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The effects of heterogeneity on
dispersal and colonization in plants
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Heterogeneity, in its various guises, is a ubiquitous feature of ecological systems. To
see this, one need only look at any published experimental study, where complex
statistical analyses are used to disentangle the signal, generated by the experimental
treatments, from the universally present heterogeneity or ‘noise’ This noise is
often seen as problematic, complicating analyses and making inference difficult.
However, ecologists have recently started viewing the noise as an intrinsic property
of the system rather than a complication to be ignored or averaged over. For
example, Rees et al. (1996) found that changes in population size in a guild of
winter annuals were influenced by previous population sizes, and the spatial distri-
bution of the populations. Thus, heterogeneity in the spatial distribution of com-
petitors influenced the observed population sizes in this guild.

Studies of heterogeneity fall into two broad categories: the first asks what are the
potential effects of heterogeneity, while the second attempts to evaluate the actual
impact of heterogeneity. In this chapter, we illustrate both these approaches. We
start with general definitions of dispersal and heterogeneity; and then look at how
dispersal can generate a heterogeneous distribution of competitors. The conse-
quences of this heterogeneity for community structure are then explored. We then
turn our attention to how heterogeneity can influence dispersal. We illustrate this
by analysing how heterogeneity influences the reproductive decisions in mono-
carpic plants and how this in turn results in temporal dispersal. In each case we
show how the interplay between the development of simple general models and
data leads to the development of new, more complex models, and greater under-
standing of natural systems. '
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What is dispersal?

We define dispersal to be any demographic process that results in members of a
cohort experiencing different environments. Dispersal is one process that exposes
organisms to heterogeneity, see below, and can occur in both time and space
(Harper 1977). In addition to the usual processes that result in dispersal, namely
seed movement, dormancy and clonal growth, this definition includes repeated
reproduction and delayed reproduction in monocarpic plants. Both the latter
processes result in members of a cohort experiencing different environments, and
so can be considered as types of temporal dispersal. For example, reproduction in
a single cohort of Carlina vulgaris, a monocarpic perennial, at an unproductive
site in the Netherlands was spread over at least a 7-year period (Klinkhamer et al.
1996). Because each of these processes performs a similar population dynamic
function we would expect trade-offs to exist between the different types of disper-
sal (Venable and Brown 1988; Rees 1994) and this is indeed the case {Rees 1993;
Rees 1996).

What is heterogeneity? _
Heterogeneity is defined as any factor that can cause variation in individual demo-
graphic rates, and may have a biotic or an abiotic origin. Clearly, this is a very broad
definition including such factors as genetic differences, variation caused by the
predators or pathogens, and spatial and temporal variation in the abiotic and biotic
environment. This definition is similar to that of Milne (1991), see Wiens, this
volume. However, Milne (1991) suggests that heterogeneity is the complexity
caused by the spatial distribution of constraints and organisms’ responses to them,
whereas we prefer to focus on the demography. In this way, the magnitude of differ-
ent forms of heterogeneity, and their potential effects, can be quantified. Different
types of heterogeneity can often be arranged in a hierarchical way, see also chapters
by Wiens and Pickett. For example, within an area, all habitats might experience
common yearly influences caused by the weather. Then there might be habitat-
specific heterogeneity caused by local conditions unique to a given habitat. In addi-
tion to this, individuals within a habitat might experience individual-specific
heterogeneity related to their position or genetic makeup, and there might be non-
specific heterogeneity, associated with chance events that affect individuals in a way
unrelated to their identity. This simple hierarchical organization of heterogeneity
will be discussed further, and methods for quantifying the different components
presented in later sections.

Evolution and ecological consequences of seed dispersal

There is a large and growing literature on the evolution and ecological implications
of spatial seed dispersal (Hamilton and May 1977; Comins et al. 1980; Bulmer
1984; Levin et al. 1984; Comins and Noble 1985; Pacala and Silander 1985; Pacala
1986a,b; Klinkhamer et al. 1987b: Pacala 1987; Venable and Brown 1988; Venable
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and Brown 1993; Tilman 1994; Dytham 1995; Watkinson and Sutherland 1995;
Tilman et al. 1997; Pacala and Rees 1998). In order to understand the role of spatial
dispersal several studies have used a phenomenological approach, replacing
explicit models of dispersal with aggregated probability distributions, such as the
negative binomial distribution (Atkinson and Shorrocks 1981; Ives and May 19857.
A partial justification for this approach is given by simulation studies which show
aggregated distributions can be generated by local dispersal (Pacala and Silander
1985). However, local dispersal will generally result in positive covariance between
parents and offspring, a complication we ignore in the model discussed below. The
use of aggregated distributions has the advantage of analytical tractability but, as
in any abstraction of this type, there is a potential difficulty with linking the
aggregated distribution with a biological generative mechanism (May 1978).

Here we illustrate some of the potential difficulties of using this approach. Con-
sider two species of annual plant competing for microsites, the first is the competi-
tive dominant and excludes the second from any microsites where they both occur.
Both species have identical dispersal mechanisms and the resulting distribution
of seeds can be described by independent negative binomial distributions with a
common aggregation parameter, K. As K becomes smaller so the distribution
becomes more aggregated. The dynamics of the first species can be described using
a simple equation of the form

pl(t+1)=1—(1+i‘t;’—(tl) R (12.1)

where p,(#) is the proportion of sites occupied by species 1 in year 7 and F, is
the per microsite fecundity of species 1. Providing F,>1 this model has a single,
globally stable equilibrium, p}; this follows from the fact that dp,(t+1)/dp,(?) 1s
strictly positive.

The dynamics of the second species can be described by

pz(t+l):(l—pl(t))[l—[l+f;!ﬁ(-—t)) ] (12.2)

where the subscript 2 refers to the second species. The equation has two parts: the
first is the free space left by the first species; the second the fraction of sites colo-
nized by species 2. For coexistence, species 2 must be able to invade once species 1
has reached equilibrium, p*. This leads to the condition:

R(1-pr)>1. (12.3)

We note two things from this:
1 Invasion of species 2 is independent of its spatial distribution, and hence
dispersal characteristics.
2 Invasion, and hence coexistence, becomes easier as F, and x become smaller, as
decreases in these parameters lead to lower p7.

The first of these results has been noted by several authors (Atkinson and
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Shorrocks 1981; Ives and May 1985; Silvertown and Smith 1989; Rees and Long
1992) and is intuitively surprising, as one would expect dispersal to influence the
success of an invading species. Further insight into this model can be obtained by
considering the special case k=1, which gives py=1-1/F, and leads to the simple

invasion condition,
F,>F. (12.4)

From which we conclude that for values of k<1 the critical value of F,is less than
F,, (Fig. 12.1). How can an inferior competitor, which loses in competition when-
ever it co-occurs with species 1, and has identical patterns of dispersal invade
species 1 when it has a lower fecundity? To understand this apparent paradox,
consider the invasion condition, equation (12.3). This states that the probability
species 2 finds an empty site, 1 — P71, multiplied by species 2’s fecundity, F,, must be
greater than unity. This implicitly assumes that species 2 samples the habitat at
random, which in turn implies that species 2 has global dispersal. The apparent
paradox is therefore generated by unwittingly making species 2 a better disperser
than species 1. In fact, the model has become an example of a competition—
colonization trade-off (Skellam 1951; Levins and Culver 1971: Tilman 1994). Note
this is not an explicit assumption of the model but an implicit assumption of the
invasion analysis. The difficulties in interpreting these models have been discussed
by several authors (Green 1986; Chesson 1991; Remer and Heard 1998).

There are several examples where the outcome of competition, between species
with finite dispersal, is not correctly predicted by a simple invasion analysis, which
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Figure 12.1 The critical value of F, required for invasion as a function of the negative
binomial parameter, k, of species 1, the competetive dominant. At values of K< 1 invasion
by an inferior competitor with fecundity less than the superior competitor is possible. Solid
curve, F, =10, dotted curve, F,=5.
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assumes that species sample the habitat at random, see Pacala (1986b). To predict

the outcome of competition correctly we need to understand the dynamics of

spatial pattern formation. The use of moment-closure methods permits this to be

done (Pacala and Levin 1997). Moment closure is a mathematical technique used

to derive equations for the spatial moments of a system. In biological terms, these

are equations for the average density of competitors, their variances and covari-

ances (Pacala and Levin 1997; Bolker and Pacala 1999). The invasion criterion for

interspecific competition models takes the following form (Bolker and Pacala«
1999),

Spatial invasion rate = growth rate at low densities — intraspecific clustering
+ interspecific clustering + spatial segregation. (12.5)

The first term gives the non-spatial invasion rate (i.e. equation [12.3] in the previ-
ous model), the second term is negative, because when a species forms clusters
intraspecific competition will operate, even at low densities, so slowing the rate of
invasion. The last two terms represent the effects of interspecific clustering and seg-
regation; both of these reduce interspecific competition so increasing the invasion
rate (Bolker and Pacala 1999).

In these models, long-range dispersal of the inferior competitor does not always
promote coexistence. If growth is sufficient to allow gaps to be fully exploited then
long-range dispersal aids coexistence, whereas short-range dispersal makes co-
existence more difficult. However, if local population growth is necessary for
exploiting gaps then short-range dispersal of the inferior competitor may favour
coexistence. In this case, short-range dispersal allows rapid population growth in
gaps, resulting in a greater number of seeds dispersing although the proportion
dispersing is smaller (Pacala and Levin 1997; Bolker and Pacala 1999).

Clearly, when using simple phenomenological models, great care is required in
linking biological mechanisms with the simple descriptive functions used in model
formulation. Invasion analyses of such models also need to be interpreted with
caution.

Much of the recent work on dispersal has focused on the competition—
colonization trade-off, and how systems where diversity is maintained by this
mechanism respond to habitat destruction (Dytham 1994; Tilman et al. 1994;
Moilanen and Hanski 1995). This simple model is particularly attractive because
the coexistence mechanism operates in a homogeneous world, so there is no need
to invoke environmental heterogeneity, and each species is characterized by just
three parameters; one for dispersal, one for mortality and a position in the
competitive hierarchy. Coexistence occurs because the good competitors are also
the worst colonizers and so, although superior competitors always exclude inferior
competitors when they co-occur, the superior competitors fail to colonize all sites
and so leave space to be exploited by the inferior competitors. If this mechanism
allowed coexistence in natural systems then community ecology would be much
simpler as one would no longer need to worry about complex, high dimensional
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niche axes. Several field systems appear to conform to this simple model (Tilman
1994; Rees 1995; Rees et al. 1996; Turnbull et al, in press, b).

Tests of the competition—colonization mechanism of coexistence are possible
using seed sowing experiments (Tilman 1994; Pacala and Rees 1 998; Turnbull et al,,
in press, a). By sowing saturating densities of all species, one removes all coloniza-
tion limitation from the system and diversity should collapse leaving the best com-
petitor growing in isolation. Turnbull et al. (in press, b) tested this idea using
a guild of co-occurring annual species growing in limestone grassland in south
Wales. Previous studies of similar annual plant guilds suggested that small-seeded
species produced more seeds per plant but were inferior competitors (Rees 1995;
Rees et al. 1996); this generates a competition—colonization trade-off, which could
. be important in maintaining diversity. Turnbull et al. (in press, b) showed that
large-seeded species do indeed produce fewer seeds per plant and so have lower
colonization potential than small-seeded species (Fig. 12.2). In an experiment
where seeds of all species were added to quadrats in equal numbers, the large-
seeded species were found to dominate the community when sowing density was
high (Fig. 12.3). This is consistent with the idea that large-seed size confers a com-
petitive advantage, as assumed by the competition—colonization model. However,
even at the highest sowing density the inferior competitors were not excluded from
the system suggesting the presence of species-specific niches.

How does the presence of species-specific niches affect the predictions of the
simple competition—colonization model? This question was addressed by Pacala
and Rees (1998) who modified the standard model (Levins and Culver 1971) to
allow finite rates of competitive exclusions: the standard model assumes instanta-
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Figure 12.2 Relationship between average seed output per plant for seven co-occurrin g
gnnual plants species and average seed mass; both axes are log scales. The fitted line is y=
1.10-0.96x, *=0.74. The species are, in order of decreasing seed mass, Aphanes microcarpa,
Mpyosotis ramosissima, Veronica arvensis, Arenaria serpyllifolia, Cerastium diffusum,
Cerastium globmeratum and Saxifraga tridactylites. Redrawn from Turnbull et al. (1999b).
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Figure 12.3 Impact of increased sowing density (equal numbers of all species) on
community composition in a guild of co-occurring annual species. (a) No seeds sown,

(b) 10 seeds sown, (c) 50 seeds sown and (d) 200 seeds sown. At low sowing densities there
is no relationship between seed weight, a surrogate for competitive ability and composition,
whereas at high sowing density the large-seeded species dominate the community. Redrawn
for Turnbull et al {1999b).

neous exclusion of competitively inferior species. By allowing finite rates of com-
petitive exclusion, Pacala and Rees (1998) incorporate a successional niche
whereby early successional species, which are poor competitors, can dominate
recently disturbed sites although they are ultimately excluded by the late succes-
sional species. In this model, adding saturating densities of seeds to all sites does
not cause a collapse of diversity because the early successional species is able to
reproduce in recently disturbed sites, regardless of the abundance of the late suc-
cessional, superior competitor.

Pacala and Rees (1998) suggest that by combining seed sowing and competitor
removal experiments, the relative importance of the competition—olonization
and niche mechanisms can be assessed. In addition, they argue that in many
systems where disturbances are of small spatial extent, the niche mechanism will be
more important than competition—colonization. This is because late successional,
superior competitors eventually occupy almost all sites. Disturbed areas therefore
always contain propagules of the superior competitor, making it impossible for the
early successional, poor competitor to persist. The seed sowing experiments of
Crawley et al. (unpublished) have shown that when saturating densities of
all species are sown in a mesic grassland it is the early successional forbs that
increase in abundance, not the late successional species, as predicted by the compe-
tition—colonization model. This suggests that early successional species are more
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recruitment limited than late successional species, making coexistence via the
competition—colonization trade-off impossible.

The distinction between the niche and competition—colonization hypotheses
is important, in part because the two hypotheses have strikingly different manage-
ment implications. In systems where diversity is maintained by the competition—
colonization mechanism even small amounts of habitat destruction lead to
extinction of late-successional species (Nee and May 1992). The reason is that rare,
late-successional species are near the brink of extinction because of their poor
colonizing ability. Any habitat destruction causes them to waste seeds that disperse
into unsuitable areas. This small loss of colonizing ability pushes rare late-succes-
sional species to extinction. In contrast, because species can coexist even when all
sites are colonized when there is a successional niche, small amounts of habitat loss
may not result in any extinctions. However, when there is recruitment limitation,
resulting in failure to colonize some sites, habitat destruction can result in extinc-
tion of either early or late successional species depending on which is more recruit-
ment limited (Pacala and Rees 1998).

Spatial seed dispersal can evolve in response to a range of different types of envi-
ronmental heterogeneity (Venable and Brown 1993). Not all types of heterogeneity
favour the evolution of dispersal, for example, if the habitat consists of a fixed
mosaic of habitat patches then no dispersal from the parental site is the evolution-
arily stable strategy (ESS) (Hastings 1983). This occurs because dispersal resuits in
net movement of seeds from good patches to bad ones so lowering fitness and
selecting against dispersal. Dispersal can evolve as a bet hedging strategy only when
there is global temporal variation in reproductive success. Here dispersal reduces
the variance in reproductive success, which increases the geometric mean fitness
(Levin et al. 1984). In a temporally stable environment, dispersal can evolve to
reduce the effects of local crowding, and this requires spatial variation in the
quality of the environment but no global temporal variation (Venable and Brown
1993). Finally, if there is genetic structure, dispersal can evolve as a way of reducing
competition between relatives (Hamilton and May 1977; Comins et al. 1980).
When there is temporal variation in the environment, either local or global, the
pattern of variation, whether it shows positive or negative covariation, also
becomes important and can lead to the evolution of multiple dispersal types
(Ludwig and Levin 1991). Olivieri et al. (1995) put these ideas in a successional
framework and show that there are conflicting selection pressures within and
between populations (demes). Within population selection favours low dispersal,
while between population selection favours migrants, and this can lead to the coex-
istence of genotypes with different dispersal rates.

How will habitat destruction influence the evolution of dispersal and popula-
tion persistence? Increasing urbanization and conversion of natural habitats to
agriculture creates areas which are permanently unsuitable for population growth.
This situation is analogous to the colonization of oceanic islands, where each
population is surrounded by large areas of unsuitable habitat. This can lead to
rapid evolution resulting in reduced dispersal ability (Cody and Overton 1996).
This in turn makes the populations more isolated, resulting in habitat specializa-
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tion, and reducing the likelihood of metapopulation persistence. This topic is
explored further by Dytham (this volume).

Evolution and ecological consequences of delayed and
repeated reproduction

Both delayed reproduction in monocarpic plants and repeated reproduction in
iteroparous species result in offspring experiencing different environments and so
both processes can be considered forms of dispersal. The ages at flowering of indi-
viduals of Onopordum illyricum and Carlina vulgaris are shown in Fig. 12.4; clearly
there is considerable variation in the age at which individuals flower resulting in
individuals within a cohort, experiencing very different environments, These data
pose two evolutionary questions: (i) Why do plants wait to flower, and a corollary
of this, can we predict the optimal age at flowering; and (ii) Why is there such a
large spread in the timing of reproduction? This section will be devoted to mono-
carpic plants simply because the fitness consequences of delayed reproduction are
simpler to quantify in species that reproduce only once. In species with multiple
reproductive episodes there are additional problems associated with quantifying
the costs of reproduction and possible effects of mast seeding. Having said this,
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Figure 12.4 Age at flowering in monocarpic perennials. In all cases there is considerable
spread in the timing of the repreduction. {(a) and (b) Onopordum illyricum at two sites in
the south of France ({a) Viols and (b) La Crau; see Rees et al. (1999)).{c) and (d) Carlina
vulgaris at two sites. (¢} Salix vegetation in the Meijendal dune system, the Netherlands
(Klinkhamer et al. 1996) and (d) chalk grassland at Castle Hill National Nature Reserve,
near Brighton. Data kindly supplied by Peter Grubb.
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many of the ideas developed for monocarpic plants are directly applicable to
iteroparous species, see Charnov (1993).

The main deterministic selective forces influencing delayed reproduction in
monocarpic plants are:
I Increased mortality as a result of delaying reproduction;
2 Increased reproduction, as a result of growth.
These selective forces underpin the simple growth models used to predict the
evolutionarily stable size and age at reproduction; this approach has an extensive
pedigree in the animal literature (Roff 1984; Roff 1986; Roff 1992; Stearns 1992;
Charnov 1993; Mangel 1996). We now outline these simple models, and assess their
ability to predict patterns of flowering observed in the field.

- Simple models ignoring heterogeneity
We assume that size on a log scale, L(t), at time tcan be described by a 3-parameter
von Bertalanffy equation:

L= Lw(l—-exp(—k(t—to))), (12.6)

where L_ is the maximum possible size, kis a rate parameter and t,is the hypotheti-
cal (negative} age at which size would be zero. An important assumption implicitin
this equation is that all individuals grow along a deterministic trajectory so that age
and size are interchangeable. This could only be true if there is no hetero geneity in
the environment. We assume a constant rate of mortality m, so the probability an
individual survives to age tis exp(—mt?). The probability a seed becomes an estab-
lished plant is p. Finally, we assume that the seed production of an individual of size
L(#), is an exponential function of plant size, namely:

seeds = exp(A+ BL(1)), (12.7)

where A and B are allometric parameters relating log-seed set to log-size (van der
Meijden and van de Waals-Kooi 1979; Samson and Werk 1986; Rees and Crawley
1989). Combining these formulae, we obtain an expression for the expected
number of offspring produced by an individual that reproduces at age ¢,

R, = pexp(—mt)explA+ BL_ (1—exp(—k(t —1,)))]. (12.8)

R, consists of two components: the first is the probability an individual survives to
age t, and the second is the seed production of a plant of size L(f) We can calculate
the ESS flowering time, ¢, by solving 3R,/d¢=0 which gives:

[ BkL )
In
m_J . s (12.9)

k

and substituting this into equation (12.6) we find the ESS flowering size,

f=

L = Asymptotic size - mortality term

=7 -2 (12.10)
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Evolutionary stability occurs if 9R/9? evaluated at ¢ is negative; which is always
true in this case. In calculating the ESS in this way we are assuming that density
dependence acts at the seedling stage (Charnov 1993; Kawecki 1993), which is a
reasonable assumption for many plant species. As expected the ESS flowering size
increases with the asymptotic length, and decreases with increasing mortality. £he
mortality term is, however, offset by the growth rate, k, and the slope of the fecun-
dity relationship, B. In these simple models all forms of heterogeneity are assumed
to be unimportant. We now ask, how well do these models describe actual flower-
ing strategies?

Case studies ignoring heterogeneity

Rees et al. {1999) used the simple growth models, described above, to explore size-
dependent flowering in Onopordum illyricum growing in the south of France.
Using long-term demographic data, from two field sites, we parameterized
the simple growth models and predicted the average size at flowering should be
~ 1000 cm?. At both sites, the prediction error was greater than 50%; the plants
actually flowered at sizes approximately double the model predictions. Clearly, this
approach, which ignores all forms of heterogeneity, does not accurately describe
the flowering strategies of plants in the field.

Oenothera glazioviana is a monocarpic plant that often occurs in sand dune
areas, and its demography has been extensively studied by Kachi and Hirose (Kachi
and Hirose 1983; Kachi 1983; Kachi and Hirose 1985). For an Oenothera rosette
relative growth rate (RGR), is given by:

— L
RGR=M£ﬁ=_o.65ut)+o.96+em, (12.11)

where L(1) is log rosette diameter in May, At=1 year, and £, , is a standard normal
deviate with mean zero and standard deviation, 6;,=0.45; this represents the
residual scatter about the regression line. The probability of flowering is given by:

p{flowering) =1.1L(£)-2.29, (12.12)
and the survivorship of vegetative rosettes by:
p(rosette survival) =0.17 L(¢}+0.36, (12.13)

where the probability of rosette survival has an upper asymptote of 0.7. The
number of seeds produced as a function of rosette diameter is given by:

seeds =exp(2.22 L(1)+1.035). (12.14)

Note, the parameters in Kachi and Hirose (1985) are given for log to the base 10 and
we have converted to natural logarithms by dividing by In(10). The number of
recruits was independent of seed production suggesting density dependence acts
on seedlings (Fig. 12.5). With these assumptions, we can implement the flow
chart given in Kachi and Hirose (1985), their Fig. 1, using an individual-based
approach. We used output from the simulation model to parameterize a von
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Figure 12.5 Relationship between the number of new Qenothera recruits and the previous
years’ seed production (data from Kachi (1983)). There is no significant relationship
between seed production and subsequent recruitment (linear regression F, 1,=0.001,
p>0.1).
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Figure 12.6 Relationship between predicted rosette diameter and plant age. The solid
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parameterized growth equation of Kachi and Hirose (1985), sec text for details, The fitted
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Bertalanffy growth model (equation 12.6), see Fig. 12.6. As in the Kachi and Hirose
(1985) simulation, plant size reached an asymptote of =9 cm rosette diameter, We
also used the simulation model to estimate the probability of a plant surviving to
age 3, this probability is accurately described (2 =0.99, n= 9) by:
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plsurvival to age £)=0.57 exp(—0.54t). (12.15)

Substituting the parameter estimates into equations 12.9 and 12.10 we obtain, t=
3.6 years and [ =1.84 (log scale) which corresponds to a diameter of 6.3cm.
Average size at flowering is ~18cm {Kachi and Hirose 1983), with a median, flow-
ering size of 14cm. The ESS prediction is considerably lower than the observed
values, and indeed is smaller than the smallest flowering size ever observed. O.
glazioviana takes between 3 and 6 years to flower in rough agreement with the
theoretical prediction (Hirose and Kachi 1982). Clearly, as in Onopordum, the
simple growth model approach has failed to capture the important evolutionary
trade-offs that determine flowering size in Oenothera.

We also applied this approach to the long-term data set on Carlina vulgaris
collected by Peter Grubb (Rees et al. in preparation). In this study, the fate of over
1000 individuals was followed over an 18-year period. All individuals were sized
and whether they flowered or died recorded. Using these data, we parameterized
the simple growth and survival models described above. The fitted relationships
and parameter estimates are given in Fig. 12.7. We do not have good data on repro-
ductive allocation and so have assumed constant proportional reproductive
allocation; this corresponds to B=1 in equation (12.7). This provides a good
description of reproductive allocation in several monocarpic species (Reinartz
1984a; de Jong et al. 1989; Klinkhamer and de Jong 1993). Using these parameter
estimates, we predicted that plants should flower at 7mm, whereas the average size
of flowering plants was 49.5mm (Fig. 12.8). The model predictions are smaller .
than the smallest size ever observed flowering in an 18-year study (Rees et al. in
preparation). As in the other species this simple approach, which ignores all forms
of heterogeneity, considerably underestimates the size at flowering. The main
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Figure 12.7 Age-specific demography of Carlina vulgaris. (a) Rosette diameter asa
function of plant age. The line is the fitted von Bertalanffy growth curve; the vertical bars
are standard error. Parameter estimates L =3.68, k=0.45 and 1,=-3. (b) The probability a
rosette survives to age f, the line is the fitted function pexp(—mt) where tis plant age.
Parameter estimates p=2.18 and m=0.74. Data kindly supplied by Peter Grubb.
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Figure 12.8 Size distribution of flowering plants in Carlina vulgaris. The arrow indicates
the predicted size at flowering assuming there is no heterogeneity in the system. Data kindly
supplied by Peter Grubb.

reason these models make predictions far too small is that the asymptotic size pre-
dicted by the growth models is too small. In order to predict the flowering strate-
gies observed in field populations, we need to understand how various forms of
heterogeneity influence flowering decisions, and then quantify these sources of
heterogeneity. Once quantified, we can use modelling approaches to determine
whether the measured levels of heterogeneity are sufficient to explain the observed
pattern of flowering.

Analytical models exploring the effects of heterogeneity

In order to begin to understand the effects of heterogeneity it is useful to classify
different types of heterogeneity; the different forms of heterogeneity should ideally
be easily estimated from field data. In this way, the impact of various forms of
heterogeneity on population dynamics and evolution can be explored. Three types
of heterogeneity are considered:

1 non-specific heterogeneity where individuals experience different environments
in different years;

2 individual-specific heterogeneity where individuals experience different environ-
ments but the effects are constant throughout their lifetime; and

3 temporal heterogeneity where all individuals experience the same environment in
a given year but the effects vary between years.

This simple classification requires some explanation, consider the following simple
model for plant growth:
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LG+D=a, +b L(t)+E,, (12.16)

where a and b , are parameters, L{1) isthe log size of plant iat time tand g, , follows
a Normal distribution with mean zero and variance o7, . Therefore, in each year,
each plant grows according to a linear model and each receives a differen;t value of
€; This is an example of non-specific heterogeneity. Note, because the expected
values (averages) of a, b, and and £, do not vary with time there is no temporal
heterogeneity in this model. Also as each individual gets a new value of ¢;; in
each time interval there is no individual-specific heterogeneity. We can include
individual-specific heterogeneity by adding a new error term to the model, so we
have:

L{t+D=a +b L{D)+€;, €. (12.17)

In this model, each individual has its own growth intercept given by a,+€;, and this
does not vary from year to year. Again, because the expected values of the model
parameters do not vary between years there is no temporal heterogeneity. The final
model includes temporal heterogeneity, and so we have

Lt+D)=a,+b L(t)+e;, +€,+E,, (12.18)

where the term &, represents temporal variation in the intercept of the growth
equation; that is the intercept of individual i in any particular year is @ +€,+€,.
These different forms of heterogeneity can be quantified using linear mixed
models (Venables and Ripley 1997); see Rees et al. (1999) for a biological example
of this approach. '

For a plant to grow, we require that 2,>0 and for it to achieve an asymptotic
size, b,<1. In that case the asymptotic size, on a log scale, is found by setting
L=a+b L+g;s0 that:

a,+e,

L=—~A—.
(1-b,)

Averaging over individuals, we find the average asymptotic size in the population,
L=a/(1- bg). This assumes the average value of €; is zero.

How do these different forms of heterogeneity influence the evolution of size-
dependent flowering? The effects of individual-specific and non-specific hetero-
geneity can be explored analytically using the one-year look-ahead approach
developed in Rees et al. (1999). This approach leads to a switching value L. Plants
with L(#)> L_are predicted to reproduce in year t, whereas those with L(f)< L, are
predicted to continue to grow. We compare reproduction given the current size,
L(f), with the expected reproduction in the next year, taking growth and survival
into account. The switch value will be the size that makes these equal. It should be
realized that this approach is only approximate because growth opportunities
more than one-year ahead will influence the optimal switch value. However, com-
paring this approach with a dynamic state variable model indicates that the error
involved is generally less than 10% (Rees ef al. 1999). We assume that mortality is

(12.19)
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independent of plant size, which is a reasonable assumption for large-sized indi-
viduals, and that seed production is described by equation (12.7). Non-specific
heterogeneity in growth is described by equation (12.16), and this leads to the
following equation, which the switching value satisfies

exp(A+BL) = jf(e,.,, Jexp(~dy +A+Ba, +b,L, +¢,, ))de

where f(€, ) denotes the probability density function for g;, and exp(—d,) is the
probability of survival. The term on the left-hand side of equation represents
current reproduction and the term on the right-hand side expected future repro-
duction, taking growth and survival into account. The integral on the right-hand
side can be evaluated by completing the square in the Gaussian integral, remem-
bering that g, , follows a Normal distribution (see Hilborn and Mangel (1997) page
75) and is:

[ (&, Jexp(Be, )de,, =exp(B20?, /) (12.21)

Making this substitution and solving for L gives:

(12.20)

K3

L, = Asymptotic size + variance term — mortality term

2
ae Bo, dy

= + —
1-b, 201-b,) B(1-b,)

(12.22)

The dependence of the switching value on d, is intuitive and sensible: as the chance
of mortality increases, the payoff from immediate reproduction is greater than the
payoff from waiting, and thus we predict a decrease in the switching value. That
it scales by B(1 -bg) could not be anticipated without analysis. Furthermore,
and perhaps more importantly, equation (12.22) demonstrates that non-specific
heterogeneity in growth is important for the switching value. In particular, because
the variance term is always positive, as variability increases, the predicted size at
switching increases.
Assuming there is no variance in growth (03”=0) gives:

L= o S '
1-b, Bl-b,)
which is the same form as the ESS prediction derived from the von Bertalanfty
growth model with Lmzag/(l—bg), m=d, and k:(l—bg), see equation (12.10)
(Charnov 1993; Mangel 1996).
We can also incorporate individual-specific heterogeneity into this framework,
which leads to the following equation for the switching value:

exp(A+BL ) = Hf(e,.'r )f(e)exp(—dy+A+B(a, +b L, +e,, +¢,))de, de,
4, Blo}, +o}) do

= +
1-b, 2(1—bg) B(1-4,)

(12.23)

(12.24)

where 67 is the variance of the individual-specific heterogeneity distribution,
which is also assumed to follow a Normal distribution. As with non-specific
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heterogeneity, this form of heterogeneity increases the predicted switching value.
Both these models assume that plants have no information on the heterogeneity
in the system. If plants had complete information on their individual-specific
heterogeneity then we would expect individuals to flower at different sizes, and the

switching value for an individual would be:

a,+e, Bo? d
£ .t 2 (12.25)

L, = + -~ .
1-b, 2(1-b,) B{1-b,)

Note, however, that when plants have complete information on individual-specific
heterogeneity then the average switch value, L, does not change:

; a +¢.  Bol d
LS = f(ei)( £ ' + B 0 st,'
I 1-b, 2(1-b,) B(1-b,)
a BG?J dﬂ

i S - (12.26)
1-b, 2(1-b,) B(i-b,)

These models illustrate how individual-specific and non-specific heterogeneity
influence the reproductive decisions of monocarpic plants. If plants have no infor-
mation on the heterogeneity in growth, then the optimal switch value, L, generally
increases with increasing heterogeneity, equation (12.24). In this model, there is an
optimal switch value and any variation about this is maladaptive. When plants have
information on the heterogeneity acting on them and can adjust their switch value
appropriately, either through a phenotypic or genetic response, then the optimal
switch value varies from individual to individual, but the population average value
does not change, equation (12.26).

In natural populations the relationship between the probability of flowering and
plant size is often relatively shallow, with substantial overlap between the size dis-
tributions of flowering and non-flowering plants { Werner 1975; Baskin and Baskin
1979; van der Meijden and van de Waals-Kooi 1979; Gross 1981; Hirose and Kachi
1982; van Baalen and Prins 1983; Reinartz 1984b; Wesselingh et al. 1993; Bullock
et al. 1994; Klinkhamer et al. 1996). It has been suggested that this overlap results
from the additional factors, weakly correlated with size, influencing the control
of flowering (de Jong et al. 1986). However, this would lead to equal within-
population variance in flowering size and the data in Wesselingh et al. (1993) con-
tradicts this idea. For example, in populations of Cynoglossum officinale from
botanical gardens, there was virtually no overlap in the distributions of flowering
and non-flowering plants, whilst in natural populations there was considerable
overlap (Wesselingh et al. 1993). Weak selection against large threshold sizes for
flowering is another possible explanation. A third possible explanation is that the
graded response of flowering to plant size is a consequence of an adaptive response
to spatially or temporally varying selection pressures. This adaptive response could
either have a phenotypic or genetic basis; however, it should be noted that selection
experiments have shown there is substantial genetic variance in the threshold size
for flowering (Wesselingh and de Jong 1995; Wesselingh and Klinkhamer 1996).
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We cannot explore the effects of temporal heterogeneity using the one-year
look-ahead approach, as the geometric mean fitness is the appropriate fitness
measure and individual optimization fails (Metz et al. 1992; McNamara et al.
1995). However, simulation studies, using an individual-based model incorporat-
ing a simple genetic algorithm, have shown that temporal heterogeneity in the
growth equation makes delaying reproduction more risky, and this selects for
smaller sizes at flowering (Rees et al. 1999).

Case studies including heterogeneity

In order to explore the discrepancy between the analytical predictions of the
growth models and the field data, we developed a range of models that allow
heterogeneity to be incorporated. Specifically, we used the one-year look-ahead
approach, a dynamic state variable model (Mangel and Clark 1988; Mangel and
Ludwig 1992}, and an individual-based simulation, which incorporated a simple
genetic algorithm and so allows the flowering strategy to evolve.

For Oenothera glazioviana, we modified the one-year look-ahead approach to
use the parameterized functions for growth, survival and flowering, see equations
(12.11),(12.12),(12.13) and (12.14) (Kachi and Hirose 1985). For this species, we
only have information on non-specific heterogeneity, £, , in the growth equation.
Using the published parameter values gives a predicted switch value, L, of 2.78,
which using forward iteration (Mangel and Clark 1988), corresponds to an average
size at flowering of 24 cm. The one-year look-ahead is ‘myopic’ in the sense that
it ignores ali growth opportunities except for those in the following year. For
example, in small plants, the expected seed production from waiting 2 years may be
greater than from waiting one year because of the stochastic variation in growth. So
for a given plant size, the optimal decision based on the one year look-ahead might
be to flower, whereas using a 2-year look-ahead the optimal decision might be to
wait. We therefore require a technique that allows growth epportunities several
years ahead to influence the optimal flowering strategy. Dynamic state variable
(DSV) models allow this type of calculation to be easily performed (Mangel and
Clark 1988; Mangel and Ludwig 1992). In this model, we assume that there is a
terminal time, T, at which the plant must reproduce; the time T can be interpreted
alternatively as the time of reproductive senescence or the time at which succes-
sional changes make reproduction mandatory, see Rees et al. (1999) for details of
model construction, The DSV model allows the calculation of switch values, L,
allowing for growth opportunities several years ahead. The approach calculates the
optimal decision at time T—1, and then works backward in time and in this way
allows for growth opportunities several years ahead. The DSV and one-year look-
ahead approaches agree at time T~ 1 because there is only a single growth opportu-
nity at this time. The DSV solutions are age-dependent although mortality up to
time T'is age-independent (Fig. 12.9). However, when there is little variance about
the growth curve, the flowering strategy is age-independent. The DSV model pre-
dicts, using forward iteration, an average size at flowering of 26 cm; clearly, the one-
yvear look-ahead approach is a good approximation to the DSV model. If we ignore
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Figure 12.9 The predicted switching curve for Oenothera calculated using the DSV and
one-year look-ahead models. Above the switching curve, individuals are predicted to
reproduce; below it they are predicted to continue growing. The solid line is the DSV
switching value; the dashed line is the one-year look-ahead switching value. As expected the
two approaches give identical answers at time T-1 where there is only one year of growth
possible. In this case T=10, see text for other parameter values.

non-specific heterogeneity in growth, by setting £;,,=0 in equation (12.11), then
both approaches predict a switch value of 1.97, which corresponds to an average
size at flowering of 7.2cm. This is close to the prediction based on the von
Bertalanffy growth model (6.3 cm). We learn two things from these models:

1 Non-specific heterogeneity about the growth curve potentially has a large effect
on the predicted flowering strategy, and as anticipated from the analytical models
selects for larger sizes at flowering.

2 The combination of non-specific heterogeneity about the growth curve and an
upper bound on longevity results in an age-dependent flowering strategy. This is a
result of varying opportunities for growth as plants approach the terminal time, T.
Itis not a consequence of age-dependent mortality as demonstrated by the fact that
the flowering strategy is not age-dependent when growth is deterministic.

In order to explore the generality of these approaches we developed an
individual-based simulation, based on the flow diagram given in Kachi and Hirose
(1985). We used the simulator to explore when and at what size a plant should
flower. We did this by introducing a simple genetic algorithm (GA) into the model
(Sumida et al. 1990). In the model, each individual is characterized by its size and
age, but in addition to this also has a flowering strategy. Each seed inherits its
parent’s flowering strategy plus a small random deviation. In all the simulations,
we assumed that offspring strategies were uniformly distributed about the parental
strategy with a range of £ 0.05. The number of recruits next year is independent of
the seed production this year, as demonstrated by Kachi (1983) see Fig. 12.5, but
the flowering strategy of each recruit is determined by a fair lottery amongst seeds.
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In this way, the flowering strategies of the recruits reflect the relative reproductive
success of the different flowering strategies in the population. In the GA model, the
intercept in equation (12.12), which describes how the probability of flowering
varies with plant size, was allowed to evolve. We explored two different scenarios: in
the first, we assumed there was no scatter about the growth equation (ie. £ =0in
equation [12.11]), which means that all plants follow a deterministic growth curve,
as in the simple growth models. In the second scenario, we incorporated the non-
specific heterogeneity by using the estimated error variance about the growth
equation.

In the first scenario the model evolved to an intercept of 1.5, which corresponds
to an average diameter at flowering of 6.7 cm and an average age at flowering of 3.6
years (Fig. 12.10). These values agree well with the analytical predictions (von
Bertalanffy 6.3 cm, DSV and one-year look-ahead 7.2 cm), but are considerably less
than those observed in the field. In the second scenario the model evolved to an
intercept of 2.5, which is close to the estimated value of 2.3, and the average
diameter at flowering was 21.8 cm, which is close to the field value of ~ 18 cm. The
age at flowering was 4.7 years, which is within the range observed in the field (3—6
years) and exactly matches the value obtained in Kachi and Hirose (1985) simula-
tion. Using the DSV results we can calculate the intercept predicted by the GA
model; we do this by setting the probability of flowering, equation (12.12), equal to
0.5, L equal to L, and solving for the intercept. This gives a predicted intercept of
2.55 while the GA gives 2.5; the agreement between the approaches is excellent.

Clearly, the non-specific heterogeneity about the growth curve is an important
aspect of Oenothera’s demography and has substantial implications for the evolu-
tion of size at flowering in this species.
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Figure 12.10 Evolutionary trajectories for Oenothera under two growth scenarios.

(a) Evolution of the intercept of the probability of flowering equation and (b) the average
size at flowering. In both panels the upper trajectory corresponds to scenario two, where
there is non-specific heterogeneity in the growth equation, the lower trajectory is scenario
one where there is no heterogeneity in the growth equation, see text for details. Note the
non-specific heterogeneity in growth selects for substantially larger sizes at flowering, as
predicted by the analytical models.
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The size and age-dependent demography of Onopordum illyricum is described
in Rees et al. (1999). As discussed earlier the simple growth model approach, equa-
tion (12.10), fails to describe the size-dependent flowering in this species, in fact
this approach gives predictions that are 50% smaller than the average size observed
in the field. Statistical analysis of the long-term population data indicated that:  «
1 recruitment was independent of the previous year’s seed production;

2 mortality varied from year to year and was age and size-dependent; there was
substantial individual-specific heterogeneity (Fig. 12.11};

3 flowering was age and size-dependent; there was little individual-specific het-
erogeneity, and growth varied from year to year and was age and size-dependent;
there was little individual-specific heterogeneity but substantial non-specific
heterogeneity.

Incorporating individuai-specific and non-specific heterogeneity but excluding
temporal heterogeneity into one-year look-ahead and DSV models lead to pre-
dicted sizes at flowering approximately double (= 3600 cm?) those observed. Sur-
prisingly the substantial individual-specific heterogeneity in mortality had little
impact on model predictions. This occurs because over the range of sizes that
plants flower: (i) the individual-specific heterogeneity, in the intercepts of the mor-
tality curve, translates into small changes in the probability of death; and (ii) the
logistic mortality curve is approximately linear (Fig. 12.11). With approximate lin-
earity and small changes in the probability of death between individuals, the effects
of individual-specific heterogeneity in the intercepts of the mortality curve are
small. Using an individual-based model incorporating a genetic algorithm, we

Probability of death

Rosetta area (log scale)

Figure 12.11 Probability of mortality in Onopordum illyricum for a two-year-old individual
in the average environment (middle solid line} and + 3 standard deviations about the
average (dotted lines about the central line). For an individual of size 4 the probability of
mortality could be anything from 0.05 to 0.95, demonstrating substantial individual-
specific heterogeneity. Redrawn from Rees et al. (1999).
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studied the effects of temporal heterogeneity in growth. This model showed that
temporal heterogeneity in growth selected for smaller sizes at flowering and gave
predictions extremely close to the sizes at flowering observed in the field; the pre-
diction error (predicted-observed/observed) was less than 2%. We can use this
model to predict the distribution of age at flowering (Fig. 12.12). The predicted
distributions are similar to those observed in the field (Fig. 12.4). The spread in the
timing of reproduction is a direct consequence of the temporal and non-specific
heterogeneity in growth.

In this system different forms of heterogeneity select for larger or smaller sizes at
flowering or have little effect. How do the various forms of heterogeneity influence
population size? We assessed this by running the model ignoring the different
forms of heterogeneity in turn; the model predictions are given in Table 12.1.
Clearly, the heterogeneities in this system have relatively little impact on the pre-
dicted population sizes. However, heterogeneity is critical in determining the
average values of the model parameters through an evolutionary response. There-
fore, although the direct effects of heterogeneity on population size are small, the
indirect effects through evolutionary changes in model parameters, can be large.

Discussion

In this chapter we have explored how heterogeneity may be generated by coloniza-
tion limitation, resulting in not all sites being colonized, and so allowing co-
existence of species that otherwise would be unable to persist together. This
heterogeneity can influence the conditions for coexistence; however, simple
models based on the negative binomial distribution are potentially misleading. In
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Figure 12.12 Predicted distributions of age at flowering in Onopordum illyricum, from an
individual-based model incorporating all three types of heterogeneity. The predictions are
for two sites in France, (a) La Crau and (b) Viols. In both cases, the models predict a wide
range of ages at flowering. This is a consequence of the heterogeneity in growth combined
with a size-dependent flowering strategy. See Rees et al. (1999) for details of the model.
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Table 12.1 Effects of removing various forms of heterogeneity on the predicted population
size based on an individual-hased model of Omopordum illyricum al two sites. In each case,
we removed the one form of heterogeneity at a time, leaving the others in the model, except
where all forms of heterogeneity were removed
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Indiividual-spacilic hatarogenety in mortaliy 178 267
Inctvidual-speciiic hetenaganedy in growih 177 SET
Fon-spesfic halerogenaity in grawih 178 296
Al hatmrogenety 152 217

these models, the condition for invasion of an inferior competitor does not depend
on its spatial distribution, suggesting that dispersal does not influence community
structure. This is a direct consequence of the way the invasion condition, which
ensures that a species can increase when rare, is calculated. In more realistic models
that consider the persistence of insects exploiting a patchy, ephemeral resource and
explicitly include local movement, invasion depends on the foraging strategies of
the competing species (Heard and Remer 1997; Remer and Heard 1998). These
models assume that individuals have a fixed number of eggs that can be laid in
clutches, and patches are visited at random (Remer and Heard 1998). If the inferior
competitor lays eggs in larger clutches, its colonization potential is reduced and
rapid exclusion occurs. However, if the inferior competitor lays eggs in smaller
clutches than the superior competitor, then coexistence is possible. In this case, the
inferior competitor has a colonization advantage that allows coexistence via the
competition—colonization trade-off.

We then explored how heterogeneity can result in temporal dispersal in mono-
carpic plants. In these plants non-specific heterogeneity in growth results in a
decoupling of age and size, and so makes size-dependent flowering strategies supe-
rior to age-dependent ones (Kachi and Hirose 1985; Rees e1 al. 1999), In agreement
with this prediction, reproduction in monocarpic plants is strongly influenced by
size, although in some species the flowering strategy does have an age-dependent
component (Werner 1975; Baskin and Baskin 1979; van der Meijden and van de
Waals-Kooi 1979; Gross 1981; Hirose and Kachi 1982; Gross and Werner 1983;
Reinartz 1984b; Kachi and Hirose 1985; Klemow and Raynal 1985; de Jung et al.
1986; Lacey 1986; Klinkhamer et al 19873; Wesselingh et al. 1993; Bullock et al.
1994: Klinkhamer et al. 1996; Wesselingh and Klinkhamer 1996), However, strict
biennials do occur and these species seem to have age-dependent flowering (Kelly
1985). In the strict biennial Gentianella amarella all surviving plants flowered in
their second year, with the result that many plants flowered while very small and so
failed to set seed (Kelly 1989a,b). It seems unlikely that such behaviour would be
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adaptively superior to a size-based flowering strategy, and Kelly suggests that these
species can be considered as ‘extended annuals’ that occur in habitats so infertile or
densely vegetated that enough reserves cannot be accumulated in one year for suc-
cessful flowering (Kelly 1985). In other species with age-dependent flowering, such
as bamboo, delays in reproduction have been linked with mast seeding and preda-
tor satiation (Janzen 1976).

Non-specific heterogeneity in growth means that individuals of the same age
can have very different sizes and so flowering is spread through time; resulting in a
form of temporal dispersal. Heterogeneity here causes temporal dispersal although
it does not directly select for it. In contrast to non-specific heterogeneity, temporal
heterogeneity in growth makes waiting to flower more risky so selecting for smaller
sizes at flowering. In Onopordum illyricum both these forms of heterogeneity dra-
matically influence the model predictions and accurate prediction is only possible
when both forms of heterogeneity are included in the model Rees et al. (1999).

From the various examples presented, it should be clear that the potential effects
of heterogeneity on ecological systems can be substantial, however, this is not
always the case, and the best way of assessing the importance of various types
of heterogeneity is through the use of parameterized mathematical models. In
general, heterogeneity will be important when it interacts with any non-linearity in
the system, this is essentially a consequence of Jensen’s inequality (Ruel and Ayres
1999). For example, say heterogeneity acts on plant size, resulting in individuals
having different sizes, and the probability of dying is an exponential function of
plant size L, then:

average probability of dying = E[exp(~dL}]

d26? exp(-dl)
2

~exp(—dL)+ (12.27)

where d is a parameter that determines how rapidly the probability of dying
decreases with plant size, L is the average plant size and 62 the variance in plant
size—a measure of heterogeneity. Now if heterogeneity was unimportant in the
system, then we could ignore it, and work with mean plant size, L. However,
because the mortality function, exp(-dL), is non-linear, and has a positive second
derivative, heterogeneity increases the average value of the probability of dying,
as shown by equation (12.27). If the mortality function had a negative second
derivative, then heterogeneity would decrease the average value. However, simply
knowing there is substantial heterogeneity and that it influences demographic rates
in a non-linear way does not mean that it will be important. For example, Pacala
and Silander (1990) showed that plant performance was a non-linear function of
the number of neighbours within a certain radius, and there was substantial vari-
ancg in the number of neighbours around target plants in sown plots. But this
spatial heterogeneity turned out to have little effect on the properties of this system
because population size rapidly increased, and at high densities the relationship
between plant performance and the number of neighbours was approximately
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linear (Pacala and Silander 1990). A similar effect is seen in the influence of indi-
vidual-specific heterogeneity in mortality on the evolution of flowering strategies
in Onopordum illyricum (Fig. 12.11; Rees et al, 1999). Genera! discussions of the
effects of heterogeneity on life-history decisions can be found in a series of paper
by Real and colleagues (Lacey et al. 1983; Caswell and Real 1987; Real and Ellner,
1992).

In summary, we have shown how dispersal may generate heterogeneity and con-
versely how heterogeneity can result in dispersal. Ecologists are only now starting
to realize that the error terms used in their statistical analyses might be as impor-
tant as the systematic parts of the model formulation (Pacala and Hassell 1991). We
can no longer assume that error terms can be ignored as these provide quantitative
estimates of the heterogeneity present in natural systems, and their consequences
on model prediction can be substantial (Kachi and Hirose 1985; Pacala and
Silander 1990; Pacala and Hassell 1991; Cain et al. 1995; Pacala et al. 1996; Rees et
al. 1996; Wesselingh et al. 1997; Rees et al. 1999).
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