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In behavioral ecology, diet selection is often predicted by using a theory in which it is assumed
that behaviors have evolved to maximize the rate of intake of energy. In this theory, it is assumed
that fitness is a monotonic function of energy intake. An alternative is to deal directly with fitness,
measured in terms of expected reproduction, and thus connect short term behavior with
reproduction. Following the usual assumptions of the theory of diet choice, fitness satisfies a
partial differential-difference equation. Conditions under which rate maximizing and state
variable theories of diet selection yield identical predictions are identified. When predation, as
well as starvation, is a source of mortality, the identification is not as complete.

Introduction. Among the achievements of behavioral ecology is the formula
from which predictions on diet selection can be based (see Stephens and Krebs,
1986, for further discussion and history):

Z LE\ 2,
o(P)=—"1——. (1)
1+ ) Ah2;

i=1

In this equation, v(2) is the overall rate of gain of energy of the forager, 4, is the
rate (either deterministic or the parameter of a Poisson process) at which the i*"
food item is encountered, E; and h; are the energy gain from, and handling time
of, the i*" type of food item, 2, is the probability that the i*" type food item is
incorporated into the diet, and 2 is the vector of the 2;. In using this equation,
it is assumed that fitness (expected reproduction) is an increasing function of
the rate of energy gain, but the relationship between fitness and energy gain is
never specified. Equation (1) can be derived in a deterministic setting by simply
equating the total foraging time to the sum of searching and handling times. In
the stochastic setting, the renewal theorem is applied assuming: (1) that the
foraging time interval of interest is long enough that only the first term (i.e. the
mean) in the renewal theorem (Karlin and Taylor, 1975) matters; but (2) that
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the foraging time interval is short enough so that behavior does not change
over the interval. In either case, the prediction about behavior is determined by
- a long-term rate.

The theory of optimal diet selection proceeds by choosing the 2, to maximize
v(2). This leads to a number of strong predictions. (i) Items should be ranked
by “profitability” E,/h,. (ii) tems are either always included in the diet or never
included in the diet (i.e. ;=1 or 0). (iii) The inclusion of the j'™ type of item
does not depend upon its encounter rate, but only on the encounter rates of
more profitable items. In particular, when there are only two prey types, with
prey type 1 more profitable than prey type 2, the second prey typeisincluded in
the diet if:

E,
Ill = E1h2 —E2h1 .

Although the success of this theory is controversial (Gray, 1987; Godin,
1990; Hughes, 1990), it has been instrumental in the development of behavioral
ecology. The theory owes its success to three main features. (i) The theory is
easy to use. (i) All of the parameters in (1) can be determined in the laboratory
or field. (iii) Strong predictions emerge.

In the development of (1) many features of the biology of the organism such
as physiological constraints and many features of the ecology such as
predation, are ignored. One would like to know, however, that those things
which are ignored can be ignored without any major effect on the predictions.
In this paper, I formulate and solve a state dependent (Mangel and Clark, 1988)
theory of diet selection which includes physiological constraints and predation.
In many cases (cf. Mangel, 1989) the full state dependent theory and the rate
maximizing theory give identical predictions of behavior. To understand why, I
analyse the model of diet selection based on state variables and show under
what conditions the predictions based on this theory will be the same as those
based on rate maximization.

State Dependent Diet Selection: Why a State Variable? In natural resource
management and in behavioral ecology, one of Colin Clark’s main contribu-
tions has been to force us to focus on states of the system, rather than rates (or
flows). Of course, knowledge of states over time implies knowledge about rates,
but the reverse is not true. Field biologists (e.g. Pierotti and Annett, 1990) are
beginning to study the relationship between diet and reproductive perform-
ance, recognizing that “reproductive performance is likely to be a better
indicator of individual fitness than ability to maximize caloric intake” (Pierotti
and Annett, 1990, p. 568).

The notation and procedures of Mangel and Clark (1988) are used, except
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that the model is formulated in continuous, rather than discrete, time. This
facilitates comparisons with theories based on rate maximization. The foraging
organism is characterized by a single state variable X(t) representing
physiological reserves at time ¢. If X(t)<x,, a critical level, the organism is
dead. A physiological constraint restricts X(¢) <x,,, a maximum possible level
of reserves. For ease of exposition, I concentrate on two food types, with type 1
more profitable that type 2, in the usual context that E,/h,>E,/h,. The
dynamics of the state variable are then:

X(t+dt)= X(t)—o(X(t)) dt
if no food type is encountered between t and ¢t + dt orif a food
type is encountered and rejected

X(t+dt+h)= X(t)—a(X(t)) (dt+h)+ E;
if the i*" food type is encountered between t and t+dt and
accepted. (2)

Here a(x) is the metabolic rate (i.e. the rate at which reserves are lost) when the
physiological variable X(t)=x. When a(x) is a nonlinear function of x, the
second equation in (2) should be understood only as a schematic of the
dynamics. That is, (2) is schematic for the differential equation
dX/dt= —a(X(t)), with jumps of size E; after h, units of time when a prey item is
accepted. It will be seen in the sequel that the schematic form used in (2) is
sufficient for our objectives.

Fitness at the end of the foraging interval is measured by future expected
reproduction ®(X (7)) depending upon the terminal value X(7) of the state
variable. Fitness for values of t < T is characterized by a fitness function:

F(x, t, T)=max E{®(X(T))| X()=x}. (3)

Here the maximum is taken over behavioral decisions (i.e. to accept or reject an
encountered food item) and E{ } denotes the mathematical expectation over
the probabilistic events of finding food (avoiding starvation) and avoiding
predation.

Is Starvation Important? We can begin the analysis by assuming that death is
caused only by starvation (i.e. no predators are present) and ask if starvation
over the interval [0, T] is likely (also see Houston and McNamara, 1988). In
this case, we set ®(X(T)) = 1if X(T)> x, and to 0 otherwise (Mangel and Clark,
1988).

To simplify the analysis, assume that there is only one prey type which is
always accepted upon encounter so that the probability of encountering a prey
item in the next dt is Adt+o(dt) [where o(dt) denotes terms such that
o(dt)/dt—0 as dt—0], a(x)=a a constant, and let x,=0. In addition, let:
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uix, t, T)=Pr{forager does not starve between t and T|X{r)=x}. (4)

Mote the conditioning on the initial time; hence wix,r, T) will satisfy a
backward equation (Feller, 1971). Using the law of total probability (Mangel
and Clark, 1988) we have:

wx, i, =(1—Adt)u(x—ade, t+de, TN+Adt wlx—xde+ E 04+ h+dt, T).
(3)

Taylor expanding and collecting terms in powers of dr, dividing by dr and
letting dr—0 gives idetails of this kind of derivation are given in the next
section, in a more general setling):

ﬂ=€—u—aﬁ+il,'ul,'x+ﬁ',t+h. Th=uix, 1, T)). iG)
at ox

Suppose that we consider a long time interval, for which the stationary version
of (6) is of interest. Setting du/dt =0, we have:

0= —a 2 4 Aulx+ E)—ulx) (7)
X

One interpretation of (7) is that w(x) is the probability that the forager never
starves to death (cf. Peters and Mangel, 1990). Assuming that u(x)=1—e¢
{Houston and McNamara, 1985) leads to a non-linear equation for k:

ok = (1 —e ~*F). (8)

This non-linear equation has a solution k>0 if AE > a. To see this, introduce a
dimensionless parameter ¢ = AE/x and set g = kE. Then (8) can be rewnitien as
g=¢l1—e"9). When e< 1, the only solution of this equation is g=10. However,
for = 1 there is a positive solution g =0 (Fig. 1). When & is close to 1, g will be
small and starvation will be likely for many values of x. When 3 1, g will be
large and starvation is important only for values of x near the critical value (0 in
this case). That is, u(x) exhibits boundary layer behavior (Lin and Segel, 1974).

Directly Linking Fitness and Diet Choice. A similar backward approach can
be used for determining fitness in the more general case. The equation that the
fitness function satisfies is called an equation of stochastic dynamic program-
ming and is determined by applying the law of total expectation.

To being still assume that there is no predation and that finding food is
characterized by:

Prifind food item type i in the next dt)=4; dt + o(dr). (9)
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Figure 1. The non-dimensional parameter g=kE& as a function of the parameter
£m 4 Fio. This is obtained by solving the equation g= el —e™ ¥} for the positive root
when &= 1.

Applying the law of total expectation (Mangel and Clark, 1988, Ch. 2) to the
fitness function Fix, t, T) leads to an equation analogous to (5) for Fix, t, T):

Fix, t, T)=(1—=(4, + 4, ) dt +o(de))F{x—aix) dr, t +dit, T)

2
+ % 14 de+oidr)}max | Flx —alx) de.t +dr, T);

i=1

Fix —ai{x)idr +h)+ E,, t+h +die, T} (10}

The first term on the right hand side of (10) is the expected fitness il no item is
encountered between ¢ and r+dr. This occurs with probability 1—(4, +
A,)dr+ofdr). The second term (involving the summation) 15 the expected
fitness il a item of type { is encountered; this is summed over food types. In this
case, Lhe forager can either continue searching (first term inside the “max™) or
eat the encountered prey item (second term inside the “max”). Letting O(ds)
denote terms such that Ofdi)/dt —a constant as di—{, Taylor expanding in
powers of dt gives:

Fix, t, T)=(1— (4, +4,) dt) {Fl[x, t, T +(%‘:'- (x) ‘;_D de +u{drj}

5 ddeodnmax{ At 1. )+ O

Flx=a(x)h,+ E. t+h, T+O(d)]}. (11}
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Since deQide)=ol(dt), (11) can be rewritten as:
OF iF
Fix,t, T)={1—(4, +A2}d:}(}"'{x, t, T]+(E—.:{.!:] E)dl)

2
+ ¥ {4, dt max{Fix, ¢, T);
i=1

Filx—aix)h,+ E;, t+ h;, T)} +olde). 12)
Subtracting Fix, t, T) from both sides, dividing by df and letting dt -0 gives:
aF aF
0= —alx) 5~ (4, + 4)Flx, 1, T)
2
+ % A max{Flx, ¢, T) Flx —ealx)h+ E;, t+h;, T} (13}
i=1

Equation {13} is solved with the “final condition™ Fix, T, T)=®%{x). This can
actually be treated as an initial condition, by introducing the time to go
s=T=|.

Rate Maximizing Solution of the Dynamic Programming Equation. The
forager will always accept food type 1, so that {13) becomes:

0="F _ o) 4 4 (Fix—alh, + E,, t+h,, T)—F(x, t, T))
ot dx
i, max{0, Fix —u(xjh, + E,, t+h,, T)—Fix, 1, T)}. (14)

From the definition, we expect that (Fix, ¢, T) increases as x increases and
decreases as 1 increases. Hence, (14) clearly shows the nature of the trade-off
regarding acceptance of food type 2. It can be cast into an explicitly “marginal
value™ setting by assuming that £, and h, are small. Then the second lood type
is accepted whenever:

oF dF
-ij {Ez _E{IIHJJ + Eh: }ﬂ.

Unfortunately, this equation is not very useful because Fix,r, T) 15 not
known. When just one food type is considered, McNamara and Houston
(1989, pp. 474 ) have shown that this marginal value condition leads to the
usual criterion for acceptance of the food item.

However, one can seek a rate maximizing solution of (14). The most general

form for a rate maximizing solution of (14) is:
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F(x,t, T)=g(x)+v(x)(T—t) (15)

where the function g(x) and the rate v(x) are to be determined. Here v(x) is the
rate of energy gain when the state variable is x and fitness increases as the time
to go T—t increases.

Since F(x, T, T)=®(x), it must be true from (15) that g(x)=®(x).
We then have that dF/0t = —v(x) and 0F/dx = ®'(x)+v'(x) (T—t), where the
prime denotes the derivative. Using these in (14) we obtain:

0= —v(x)—a(x)[®(x)+ 0 (x)(T—1t)]+4,[P(x—a(x)h, + E,)
+o(x—a(x)h, + E)(T—t—h,)—®(x)—v(x) (T—1)]
+ 4, max[0, ®(x —a(x)h, + E,)+v(x—a(x)h, + E,) (T—t—h,)
—®(x)—ov(x) T—1)]. (16)

In the usual theories of diet selection the rate v, is independent of state x.
Assuming that v(x)=v, a constant, (16) becomes: '

0= —v,—a(x)®(x)
+ 4, [®(x—a(x)h; + E;) —D(x) —v,oh, ]
+ 4, max[0, ®(x —a(x)h, + E,)—D(x)—vyh,]. (17)

Equation (17) will have two solutions v,, and v, , depending upon which of the
terms in the expression following 4, is larger. However, for these rates to be
independent of state x, it must be true that a(x) =, a constant independent of x
and that ®(x)=x. In that case, neither of the constraints involving x_ nor x
can apply and metabolic rates are independent of state. With these additional
assumptions, (17) becomes:

0= —vy—a+A,[E,—ah;,—voh, ]+ 4, max[0, E, —ah,—voh,].  (18)

The two solutions of (18) are:

ME .
Vo) = 1+1/111hl —a (prey type 2 rejected)
AME +A,FE,

Voy = T4 Ak A0, —a (prey type 2 accepted).

With the exception of a, which could easily be incorporated into (1), one of the
two values of v, will exactly correspond to the rate maximizing solution for diet
selection described by the classical solution.

According to (18), the second prey type should be incorporated into the diet
when E, —ah, —vyh, >0. Setting E, — ah, =v,,h, we can find the condition for
accepting the second type of item, which turns out to be exactly the same
condition obtained from the standard rate maximizing approach (Stephens
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and Krebs, 1986). We thus see that the rate maximizing solution is the same as
. the state variable solution when metabolic rates are constant, physiological
constraints and predation are unimportant, and expected future reproduction
is equal to the value of the state variable.

Including Predation. Gilliam (1990) recently extended the standard diet
model (1) to include predation. He assumed that the probability of death per
unit time while searching is 4, and that the probability of death while handling
the i*" food type is #:h;. Assuming that optimal behavior maximizes feeding rate
divided by mortality rate, Gilliam derives an expression analogous to (1) and
asserts that the 2; should be chosen to maximize:

Y. LEZ,
i=1

(19)

V=

1+ ih o

i=1 ]

To derive the dynamic programming equation corresponding to this situation,
assume that:

Pr{killed by a predator in the next dt while searching}

= 1, dt + o(dt) (20)
Pr{killed while handling a food item of type i}

=1—exp{—uh;}. (21)

The form of (21) is consistent with the assumption that the rate of predation
while handling a food item type i is ; (see Mangel, 1989, p. 692). The law of
total expectation applied to F(x, t, T) is now:

F(x, t, T)=(1~p, dt+0(de)) (1= (4, +,) dt + o(dt)) F(x —a(x) dt, t+dt, T)

+ i {4 dt+o(de)}max{(1 —p, dt +o(dt))

Flx—a(x) dt, t+dt, T); exp{ — u(h;+dt)}
Fix—a(x)dt+h)+E,, t+h;+dt, T)} (22)

and leads to:

oF
= A, oc(x) 'a_x_('ll +'12 +HS)F(X, L, T)

+ 22: A max{F(x, t, T); exp{ — ph;} F(x —a(x)h,+ E,, t+h;, T)}. (23)

i=1
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Setting F(x, t, T)=e*'G(x, t, T), with G(x, t, T) to be determined, gives:

. oG oG 2
0=—-—a(x) a——%—i; 4; max{0;

exp{h (it — )} G(x—a( )+ Epy t+hy, =G, t, T (24)

The method used to find a rate maximizing solution of (14) does not work for
(24). To see this, assume that we set a(x)=u«, a constant, that prey type 1 is
always accepted and that G(x, t, T)=x+v(T—t), with a constant v. Substitu-
tion into (24) leads to:

0= —v—o+2,[exp{h;(u,—p,)} {x—ah, + E +o(T—t—h,)}
—{x+o(T—1)}]+ A, max[O0,
exp{h,(u,— )} {(x —ah, + E,+ o(T—t—hy)} —{x+o(T—1t)]. (25)

The troublesome term in (25) is exp{h,(u,— u;)}; it appears to force a state
dependence to v. If we completely ignore state by setting « =0 and by assuming
that G(x, t, T)=v(T—t), then we can obtain an analog of Gilliam’s criterion
(also see Ludwig and Rowe, 1990; McNamara, 1992). However, this is a very
special case and the associated assumptions are unsatisfying.

Discussion. The main result of this paper is that rate maximizing provides a
solution of the dynamic programming equation for lifetime fitness when: (i)
expected reproduction is equated to value of the state variable; (ii) constraints
on the state variable are ignored; (iii) metabolic rates do not depend upon state;
and (iv) predation can be ignored. These are the assumptions under which the
standard diet selection model is usually derived. It appears that when any of
these conditions are violated, rate maximizing will not provide a solution of the
dynamic programming equation. 1t might be that behaviors predicted by the
two methods are still similar (Mangel, 1989), but it remains to be shown how to
identify when similar behaviors will be predicted.
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thank J. Gilliam, J. McNamara and two anonymous referees for numerous
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