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PROBABILITY OF EXTINCTION IN A STOCHASTIC
COMPETITION*

MARC MANGEL aND DONALD LUDWIGY

Abstract. When noise is present, the outcome of the competition between two species is no longer
a deterministic function of the initial population sizes. An approximate value is given for the
probability that a specified species will become extinct, conditioned on the initial population sizes. The
calculation involves the asymptotic solution of the Kolmogorov backward equation. The theory is
compared with Monte Carlo experiments for the case of flour beetle competition. It is also shown that
the theory can be used to describe threshold fluctuations in nerves.

Introduction. The competition between two species is often represented by a
pair of coupled differential equations. When the model is deterministic, the
outcome of the competition can be predicted from the sizes of the initial
populations. If there is a stochastic component to the competition, however, the
outcome becomes a random variable. The results of the competition must then be
expressed in terms of probabilities.

The experiments of Park (1954) as interpreted by Neyman, Park and Scott
(1956) provide the classic example of a competition modified by stochastic factors.
Leslie and Gower (1958), Bartlett, Gower and Leslie (1960) and Barnett (1962)
constructed Monte-Carlo schemes to model stochastic competition. Barnett
(1962), in particular, investigated the qualitative dependence of the probability
that a specified species becomes extinct as a function of the initial population sizes.
The present treatment offers an alternative approach through the asymptotic
solution of the diffusion equation obeyed by the conditional probability.

In § 2, the Kolmogorov backward equation for this probability is given. A one
dimensional example, for which the diffusion equation can be solved exactly, is
presented in § 3. The solution involves the error function. This result is
generalized in § 4 by means of a variation of the ray method developed by Cohen
and Lewis (1967) for the solution of parabolic equations. In § 5, the “ray
expansion” is simplified near the deterministic separatrix, which separates two
domains of attraction. The result is a Ricatti equation, which is solved in § 6. The
solution is used to generate contours of equal probability in the plane. The
competition between two species of flour beetle is considered in § 7. The theoreti-
cal results are compared with Monte Carlo experiments (Barnett (1962)). In § 8,
the same procedure is applied to threshold fluctuations in nerve (Lecar and
Nossal, (1971)). It will be shown that the method and results of Lecar and Nossal
(1971) are a special case of the method presented here.

1. Noise and the dynamics of competing species: An example. The following
pair of equations has been used to model competition between two species (May,
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1973). A less symmetric system is treated in § 7.

1

(1.1) %—=x1(1+a—x1—ax2),
dx? 2 2 1

(1.2) —d;-=x (1+a—x"—ax).

The point (1, 1) is an equilibrium of this system. When the equations are linearized
around (1, 1), the eigenvalues are —1+a. If || <1, then (1, 1) is a stable node.
If |o|>1, then (1, 1) is a saddle point. In Fig. 1, the phase portrait for the case of a
saddle point is sketched. Two trajectories lead to the saddle point. All other
trajectories lead to one or the other of the two equilibrium points on the
coordinate axes. The trajectories which enter the saddle point (labeled I) form the
separatrix.

If the competition were deterministic, and if the process were to begin at
point A, it would end at 0,. Similarly, if it were to begin at point B, it would end at
0,. When noise is present, however, the two population sizes will fluctuate and the
separatrix might be crossed several times. We shall consider the case of Gaussian
white noise.

We want to calculate the probability that a competition beginning at
Po(x', x*) will end at 0, and to study the qualitative behavior of this probability as
a function of P,. The region of major interest is the vicinity of the separatrix. Far
from the separatrix, for example point C in Fig. 1, it is unlikely that noise of small
intensity will affect the outcome of the competition. However, in those competi-
tions which begin near the separatrix, noise can markedly affect the outcome,
since the populations may be driven back and forth across the separatrix by the
noise.

] 0,

FIG. 1. A phase plane portrait of the system of equations (1.1)~(1.2) The point 0 is a saddle point.
The trajectory labeled I is the only trajectory leading to the saddle point. All other trajectories lead to one or
the other of the two equilibrium states on the coordinate axes.
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2. The backward equation. Let X be the vector of population sizes. Instead
of the deterministic assumption that dX/dt = b(X), we assume that if X(¢) =x,
then dX is normally distributed with mean b(x) dt and covariance ea(x) dt.
Symbolically, X will satisfy the Ito equation (Ito and McKean (1965)):

(2.1) dX=>b(x)dt+Vea(x)dW.

The functions b(x) and ea(x) are characterized by the following conditional
expectations (Feller, (1971):

(2.2) b= lim iE[X"(HAt)—X"(t)le(t) =x/j=1,--+,n],
ats0 At

(2.3)  ea’=1lim ALE[(X" (t+A0)— X' (£)) (X (¢ + Ar)— X (1) X* (1) = x¥,

At->0 t
k=1, ,n)

Transition probabilities can be associated with (2.2) and (2.3) (Feller (1971)).
Let Q,(x, y) dy be the probability that y = X (¢) =y +dy give that X(0) =x. Then
if u(t, x) is defined by

(2.4) u(t, x) =j Qu(x, y)uo(y) dy,

u(t, x) is the conditional expectation of uy(X(¢)) on the hypothesis that X(0) = x.

In the case of competing species, u(t; x', x*) might be the probability that in a

competition starting with x’ individuals of species i, species 1 is extinct by time .
According to Feller (1971, p. 334) u satisfies the backward equation:

£

(2.5) u, = >

ai"ui, +b'u,.
We use the convention that repeated-indices are summed from 1 to n. Generally,
the coefficients a” and b’ will be complicated functions of x, so that (2.5) cannot

be solved exactly. Our goal is to obtain time independent, approximate solutions
of (2.5).

3. A simple example: Repulsion from the origin. Consider the following one
dimensional model equation

dx

(3.1) Et-=x, x(0)=x, —-1=x=1.
The process is arbitrarily stopped at x = + 1. The solution of (3.1) is:
(3.2) X =xpe’".

The origin is the only equilibrium of this system. It is unstable. If x, is known, the
position of the particle at any time ¢ can be calculated from (3.2). This process is a
one dimensional analogue of the process described in § 1.

When noise is present, it is impossible to know the position of the particle
exactly. Let u(t,x) be the probability that a particle starting at the point x has
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reached x =1 by time ¢ If a =2 then u satisfies

(3.3) U, = €Uy, + XU, ut,—1)=0, u(tl)=1.

The time independent solution of (3.3) is obtained by two quadratures and is

% —y2/(2¢)
[Zi e dy

(3.4) u(x)=m.

Thus the solution is an error function. We note that u(0) =3. It will be seen that
this result generalizes in the two dimensional case: the value of u(x) when starting
at the saddle point is 3.

4. An asymptotic solution. In this section, we begin the construction of an
approximate asymptotic solution of the two dimensional backward equation

(4.1) ga"fu,, +biu;=0
by generalizing the result obtained in § 3. In (4.1), u(x"', x*) is the conditional
probability that the line x' =0 is crossed before x* =0, if the initial value of X is
(x', x?). We assume that the deterministic equations X = b(X) are such that when
the system is linearized about the critical point X;, so that X = B(X — X,) + f(X)
where f and its first partial derivatives vanish at Xj, the matrix B has one positive
and one negative real eigenvalue and that the eigenvector corresponding to the
negative eigenvalue has positive slope. When these conditions are satisfied, the
phase portrait of the system X = b(X) near X, will be similar to Fig. 1 near 0. We
will obtain a local solution of (4.1) near the deterministic separatrix. We also
assume that ea is positive definite on the separatrix. A nontrivial system satisfying
these assumptions is studied in § 7. When ¢ is small, the local solution which we
will construct will change rapidly as the initial point moves across the separatrix.
The result of the previous section indicates that a possible form of the
solution is (using superscript »n as an index on g"(x), h"(x)),

(4.2) u=Y e"g"()EWx)/Ne)+e" " h" (x) E'@(x)/Ve).
n=0
In (4.2), E(z)=_f:,oe*y */2 dy. The second term is chosen in analogy with the

asymptotic solution of diffraction problems (Ahluwahlia, Lewis and Boersma
(1968)). E(z) satisfies the following equations:

(4.3) E"+zE'=0
and
(4.4) E"+zE"+E'=0.

The functions g"(x), h"(x) and ¥(x) are to be determined.

When the partial derivatives of u are evaluated, equations (4.3) and (4.4) are
used to replace E” and E" by products of E' and (/,/\/;, After derivatives are
evaluated and substituted into (4.1) terms are collected according to powers of .
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We obtain
n—1/2 n n igi aij
@s) 0= 5 e RGN o) b - )

+ 3 e Ea b+ ey )

ij

. i, a
+ L BN (ht+agl + g,
n=0

ij if
—gahiy+ S h =S h())).

In (4.5), if the superscript of g" or h" is less than zero, that term is set equal to zero.
The leading term of the asymptotic expansion (n = 0) is composed of three
parts. The leading term will vanish if we set

i
(4.6) b~y =0, o).
4.7) b'gi =0, o(1).
. i o .. i
(4.8) bR+ gy +a"g0 — ha i~ S h () =0, O

Equation (4.6) is analogous to the eikonal equation of optics (see below). Note
thatit is not approximate; we have not ignored any terms involving A" (x) or g" (x).
Thus ¢ can be determined to any order of accuracy, independent of g"(x) and
h"(x). Since b'3/ox' =d/dt equation (4.7) indicates that g° is constant on the
separatrix. We require that g’ E(c0) = 1. Then equation (4.7) implies that g’is
identically 1/E(c). Once g’ and ¢ are known, h° may be calculated by using
(4.8). The terms involving gj; and hj} are absorbed by the equations for g' and k'
which are similar to equations (4.7) and (4.8).

First we consider (4.6). This equation can be put into a form similar to the
eikonal equation (Ludwig (1975)) by the transformation

4.9) b=-32¢" or ¢=—yy
This transformation yields

a’ ;
(4.10) ) 'E’(biqb] +bt¢),' = 0

Equation (4.10) is analogous to (3.1.3) of Ludwig (1975). The appearance of
the eikonal equation in solutions of the diffusion equation was previously noted by
Cohen and Lewis (1967) and Ventsel and Freidlin (1970). The eikonal equation
corresponds to a Hamiltonian

(4.11) H(x, p)=%a"pp, +b'p;
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with associated Lagrangian
(4.12) L(x)=3a;(b' —%") (b’ —¥’),

where a; = (a”)7".

According to Hamilton-Jacobi theory, ¢(x) can be characterized as the
minimum value of the integral of the Lagrangian, taken over all paths joining the
point x and a given initial point x,. If x, is chosen to be the saddle point, then ¢ =0
on the separatrix, since L(x) will vanish identically if ¥’ = »’. Hence, we shall set
¢ =0 on the separatrix. Solutions of this type will exhibit a sharp transition across
the separatrix, for small «.

The O(1) term of expansion (4.2) is similar to the Fresnel integral, which
appears in the theory of diffraction. The intensity of light observed in diffraction
by an edge is

(4.13) I(x)=J‘ e A2 gy
0

Neglecting diffraction effects, one expects light on one side of the shadow and
total darkness on the other. The actual transition is given by the Fresnel integral
(4.13). In the present case, the deterministic theory predicts certain extinction
(darkness) for one of the species. The more exact stochastic solution is given by
(4.2).

Now consider (4.8). Since b'=dx'/dt, b'h®=dh°/dt where t indicates
differentiation along the separatrlx Also ¢ =0 on the separatrix so that (4.8)
becomes

dh® a" 0 a"

—— — ), = —— Y ..
(4.14) S h =~ 58"
At the saddle point, dh®/dt = 0 since b’ = 0. Thus, at the saddle point
(4.15) h®=C=ga"y/(a"yuy).

The solution of (4.14) is

16 o f+ gt/flep[H lll,l//,dt"]dt+c
4.16 hl=

exp[ +L E‘Iﬂiwj dtl]
with the integration constant given by (4.15).

S. Expansion near the separatrix. The function ¢, or , is still
undetermined. An approximate evaluation of ¢ is given by its expansion in the
vicinity of the separatrix (Ludwig (1975)). A point near the separatrix may be
written as x = x,+&x, where x, is a point on the separatrix and &x is a small
distance. For points on the separatrix ¢ = ¢ = 0. In addition, since ¢ = —3>, on
the separatrix ¢; =

At a point in the vicinity of the separatrix, ¢; is expanded as

(5.1) ¢:(x) = Pudx* +5¢ubx 6x" + O((5x)°).
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Similarly, b'(x) is written

(5.2) b'(x)=b'(xe) +b', 8x* + O((5x)?).

When these expansions are substituted into (4.10) we obtain

aij . . .
(5.3) = budx “dx' +b'hudx* +b'5x bydx" +1b'dydx*8x' + O((6x)%) =0.
After collecting powers of 8x, we have

(5.4a) b'oydx* =0.
a’ 1, 1 1, kol
. & PikPjt TS0k Qi TS0 Qi TS ikl =u.
(5.4b) 2¢¢+2b¢+2b¢ +2b¢> &x"6x' =0

Since ¢ and V¢ are zero on the separatrix, their tangential derivatives are zero.
Thus, (5.4a) is satisfied. The left hand side of (5.4b) is a quadratic form. In order to
simplify notation, we introduce the matrices

(5.5) P=(¢w), B= (b,ij)5 A= (aij)-
Then (5.4b) becomes

(5.6 Z—P+BP+PBT+PAP 0,
where d/dt=b"(3/0x') and’(- )" indicates the transpose.

Since the tangential derivatives of ¢ are zero, the only nonzero element of P
is @,.,, the second normal derivative. Through the introduction of local tangential
and normal coordinates along the separatrix, the matrix equation (5.6) can be
reduced to a simple ordinary differential equation. Let E be the unit normal dyad
(E = fif, where # is the unit normal vector) and define

(5.7) B=E™BE, A=ETAE, ¢,,=E"PE.
The matrix equation (5.6) then becomes
¢nn

(5.8) —+ B+ unB "+ b0 A = 0.

Equation (5.8) is a single Ricatti equation for the second normal derivative of ¢.

6. Solution of the Ricatti equation. In this section, we will solve the Ricatti
equation (5.8) and show how the solution can be used to generate contours of
equal probability in the (x', x?) plane.

Equation (5.8) is solved by introducing z = 1/ ¢,,,

d

Z A A a
1 T
6.1) —t—z(B+B )=A.

The solution of (6.1) is obtained by the use of an integrating factor. Then ¢,, is

—exp [+], (B +B7)dr]
(6.2) Brn _[OOA exp [+j. (B +B Tydt"dt'+c
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The constant of integration is determined by the requirement that the solution be
regular at the saddle point (¢ = o0).

Since dpn/dt = b' (9nn/0x’) and b’ =0 at the saddle point, de,,/dt =0 at
the saddle point. Equation (5.8) becomes an algebraic equation for ¢, :

(6.3) bun(B+B" +4,,A)=0.

Hence the integration constant in (6.2) is given by
—-A

6.4 = —_—.

64 ““B+BT

Equations (6.2) and (6.4) give the solution of the matrix equation derived in § 5.
These equations are used with (4.2) and (4.9) to evaluate the probability of
extinction as a function of position. We write

¢ (x) = 2un (x0)(8n)* + O((8n)°).
To leading order of & the approximate probability of extinction is
V=680

1 J’ nn
V2me J_»

The probability of extinction will be constant if v — ¢, 6n is constant. Hence, we
obtain contours of equal probability of extinction at distances proportional to

1/ v _¢nn'

7. Competition between flour beetles. Barnett, following the initial work of
Leslie and Gower (1958) and Bartlett, Gower and Leslie (1960), used a Monte
Carlo method to evaluate the outcomes of a model for the experiments of
Neyman, Park and Scott. The birth (A) and death (i) rates of the two species,
Triboluim castaneum and confusum, were modeled as

(6.5) ux)= e gy

(7.1a) A1 =.11-.0007x"—.001x?,

(7.1b) M1 = 01’

(7.1¢) A, =.08—-.0007x"—.0007x>,

(7.1d) wo=.005.

The deterministic system corresponding to these rates is
d 1

(7.2) —d";—= X'\ = 1) =x'(10—.0007x" - .001x2),
dxz‘ 2 2 1 2

(7.3) E= x“(As— ) =x*(.075—.0007x " —.0007x?).

The system (7.2)—(7.3) has a critical point at (23.81, 83.33). The critical point is
a saddle point and the system satisfies the conditions described at the beginning

of § 4.
In his work, Barnett was interested in a relative measure of the length of time

to extinction. Consequently, he was not concerned with the lengths of time
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between successive changes in population size. On the other hand, in order to
evaluate the covariance matrix defined in (2.3), we need to consider the length of
time between transitions. We assume that the probability of a change in popula-
tion size in (¢, t +At) is £ At, where ¢ is the reciprocal of the total population at the
saddle point. This choice of £ corresponds to scaling the variables by the total
population at the saddle. Then, following Bartlett, Gower and Leslie (1960) and
Barnett (1962), the transition probabilities, conditional upon a change in popula-
tion size, are

(7.42) Pr{X'(t+A0)=X'()+1, X°(t+ A1) = X*(£)} == Z“
(7.4b) PriX'(t+A0)=X"() -1, X2(t+ A1) = X*(0)} == lk’“,
(7.4¢) Pr{X2(t+A0)=X"()+1, X'(t+ A1) = X' ()} = xzk)‘z,
(7.4d) Pr{X’(t+A)=X(t)-1, X't +At)=X"(1)} = xzk’“,
where

X't)=x", X°(t)=x> and k=x'\1+wp)+x’As+uo).

With these assumptions, the covariance (2.3) is

ex (A1 +up)
k 0 ‘
(7.5) ga= ex2(\s+uw2)
0 k

Integration of (6.2) was performed using a double precision Runge-Kutta
routine. Contours of equal probability of extinction of the first species were
calculated using the first term in the expansion (4.2). Some of these contours are
shown in Fig. 2. To examine the accuracy of the theory, Monte Carlo experiments
were performed on a number of test points. In Table 1, the probabilities calculated
using the first term and the first two terms of expansion (4.2) are compared with
those observed in the simulations.

8. Threshold fluctuations in nerve fibers. A nerve fiber stimulated with
identical pulses of near threshold intensity will respond with an action potential in
a fraction of all trials. Thus, there is a stochastic factor in the excitation of nerve
cells (Lecar and Nossal (1971) and the references therein).

Lecar and Nossal (1971) used the V-o, voltage-conductance, approximation
to the Hodgkin—Huxley equations. In the V-0 approximation, the two slow
variables of the Hodgkin—Huxley equations, n and h, are ignored. The V-o
equations have three singular points: two stable nodes (one sub-threshold and one
suprathreshold) and a saddle point. The saddle point gives rise to a separatrix
dividing the V-o plane into “excited” and “resting’ portions.
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F1G. 2. A phase plane plot of some contours of equal probability of extinction of the first species for
the flour beetle competition discussed in § 7

A comparison of the theoretical and experimental (Monte Carlo) probabilities of

TABLE 1

extinction for the flour beetle competition described in § 7

Probability of extinction of the first species

Theoretical: Monte Carlo*
Initial Point One term Two terms
(5,14) 13 15 .14 (1825)
(4,7.3) .06 .06 .05 (2500)
(2,7.1) .30 .33 .32 (2500)
(3.5,14.2) .30 .33 .35 (1162)
(3.2,11.3) 26 29 28 (1650)
(2.9,3.1) .05 .05 .03 (595)
(3.4,5.0) .05 .05 .04 (1909)
(1.2,4.4) .30 .33 .34 (1767)

* Numbers in parenthesis indicate the number of Monte Carlo simulations performed.

If noise is added to the V-0 equations, the model mimics certain aspects of
the fluctuation in excitability (Lecar and Nossal, 1971). They calculate the
probability that the nerve will fire, conditioned on the initial displacement from
threshold (Lecar and Nossal, equation (25)). The probability of firing is given by
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an error function. The argument of the error function is proportional to the
normal projection of the voltage displacement from the separatrix and is inversely
proportional to the covariance of the fluctuating variables. Thus, their solution is
analogous to (4.2) and (6.2) of this paper. In their analysis, however, only a
neighborhood of the saddle point was considered, whereas the method of § 4-§ 6
applies along the entire separatrix. It can be verified that the two results are
equivalent, if all of the calculations in § 4-§ 6 are performed at the saddle point.
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