision

must be made on the basis of practicality.

5.4. Determination of ¢ and g°: Contours of probability. A procedure analogous
to the one in § 4.3 yields the following equation for ¢, (t) on ¥:

(5.14a) %4-5(//,. —Vao dyl=0.

When a¢>0, i.e. the two points have not coalesced, equation (5.14a) can be treated
exactly as (4.14) was. Elsewhere we show that the constructions given here are regular
at the marginal bifurcatign (Mangel (1977a)).

Similarly, the values of z, z; and g, can be determined as in § 4.3, except that the
error integral is replaced by the incomplete Airy integral. When g° is evaluated, the
expansion of the Airy integral (3.19) can be used to simplify the evaluation of g°.

Once ¢ and g° are known, the leading part of the formal expansion for the first exit
probability is

(5.15) u(x)~g°AWx)/e'?, ao/e**)+ O(e*?).

Equation (5.15) can be used to generate contours of equal probability.
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5.5. Completion of the first term: Calculation of h° and a;. The function h°(x)
must satisfy equation (5.11). Since ¥? = ao on the separatrix, on & the equation for h° is
dn’ i a’ a’ ;
(5.16) ———hoa][&;wiWi]:(al_‘//idfj_—d/ij_c l//i)go-
dt 2 2
We assume that ao>0, i.e. that Qg and Q; are distinct. Elsewhere, we show how to
calculate #° when ap=0 Mang¢1 (1977a)).
Since d/dt=b'09/dx’, at the saddle point equation (5.16) becomes an algebraic
equation, with solution

(ala ii(ﬂi(//j —a ijl//ij - 2ci(//i)go

5.17 h°(Q)= - :
(5.17) (Q) Ve a'w, o
If p(¢) is defined by

(5.18) p)=| a"lao ds,

then the solution of (5.16) satisfying (5.17) is

(5.19) _ I exp (p(s))glas(@”yiy)/2— a /2 = c'wi] ds + h°(Q1)
exp (p(1))

Once h°(t) is known on the separatrix, it can be determined everywhere in the plane by

the method of characteristics (Mangel (1977a)).
The parameter a; is still undetermined. It can be approximately calculated

as follows. The field b(x) vanishes at Qo, where ¢ = —Vao. At Qy, equation (5.16)
becomes

h°(1)

(cra’yap;—a"y —2¢') o
5.20 h°(Qo)= — .
(5.20) (Qo) e au g o

When Q, and Q; are close together, we determine k° at Qo by a Taylor expansion
(5.21) h°(Qo)=h"(Q1)+v; 8x’,

where v; = 9h°/dx'|o,. The parameter a; is chosen so that equations (5.20) and (5.21)
agree.

A more exact determination of a; uses the method of characteristics, as the
calculation of ay did. A manifold &' can be determined on which (5.16) is not a
characteristic initial value problem. Then, equation (5.16) can be solved by the method
of characteristics, starting at Q;. When a ray reaches Qo, h° should have the value given
in (5.20). If the value of 4h° at Q,, when calculated by the method of characteristics, is
not the same as the value given in (5.20), then the estimate of a; must be modified. The
method of false position can be used to calculate the iterates of «a;.

6. Asymptotic solution of the first exit problem in the critical case.
6.1. Critical type dynamical systems. The macrovariables evolve according to a
deterministic kinetic equation

6.1) _ x=b(x,n,9)

where m, 8 are one-dimensional parameters. The physical systems of interest here
motivate the following assumptions about the bifurcation set of (6.1):
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1) For some values of 7, 8, (6.1) has three steady states Po(n, 8), Pi(n, §) and
Py(m, 8). All three steady states are contained in the separatrix tube. If By = (b))
evaluated at Py, then when the three steady states are distinct, By and B, have real
negative eigenvalues. B; has one real negative and one real positive eigenvalue. The
eigenvector corresponding to the negative eigenvalue has positive slope.

2) As 7, 8 vary, two of the steady states may coalesce and annihilate each other.
This behavior is analogous to the marginal bifurcation.

3) As 7, 6 vary, all three steady states may move together and coalesce when
n =& =0. At the critical bifurcation, B; = (b’;) has a zero eigenvalue. We assume that
the steady state remaining after the critical bifurcation is a stable steady state.

A deterministic system satisfying the above postulates will be structurally similar to
the one sketched in Fig. 3.

xZ
I n=6=0
1I
xl xl
2
x 2
I * I
II
II
x! x!

F1G. 3. The critical type dynamical system. When m and 6 are both greater than zero, there are three steady
states in separatrix tube. When n = 8 = 0, the three coalesce to a weakly attracting stable steady state.

The above properties can be restated in terms of a new coordinate system as
follows. The y' axis is in the direction of the eigenvector of the nonnegative eigenvalue
of B;. The y” axis is in the direction of the eigenvector of the negative eigenvalue, with
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the origin at P;. The deterministic evolution is then
6.2) y =6, 8).
A dynamical system is a critical type system if:

1) det (b';(P:, 0,0))=0;

2) 6'1(P1,0,0)=5,(Py, 0, 0);
(6.3) =5"11(P1, 0,0)= 5 11(P1, 0, 0)=0;

3) 6%4(Py, 0,0)#0;

4) b311(P1,0,0)=52%,, (P, 0, 0) 0.

6.2. The asymptotic solution.
6.2.1. Breakdown of solutions using the Airy integral. If the theory of § 5 were
used in the critical case, the argument of the Airy integral would have to satisfy

(6.4) by, —%dnw,-(uf ~a0)=0.

Since the deterministic field now vanishes at three points in the separatrix tube,
expression (6.4) indicates that (x) will not be regular at the third steady state. If we
wish to construct a solution in which ¢ (x) is regular, the Airy integral must be replaced
by a more complicated special function.

6.2.2. Uniform solution in terms of the Pearcey integral. The analysis in § 3 and
results in §§ 4 and 5 indicate that a possible formal solution of the backward equation in
the critical case is

ux)=Le"g" (PW(x)/e", a/e', g/
(6.5)
+e" R @P W)/e ol e, B/

where the parameters a, 8 and functions (x), A" (x) and g"(x) are to be determined.
The function P(z, a, B) is the Pearcey integral, satisfying

dP(z, a, B)
dz ’

20=2z=2,.

2
(6.6) Z_ZI;(Z’ a,B)=(2>—az—B)

When the derivatives of u(x) are evaluated, equation (6.6) is used to replace P" by
products of P' and (¢ —ay—B)/e*’*. We assume that a and B have asymptotic
expansions of the form

6.7) a=Y ek, B=Y Bee”.

After derivatives of u(x) are evaluated and substituted into the backward equation
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(2.10), terms are collected according to powers of £. We obtain

0= ¥ &" P (g" +h" (W~ o — B bYi+ 5 bt (4 — ot — o))

+ ¥ s"P(b'g,'—'+?g Y yclgh 1)
n=0

+ ¥ s"+3/4P'{ B'hl+c'gl+c'h  +h 'YW’ —ao — Bo)+a''gly;

+%h3_1 +%gnl//ij + (W’ —aod —Bo)a hiy;
6.8) +%hn(¢/i(¢/3 —aoy — Bo));

n+1 if

B kz=:1 (P +Bk){ %‘/’i‘lfi(gn+l_k TR W a0y = Bo)
~+h"+k+<b“ﬂf*%{dmm(ws—_aow-_BO»}
n+1 ﬁ

v S
+ 3 v ™ T o+ B e+ Biy)

— % Wan+ B cuh™ =R h )
k=1 2

n aii .
- E ak?'/’i‘//jh"_ .

k=1

In (6.8), if a superscript is less than zero, that term is set equal to zero.
The first term in (6.8) is composed of three parts and will vanish if

6.9) by, +%w,-w,-(w3+aow—ﬁo)= 0,

(6.10) b'g? =0,

i(?a_ijOH 3 _ ii(_)_a_iioug_ B
6.11) bh? + 8w+ (W ot = Bola By + TR (0 ot~ o)

hoa?'//i‘ﬂi(:;l//z_ao)

= (Yar + B (W, 1)+g°c i+ c'wih (0 — aoy = Bo) = 0,
where we have denoted

n+1 if
T N )
(6.12)

n+1-— i aij
+h" k<b '//i+7¢i‘//f('/f3_aol//_ﬁo))-
The field b(x) vanishes at P,, P; and P,. The function c/;(x) will remam regular if

¥> —aoy — Bo vanishes at the points where b(x) vanishes. Let o =< i1 =< ¢, denote the
ordered roots of

(6.13) W —aoy—Bo=0.
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We then set ¢(Po) = o, ¢(P1)= 1 and ¢(P2) = .
Here we treat equations (6.9)—(6.11) explicitly. Higher order terms are discussed in
(Mangel (1977a)).

6.3. Determination of the parameters ao, and B,. The transformation ¢ =
Wi—ao?/2—Boy -3+ aoi/2 + Bod, converts equation (6.9) to the eikonal equa-
tion (4.9). An argument using Hamiltonian-Jacobi theory, asin § 4.3 shows that ¢ = ¥
on the entire separatrix.

Equation (6.9) must be solved with initial data on the separatrix and the two extra
conditions ¢¥(Po)= o and ¢(P2)=4,. The two extra conditions allow the unique
determination of ao and Bo. As in § 5.3, an iterative procedure is used to determine a,
and Bo.

Initial estimates, a3’ and BS", are used in (6.9). Equation (6.9) is solved by the
method of characteristlcs, starting close to the saddle point where ¢ = 1 and ¢ is the
middle root of

(6.14) ¥ —aly By =0.

Some rays emanating from Py will approach Py, others will approach P;. As Py is
approached, v should approach y; as P, is approached ¢ should approach . If ¢(Po),
¢(P;) are not o, 2, then the values of the parameters must be modified. The method of
false position can be used to calculate iterates of ao and Bo. This procedure can be
repeated until ap and By are determined to any order of accuracy.

6.4. Determination of s and g°: Contours of probability. Using the procedure
outlined in § 4.3 the following equation can be derived for ¢,(¢) on the separatrix

(6.15) %+5¢n+§wi(3d7f—ao)=0-

We assume that the three steady states have not coalesced, so that 11;1 and ao are not
both zero. Elsewhere we show that the constructions given here are regular at the
critical bifurcation. Equation (6.15) can be treated exactly as (4.14) was treated.
Similarly, z, z; and go can be calculated as in § 4.2, except that the error integral is
replaced by the incomplete Pearcey integral. When g° is evaluated, the expansions
(3.26) can be used to simplify numerical calculation.
Once o, Bo, ¥ and g° are known, the leading term in the formal expansion of u is

(6.16) u(x)~g°PW/e"*, ao/e'’?, Bo/e )+ O

Equation (6.16) can be used to generate contours of equal probability.

6.5. Completion of the first term: Calculation of h°, a, and B;. The funct~ion h°
must be determined from equation (6.11). On the separatrix, where =4, and
> —aoy — Bo vanishes, (6.11) becomes

h° a” ~ .a”
7‘* h°7¢i¢;(3¢f ag) = (!//1041*'31) g " —g°c'y —780%'-
Since d/dt=b" 3/3x’, at the saddle point P; equation (6.17) becomes
(101 +Br)a ;= 2c'y, —a“’w.-,-)go‘

(311’3 _ao)aud’id’i P

(6.17)

(6.18) ho(py) =
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If p(t) is defined by

(6.19) p()= J” (3l/;i'—ao)% Yup; ds,

and

(6.20) 10 =~ e +B) S vy + e+ )",

the solution of (6.17) satisfying (6.18) is

d —p(s) 0
(6.21) Ro(r) =1 f(S)ef(p [-Zi;}h (Py)

Once h°(t) is known on the separatrix, it can be determined everywhere in the plane, by
the method of characteristics, as described in Mangel (1977a).

The parameters a; and B, are still undetermined. They can be determined by using
the method of characteristics, in a manner analogous to the calculation of ao and Bo.

A new manifold &' can be constructed, with £° known on &, so that (6.11) is not a
characteristic initial value problem. Then (6.11) can be solved by the method of
characteristics. Some rays emanating from &' will approach P, or P,, where h° must
have the value

((Grar + Br)a Yy — ?Cill'i —a ii'//ii)go
(3di —ao)a v Pe
If the value of h° at P,, when calculated by the method of characteristics, is not the same

as the value determined from (6.22), then the estimates of «; and 8; must be improved.
The method of false position can be used to calculate iterates of @y and B;.

(6.22) h°(Pe) =

k=0,2.

6.6. Two complex steady states with small imaginary parts. When n <0 (marginal
case) or n <0, 8§ <0 (critical case) only one real steady state exists. There will be two
complex steady states. If the imaginary parts of the complex steady states are small, then
the linear part of the deterministic equations about the real steady state will be small.
Consequently, the dynamics at the steady state are almost completely nonlinear. This
situation will correspond to an almost algebraic (rather than exponential) decay of
perturbations to the real steady state. The error integral, which corresponds to
nonvanishing linear dynamics, will not provide an adequate asymptotic solution of the
first exit problem. The Pearcey integral, however, can be used to provide an adequate
asymptotic solution.

When the ansatz (6.5) is used, the function ¢(x) must satisfy (6.9). In order to
determine ao and Bo by the method of characteristics, complex rays would be needed.
An easier, although less accurate, technique uses power series for ao, Bo. Itis possible to
derive power series of the form (Mangel (1977a))

(6.23a) ao=Y Ajm's’
L]

(6.23b) Bo=Y Bim's"
L]

The power series extend up to order r, in  and §, if the deterministic equations are C” in
1 and 8. Since we are using power series, the results given in this section are valid only in
a neighborhood of the origin in (n, §) space.
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The value of ¢ on the separatrix is ¢,, where ¢, is the real root of
(6.24) ¥’ —aop—Bo=0.

Using the technique in § 6.4 we can calculate the value of ¢ in a neighborhood of the
separatrix by a Taylor expansion. The value of g° can be determined as described in
§ 4.3. Thus, the leading term of the first exit probability is

(6.25) u(x)~g°P(x)/e"*, ao/e'’?, Bo/e*>*).

Our solution is approximate in the following sense. Since ao, B0 are only given as power
series, equation (6.9) is not satisfied identically, but must be replaced by

a’

) W’ —aoh —Bo)=O(n""'+8™).

by +

Let % indicate the backward operator. Then, our formal result will satisfy the backward
operator to an order of ené:

(6.26) Lu=0(""* 0" +8").

The estimate (6.26) indicates how close 1, § must be to the origin for our ansatz to be
valid. Unlike all previous results, which were independent of ¢, the validity of the
extension presented in this section is dependent upon e.

Appendix A. Asymptotic solution of the expected time equation. Let T(x) be
defined by

(A.1) T(x)=E{min¢t:x(t)e R, X(t') & R, t' <t|%(0) = x, X(¢) hits R}.

Then T (x) is the expected amount of time it takes the process to hit R starting at x. In
§ 2, we showed that T(x) satisfies the backward equation (Gihman and Skorohod
(1972))

ea’
2

In (A.2), u(x) is the probability of eventually reaching %, conditioned on xX(0)=x.
Equation (A.2) is an inhomogeneous backward equation. In this appendix, we give the
asymptotic solution of (A.2). The solutions are closely related to the solutions in §§ 4-6,
so that only the first term will be considered. Equation (A.2) must be supplemented by
boundary conditions. Let d be the distance from x to &.

The first boundary condition is

(A.2) T;+b'Ti+ec'T;=—u(x).

(A.3) T(x)=0, xER.

As asecond boundary condition, we require that T'(x) be bounded as |d| - co. In Feller’s
terminology (Feller (1952)), we are requiring that co be an ‘“‘entrance boundary”.
Feller’s theory applies to one-dimensional systems and there is no analogous two-
dimensional theory. On the other hand, the second boundary condition is in accord with
intuition for the systems of interest here.

A.l. Normal case. The results presented in § 4 and the asymptotic analysis of a
one-dimensional version of (A.2) indicate that a possible solution of (A.2) is

(A.4) T(x)=Y e"g"F(x)/Ve)+&" > h" (x)F' (¢ (x)/Ve) + e k" (x).
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In(A.4), 8" (x), h"(x), k" (x) and ¥(x) are to be determined. The function F(z ) satisfies

(A.5)

=—z—=1, 20=2=2,.

Equation (A.5) is an inhomogeneous version of the equation that the error integral
satisfies.

When derivatives are evaluated, (A.5) is used to replace F” by (—yF ') e - 1).
After substitution into equation (A.2), terms are collected according to powers of . The
leading term (n = 0) vanishes if the following equations are satisfied:

(A.6) O(F'/Ve): b'ys —%w,-w,w =0,
(A7) O(F): b'g} =0,
(A.8) O(c°): b'k? —%w,-g% ~u(x),

(A.9) O(e"?*F'): b'h? +“7g°¢,.,.—h?a"¢,¢—h°cf¢i¢+g°c‘¢i —h‘)%[(wdn)f] =0.

Equations (A.6), (A.7), (A.9) are identical to equations (4.5)—(4.7). Thus, the con-
structions in § 4.3 for ¢ and h° are applicable here. Equation (A.7) indicates that glis
constant on trajectories. The argument in § 4.3 shows that g° has the same value on all
trajectories.

At the saddle point Py, b(x) vanishes. Equation (A.8) becomes

(A.10) %dza/ﬁg% —u(Py).

Thus, the value of g°is g° = 2u(Py)/a"yap;. Once g° is known, k° can be calculated by
the method of characteristics if initial data are given. We assume that ® is not a
characteristic curve, and set k°=0 on %. (If & is a characteristic curve, then the
equation (A.8) must be treated by a more complicated procedure (Mangel (1977a)).)

We also assume, without losing generality, that ¢ =¢, on R®. Then, we set
Zo= :/10/\/; and F(d/o/\/;) = F'(¢0/~/;) =0 in equation (A.4). With the above choices,
T(x)=0if x € R. If R is not a level curve of ¢, then T (x) will not identically vanish if
x € R but will be exponentially small (§ 4.3).

A.2. Marginal case. The above solution for T'(x) breaks down in the marginal case
for the same reason that the solution for u(x) that used the error integral broke down
(§ 5.2.1). Based on the ansatz given in § 5 and the expansion of a simpler problem, we
seek a solution of (A.2) of the form

T(x)=Y e"g"(x)BW/e'? a/e?? 1/6'7, v)

A.11
( ) +e"+2/3h"(x)B'(¢/sl/3, a/£2/3,l/51/3, v)+e k" (x).

In (A.11), the function B(z, a, y1, v2) satisfies an inhomogeneous version of the
equation that the Airy integral satisfies:

d23(2’§ a, Y1, ¥2) —

A.12
( ) dz*

(22 dB -
z —G)E—Yﬁ")’zz’ Z0=2z.

When derivatives of T'(x) are calculated, (A.12)is used to replace B” by terms involving
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B', ¢, a and y. We assume that
(A.13) a=Yae"® and y=Y ne”.

After derivatives of T'(x) are calculated and substituted Jinto equation (A.2), terms are
collected according to powers of e. The leading term (n = 0) vanishes if

(A.14) O(e™'*’B"): by, _%'/’ﬂ//i(l//z_om) =0,
(A.15) O(e°B): b'g) =0,
(A.16) O(e%): b + 5 ynig”(~1+4ryo) = ~u(x).

The O(e ”’?>B’) term vanishes if #° satisfies equation (5.11). Equation (A.14)is identical
to (5.9). Thus, the constructions for ¢, ao and h%in § 5 can be used here. Equation
(A.15) indicates that g° is a constant on trajectories. The argument used in § 4.3 shows
that g° has the same value on all trajectories.

In the marginal case, the vector field b(x) vanishes at two points Qy, Q1 within the
domain of interest. At these two points, (A.16) becomes

a"va; o
2

(A.17) g —1+y¢yo)lo, =—u(Qr), k=1,2.

Equation (A.17) provides two equations for g° and yo. At the marginal bifurcation, an
application of I'Hopital’s rule shows that y,=0. Equation (A.17) still provides one
equation (at the saddle-node Q) for g°:

N A
(A.18) %g%bu(ox

Once g° and y, are known, k° can be calculated as described above.

We also assume that R is a level curve of ¢, say ¢ = o on &. Then, in (A.12) we set
zo=1o/e"? and B(zo) = B'(z0) = 0. With these choices, T(x)=0 on R.

If R is a characteristic curve, or ¢ is not constant on &, the remarks of the previous
section apply.

A.3. Critical case. The solution in the previous section will break down if the
domain of interest contains three steady states or the deterministic system exhibits the
critical bifurcation. Based on the results in § 6 and the expansion of a simpler problem,
we seek a solution of (A.2) of the form

(A.197)“(X)=Z e"g"(x)QW/e ; afe'?, B/, 1/, y1, eV y2)

+e" R )Q W afe!?, Bl 1/ v, e i) +e "k (x).
In (A.19), the function Q(z; a, B, v1, ¥2, ¥3) satisfies
d’Q _
dz?

d
(A.20) (z3—az—B)£—y1+yzz + 9322, Zo=2z.

When derivatives of T'(x) are evaluated, (A.20)is used to replace Q" by terms involving
Q', a, B, v1 and v,. After derivatives are evaluated and substituted into (A.2), terms are
collected according to powers of . We assume that

a=Y ae", B =Y Bie",

(A.21)
71=Z ‘Ylkska 72=Z ‘sz&‘k-
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The first term of the asymptotic solution vanishes if
if
(A22)  O@E™*Q): b+ (0 ok = B0) =0,
(A.23) O(°Q): b'g) =0,
aij'//i‘lfiz
2

The O(e**Q’) term vanishes if #° satisfies equation (6.11). Equation (A.22)is identical
to (6.9). Thus, the constructions given in § 6 for ¢, ao, Bo and h° are applicable here.
At the nodes P,, P, and saddle point P;, b(x) vanishes. Equation (A.24) becomes

a"yi; _
2

(A.24) O(e°): b'k) +g°(—1+ y10¥ + y200?) —u(x).

(A25)  g°(=1+y100(Pe)+ v200*(Po)) —-u(Pe), k=0,1,2.

The constants g°, y10 and v, can be determined from (A.25). Once g°, y10 and y,0 are
known, k° can be determined as described in § A.1. At the critical bifurcation
Y10 = Y20 = 0. We assume that R is a level curve of ¢, ¢ = o on R. Then, in (A.20), we
set zo = o/e* and Q(z0)= Q'(20)=0. If k°=0 on &, then T(x)=0 on X.

Appendix B. Formal satisfaction of the boundary conditions. By extending the
method of Cohen and Lewis (1967, pp. 284-285), it is formally possible to satisfy the
boundary conditions ¥ =0 on I and u =1 on II exactly. The solutions constructed in
§§ 3-6 will be called interior solutions. To be concrete, consider the normal case, so that
the interior solution, u'™, is given in terms of the error integral and its derivative. We
now construct boundary solutions, u'(x), u"(x) such that
(B.1) u™+u'(x)=0 onl,

(B.2) u™+u"(x)=1 onll

We shall give the construction to satisfy (B.1); the construction used to satisfy (B.2)

is analogous. Let s(x) measure the distance from x to I. Let N(s(x))=N(x) be a

neutralizer: N(x) is a C™ function, N(0)=1 and N rapidly approaches zero as s
increases. We construct a boundary solution of the form

B3) w'@)= T g MEWRNINC+ L " hiE W )/ VN (x).

n=

In (B.3), ¢'(x), the g7 (x) and h{ (x) are to be determined. Substitution of (4.2) and (B.3)
into (B.1) yields:

P "em E(™ (x)/Ve)+ e hi (x)E (6™ (x)/Ve)

B4 b gl B NN () +e" V2Rl (0)E W (x)NEN (x) =0,
forx el.

From (B.4), we set

(B.5) G(x)= ™ (x) forxel,

(B.6) g +N(x)gr(x)=0 forxel,

B.7) re+N@E{(x)=0 forxel.

Since u'(x) must satisfy the backward equation (2.10), we can derive the equations that
¥', gt and hY satisfy by using the procedure in § 4. Equations (B.5)-(B.7) are then used
to provide initial data when the ray equations are integrated.
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An analogous procedure is followed at boundary II, and in the marginal and critical
cases.
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