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This paper gives a method for the study of relaxation at instabilities described by Langevin equations. The method
uses backward-diffusion equations which are conditioned on the initial value of the dynamical variables, instead of
the Fokker-Planck (forward) equation. By using the backward-diffusion equation, we obtain simple characterizations
of relaxation properties such as the mean time to leave an observation region about the instability, the probability of
reaching a preferred steady state, the mean time to reach it, and the rate of reaching it. Ensemble effects are included
by averaging over the initial distribution. This kind of approach complements previous studies which were based on
the Fokker-Planck equation. The interaction of noise, strength of the instability, and size of the observation region is
studied. A number of examples are given (lasers, ferromagnets, classical molecular scattering, spontaneous optical
resolution) and the methods developed here are applied to calculate properties of spontaneous optical resolution.

I. INTRODUCTION

The relaxation of physical, chemical, and bio-
logical systems from an unstable state received
attention over the past few years (see, e.g.,
Suzuki’s recent review article! for a summary of
previous work), The essential ingredients of the
problem are described as follows: By some means
a system is prepared so that it is concentrated
near an unstable steady state, [This can be ac-
complished by tuning some parameter appropriate-
ly (see below).] Since the state is unstable, any
fluctuation will drive the system away from the
initial state. In most cases, there is more than
one stable steady state present and one asks which
stable steady state does the system reach, how
long does it take to get there, etc.? Fluctuations
of any intensity cause the system to move from the
unstable state, so the typical approach to these
questions uses a combination of deterministic dy-
namics and fluctuations,

Most authors have relied on the Fokker-Planck
equation,.!"® The use of the Fokker-Planck equa-
tion proceeds as follows. An initial density f,(x),
such that f,(x)dx is the probability of initially
finding the system in [x,x +dx], is given. The
Fokker-Planck equation is used to characterize
the density f (x, t), defined so that f(x, t)dx is the
probability of finding the system in [x,x +dx] at
time ¢, One constructs a density f(x, ) so that
Sfle,t) = fy(x) as t¥ 0. If x,, denote the stable
steady states of the system, then by observing
flxs;, t) one gets an idea of how the system is re-
laxing toward the stable states. Unfortunately, a
good deal of analysis is involved; since the initial
density is not concentrated near x,,, local expan-
sions about the stable states are ineffective.

The point of this paper is to introduce another
approach which avoids some of these difficulties.
This approach is based on backward-diffusion equa-
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tions rather than the Fokker-Planck equation. For
example, suppose v(x,?) is the probability that the
system has exited from some neighborhood of the
unstable steady state going towards a specified
stable state by time £, given that the system starts
at x. The average of v(x, f) against f(x) gives a
good idea of the relaxation of the system. This
kind of approach complements the previous one
and is somewhat simpler; together the two ap-
proaches give a firm theory for these phenomena,

We are interested in three parameters that char-
acterize the system. The first, denoted by ¢, is a
measure of the intensity of the fluctuations. The
second, denoted by B, is a measure of the strength
of the instability. The third, denoted by L, is a
measure of the observation scale, It characterizes
the region around the unstable state where all the
action is. Once the system leaves the region of
size L, going towards a specified state the future
evolution is clear, with probability close to one.

In the next section, we provide a number of
physical examples of relaxation from instabilities.
The classical optical (laser) examples are dis-
cussed first, followed by ferromagnets, spon-
taneous resolution of optical activity, and orbiting
in molecule-ion molecule collisions. In Sec. III,
we study the theory of relaxation in one dimen-
sion, After a description of the assumptions, we
study the initial preparation of the system, the
equilibrium distribution after the steady state be-
comes unstable, the mean relaxation times, and
the rate of relaxation from the instability., These
quantities are calculated by solving the backward-
diffusion equations associated with the Langevin
equations, The results of Sec. III are generalized
to many dimensions in Sec. IV, where we consider
laserlike and chemical-like instabilities. The re-
sults of Secs. III and IV are used in Sec. V to cal-
culate properties of the spontaneous asymmetric
synthesis models of Frank.
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II. PHYSICAL EXAMPLES

We consider systems of moderate size that can
be described by a continuous variable, assumed to
satisfy a Langevin type of equation, where the
noise may be multiplicative.

A. Lasers and nonlinear optics

Phenomena involving lasers provide many exam-
ples of the instabilities studied here; other kinds
of optical instabilities are discussed in Graham’s
monograph.® A simple model for the laser is the
following.%:°1° The field is represented by a vector
B(t)=(B(t), B4(t)), where B(t) and B,(t) satisfy the
Langevin equations

Bi_ppfa- GBY]+@OVED. @D

In this equation 8 and g are constants representing
the properties of the laser and £(¢) is Gaussian white
noise. The parameter d is a tunable parameter,
representing the intensity of the pumping. If d <0,
the laser is below threshold. It is easy to see that
B(#)=0 is the only real steady state of (2.1) and it
is stable. If one prepares a system with d <0 and
waits for a long enough time, the system will
settle into a quasistationary distribution, This
distribution is approximately Gaussian, with vari-
ance proportional to g. When d=0 the laser is at
threshold and when d > 0 the laser is above thresh-
old. Above threshold, the origin is unstable and
the system moves away from the origin., Fur-

ther discussion of laser examples are found
in:l—7,9-11

B. Ferromagnets

The following model of the mean-field ferromag-
net 213 also exhibits the kind of instability studied
here, X(t) is a continuous variable measuring the
ordering of a magnet of N spins. When X(f)==1,
the system is completely ordered; when X(f)=0
the number of spins pointing up is equal to the num-
ber of spins pointing down, According to this
model, X(¢) satisfies the Langevin equation

dx

pra =2¢*/¥[ sinh(aX + 6) — X cosh(ax + 6)]

+[a@)] 2@, @.2)

where
1 o
a(Xx) =N [(1 -X) exp(aX +ﬁ + 6)

+(1+X) exp(—aX +%- o)] . @.3)

In these equations, o is proportional to the cou-

pling between spins and d is proportional to the
applied field. It is easy to show that as o switches
from o <1 to a>1 for 6§ =0 the origin switches
from a stable to an unstable state, % 13

C. Spontaneous asymmetric synthesis

Frank! proposed a model that describes the
origin of optical activity in living systems. Exten-
sions of this model form the basis of some models
for morphogenisis!® and there is experimental evi-
dence indicating that such resolutions are ob-
servable.® Frank’s model is summarized as fol-
lows. Let n; and n, represent the concentrations
of a pair of enantiomers in a solution; thus if »n,
=np the system is racemic.

In the simplest model, we assume that n; and
np satisfy the Langevin equations

%‘:nL[(l +a)-anp-ny]

+ [au("u np)] 1/251 @,
%’—;D='np[(1+a)—anL—nD] 2.4)
+ [aZI(nL’nD)] 1/2§;(t) ’

with summation over j. The coefficients a,,(n; ,n,)
and a,,(n;,n,) can be determined by applying the
birth-and-death formalism!” of chemical kinetics
or Keizer’s fluctuation dissipation postulates'®

to give (also see Sec. V)

1
ay(ng,np)== ny[(1+a)+n.],
R4

1
alz(nLinD)zaﬂ(”LvnD)zv angnp, (2.5)

aZZ(nLﬁ nD)=% nD[(l + a) +nD] ’
where V is the size of the system,

Equations (2.4) have the following properties’®:
If a <1 the racemic state n,=n, is stable. If «
> 1 the racemic state is unstable and the resolved
states are stable,

D. Orbiting in molecule-molecule ion collisions

In Refs. 20 and 21, the collision of a molecule
with a molecule ion is studied. In polar coordinates
with the molecule at the center, 7(f) measuring
molecule-to-molecule-ion distance and 6(f) mea-
suring angle, classical scattering theory shows
that

d b2  Zae?

_(7')2=g(1‘—2+ T ),

dt rs 2v°E 2.6)
a6 _ _gb

dat ~ ¥

Here g is the initial velocity of the molecule ion,
Z its valence, E its initial energy, o the polar-
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izability of the molecule, and ¢ is the electronic
charge. The asymptotic center-to-center distance
b is called the impact parameter. Set b,= (2Zae?/
E)}/4. I b<b,, then the solution of (2.6) spirals
into the origin; if b>b_, then the solution of (2.6)
approaches the origin and flies away on a hyper-
bolic trajectory. If b=b,, the solution of (2.6)
exhibits an unstable limit cycle, which is the in-
stability. Quantum effects on the classical dy-
namics (2.6) can be studied by using Langevin
equations

d b Zaez ﬁz 1/2
;1-;(R)2=g< Rz+m—>+<7n—) &),

2\ 1/2 @.7)
HZ) w0,

Here 77 is Planck’s constant divided by 27 and m
is the mass of the molecule ion,

III. THEORY OF RELAXATION IN ONE
DIMENSION

4,8
dt R?

In this section, we discuss the theory of relaxa-
tion in a one-dimensional system. The results de-
rived here are exact and are used to motivate the
approximate techniques used to study the relaxation
in many dimensions,

In a recent paper,? van Kampen studied some
questions of relaxation from instabilities by
Fokker-Planck methods. He finds it necessary to
match various solutions of that equation. The pro-
cedure given here (especially Secs. oI C-III F)
avoids most of the difficulties he encountered.

A. Assumptions

X(¢) is the macrovariable describing the state

of the system and is assumed to sat1sfy the Lange-

vin equation

ax

b T O R 1o ) AT PR B

In this equation, &(#) is Gaussian white noise, or-
some approximation to it; € is the reciprocal size
of the system, we assume €<« 1, In the absence

of noise, X(¢) evolves according to dX/dt=b(X, a),
where o is a parameter. We assume the following
properties for b(X, a):

(i) X=0 is a solution of b(X, a)=0.

(ii) If @ <0, b’(0, @) <0 and X =0 is the only
steady state.

(iii) If >0, b’(0, @) >0 and there are two other
steady states X; <0 <X, which are stable.

We define a potential & (X, o) by
o(c,0)= [ b(s, a)ds; (3.2)

the potential is shown schematically in Fig. 1,

24
(a) @
a<0
X
(b) )
a>0
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FIG. 1. Potential &(x) when the origin is stable (a) or
unstable (b).

Our assumptions ensure that the potential is
locally harmonic near X =0, thus critical type
behavior does not occur'?:!® (also see the Appen-
dix here),

The functions b(X, @) and ea(X, o) are connected by
the physical problem at hand. If b(X, @) represents
the (scaled) mean of a single-step birth-and-death
process, so that b(X, a)=b0"(X, a)- b~ (X, a), with
b*(X,a)>0, b=(X, @)>0, then a(X, a)xb*(X, a)
+b~(X, @).'®!® Otherwise, b(X, @) and a(X, a)
need be connected by some Kkind of fluctuation for-
malism!®23 or limit theorem.?

B. System preparation

We assume that at { =~ « the system is prepared
with ¢ <0. Thus, by time 0, the system is in a
stationary, equilibrium distribution. This density
Jo(x) satisfies the Fokker-Planck equation.?s-2¢

0=5 2 latx, )7,

- %[(b &, )+ % a’(x, 0))fo] . (3.3)

In 3.3), a’(x, @)= (3/3x)alx, @)] and we have used
the Stratonovich interpretation of (3.1).
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The solution of (3.3) is

filk, @)= (a(x a))

X exp[foz’o[—)<b(s,a,)+€Z a'(s, a))ds] .
(3.4)

In (3.4), ¢ is a normalization constant, assumed

to be finite.?” When € is small, i.e., for moderate-
ly sized systems, the behavior of f,(x, a) is asymp-
totically determined by the behavior of

*b(s,a) oz)

2. a) (3.5)

olx, )=

The potential ¢(x; o) has a critical point [¢’(x, @)
=0] at x=0; set

@ =5z b | 3.6)
Then we find the leading order in ¢,
ol @)~ g5 a)exP( re ) 0

so that the system has a locally Gaussian density,
with variance parameter €/2y(a).

We assume that at £=0 the parameter «a is
switched from a <0 to ¢ >0, The system, initially
concentrated near x =0, will move toward X,or X, .
Clearly, if in some sense X(0) > ¢ (a measure of
the intensity of the noise), then X(f) - X, with over-
whelming odds; if X(0) < -¢€, X(f) — X, with the
same odds. The most interesting relaxation ques-
tions pertain to those points where X(0) = 0.

C. Equilibrium distribution

As t— o, the system is concentrated near X,
and X;. In order to estimate the fraction of sys-
tems near each stable state, we define
u(x,L, a)

= Prob{X(¢) exits [~ L, L] through L |X(0)=x},
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We will study the dependence of u(x,L,a) on
the observation scale L and this will show how to
pick L. The equation that «(x, L, @) satisfies is a
backward-diffusion equation since the conditioning
is on X(0); it is derived in a number of textbooks?*2¢
and is

ea(x,a) 9°

0=t

——ulx,L,a)
ut )r
b(x, a)+—a'(x a) ux,L,a), (3.9)

u(L,L,a)=1, u(-L,L,a)=0 (3.10)

In the sequel, we denote a(x)=a(x, o), b(x)
=b(x,a), u(x)=u(x,L,a) for simplicity. The
exact solution of (3.9) and (3.10) is

*2b(y)  a’(y) 4

L, em(f B gy o)
f_I; exp(— IS% +Mdy>ds

2a(y)
Since b(0)=0 and b’(0) > 0, the main contribution
to (3.11) comes from the origin. Hence we obtain
the asymptotic result

w(w) = (3.11)

f_r exp b’(0) ds

)~ — ( c2(0) ) ) (3.12)
L b'(O)
f.‘ exp(— a(0) sz>ds

When ¢ is small, there is an internal boundary
layer around x =0 where u(x) changes rapidly from
zero to one. The width of this region is order
[ea(0)/b’(0)] /2, so it decreases with increasing
force of repulsion and increases with increasing
intensity of noise at the instability.

(3.8) From (3.12) we find
b’ (0) x b’ (0)
du(x) e"p( €a(0) ) -2/, e"p( €a(0) )"S b’ (0)
+ exp( L ) (3.13)
a ) [ I exp( b’ (0) )ds]z €a(0)
PRI e
Rewriting the denominator as an integral from — « to +« minus twice an integral from L to » gives
dulx) _ b’(0) b’(0) \'/? b’(0) b’(0) b’(0)
i -oo(- 0 V) maw) ~2o(-eaw [, ex”(‘ea(0>sz)ds(vea(0)>' @.14)

We conclude that if the observation scale L

I
region of importance is one near the origin.

> [ea(0)/b’(0)] /2, then du/dL is exponentially
small, Since the noise is small in systems of
moderate size, as long as b’(0) > 0 the observation

Once the system reaches — L or L it is approaching
X, or X, respectively, with probability one minus
exponentially small terms,
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Referring again to (3.8), u(x, L, o) is conditioned
on X(0)=x. The equilibrium distribution is then
obtained as an integral

L
u(L,a):f fole, a)u(x, L, a)dx . (3.15)
-L
If b(s) is symmetrical about s=0, then u(L, )
~%, correction terms are order €. If b(s) is not
symmetrical, so the potential is skewed, then
u(L, @) need not be asymptotic to 3.

D. Conditional relaxation time towards equilibrium

We define the relaxation time as the average
time required for the system to leave the observa-
tion region [- L,L]. To find it, define T'(x) by

T(x)= E{mint: X(t)é;[— L,L]|x(0)=x}. (3.16)

T(x) is the average time that it takes for the system
to leave the observation region, given that it starts
at x. If T(x) is integrated against the initial density
fy(x, @), the overall relaxation time 7 is obtained.

The average relaxation rate is then 1/7. T(x)
|

L s
-B(s,a) /e B@,a)/e
f_Le f_Le !

satisfies the equation®-%

2
=ea(x,a) d T+

-1 2 dx?

€, aT
(b(x, a) +Z al’(x, a)) o’

T(L)=T(- L)=0. 3.17)

If € were zero then T'(x) would be the solution of
the macroscopic equation

fL_is_-f 0
; b(s,a) ux>u,

L ds .
f 5, @) if x <0,

t= (3.18)

and T'(0) would be infinite, Once again, we con-

clude that the important part of the observation

region is a small neighborhood of the origin,
Define

_[*[2b(s,a)  €a'(s,a)
B, a)—f ( a(s, a) *32 a(s, a) >ds; (8.19)

so that the solution of (3,17) is

dzds
a(z, a)

2 * ~B(s,a) /¢
T(x)=z e ’ ds
-L

_g f" e—B(s.a)/efs eB(ha)/e_dﬂ‘i_ .
€ -L -L a(z, a)

L -Bls,a)/e
[, e ds

(3.20)

Equation (3.20) is exact; it is easily evaluated numerically and the relaxation time is calculated by one

more quadrature,

E. Conditional relaxation rate to a specified state

Consider the rate of relaxation towards a speci-
fied stable state, say X;. To do this, we calculate
the average time to cross X (f) =L for all systems
that cross L before — L. Define T, (x) by

T, (x)=E{mint: X(£)> L|X(0)=x,

X(t)exits[-L, L] through L}; (3.21)
T, (x) satisfies

-u(x,L,a)
_ea(x,a) d’T ( [ )dT‘
_———?———2 7;21-+ b(x,a)+4a(x,oz) yal

(3.22)

In (3.22), u(x, L, @) is the equilibrium distribution
function calculated in Sec. IIIC. An obvious
boundary condition for (3.22) is T (L)=0. For the
second boundary condition, we set dT,/dx|_,=0.
This condition is motivated as follows, T .(x) as-
sumes that the process exits through L. Any sys-

T

tem reaching — L must thus be reflected at x

=- L and return through x =0; the choice of

boundary condition corresponds to this reflection,
Defining B(x, @) as in (3.19), we obtain the solu-

tion of (3.22) as

2 L
TL(x)=g f e-—B(s,a)/e

x

s eB(s’,a)/s , ds'd (3 23)
xf—L Wu(s,L,a)s s. .

The average time of relaxation towards X,, 7;, is
the integral of T (x) against the initial density
f,(x, @), and the average rate of relaxation is 1/
TL-

F. Rate of relaxation to a specified state

The last theoretical quantity that we calculate
is the rate of relaxation, rather than an average
rate of relaxation. Define
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u(x,t, L) = Prob{X (¢) exits[- L, L]
through L by time ¢|X(0)=x}.

3.24)
This probability satisfies the equation (
du _ ea(xz a) azu €, ou
at MR T ) el
(3.25)

Equation (3.25) is the first partial differential
equation that has appeared in the theory. It needs

ou _ 3%

ot

As in Sec. IIIC., we expect the most important
part of the solution to come from a vicinity of
=0. We introduce a scale transformation x

= Y€z so that (3.27) becomes

2
g_’t‘= t[a(0, @) +a’ (0, a)Vez + 0(6)]%‘2’

+[60, @)z +0WR)] = . (3.28)
We use a perturbation expansion of the solution of
(3.28), u(z,t) =21 4= € *u,(2, t); the leading term
uy(z, t) satisfies

ou %,
220 _ L ’
2t =3a(0, o) —Q—az +b

with initial and boundary conditions determined
from (3.26). These are found as follows. We
expect that

o, oz)zaa—’;*L , (3.29)

Uy(z,t)—~1 as z—~,
(3.30)
uy(2,£)—~0 as z—~ -,

Thus we set

I 0'0,0) 2\,
fng a(<0° (3) %d:'“"z ”

uO(z, t)=

-0

(3.31)

where w(z, t) is to be determined. The integral
appearing on the right-hand side of (3.31) is a
differently scaled version of (3.12), the asymptotic
expansion of the equilibrium distribution.

The function w(z, t) satisfies the equation

i’i’ a0, a) a) ?%w

' _ﬂ
at= 2 a2 00z, (3.32)

with initial condition

both initial and boundary conditions; from (3.24)
these are

u(x,0,L)=0,
u(- L,t,L)=0,

-L<x<L
u(L,t,L)=1

(3.26)

Clearly, as t—«, u(x,t,L)—u(x,L, a) calculated
in Sec. IIIC. In order to calculate the rate of
decay, we construct the asymptotic solution of
(3.25) and (3.26) by exploiting the smallness of

e. Introducing Taylor expansions for a(x, @) and
b(x, a) in (3.25) gives

£ (a0, o) +a(0, @)+ 06)] T +(070, @l + 06N +5 [0, ) +a 0, a)l) e . 3.27)

]
£ _b'0,0)
JE exp( 20.) s)ds
- b'(0, 0) )
/= exp( TN ds
(3.33)
and decay requirements as z =+, To solve

(3.32), we set w(z,t) = Wlze* ¢, a(0, a)t)=W(y, 1)
and obtain

w(z,0)= =wy(2),

20'(0, @) )ﬂ__l_ 32w
exp( ——a(o, 3) )37 =3 ay (3.34)
Next we transform the time variable by setting
1- exp(Zb O, a)
a(0, a) (3.35)
1= 2070, 0) ’ .
a(0, a)
so that
dn 20'(0, @) )
dr“ex"( 2(0,a) "
Since dW/aT = (2W/an)(dn/d7), (3.34) becomes
oW _123*w
n =2 T (3.36)
The fundamental solution of (3.36) is
1 2
wi — e~/ 3.37
(y,m) @)t (8.37)
so that the solution with initial data w,(y) is
1 2
w(y, =f w, (£) e— -0/ mg . (3.38
(y,m) 0 (€ 7T £, (3.38)

Using (3.35) and ¢=7/a(0, @) we obtain

b’(0, 172
w(z,t):f w°(g)(1ra(0 a)(e(ﬁ ((:,)a)t 1))

(zei'(o.a)t g)zb,(o a)
"e"p( a(0, ) (€@ T T-1) )

(3.39)
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Inspection of (3.39) shows that w(z, #) = w,(£) as
£+ 0 and that w(z,?) — 0 uniformly in z as t— o,

Comparing (3.39) and (3.31) we see that u,(z, ¢)
relaxes towards the equilibrium distribution at a
rate determined by the macroscopic relaxation
rate b’(0, a).

IV. THEORY OF RELAXATION IN MANY
DIMENSIONS

The theory of the preceding section is one dimen-
sional, and this allows exact calculation of many
quantities of interest in relaxation, There are
physical problems, however, which are funda-
mentally multidimensional and cannot be reduced
to one-dimensional problems. In order to develop
a theory of multidimensional relaxation, the
smallness of € must be exploited fully. Instead of
obtaining exact answers and then analyzing them
by asymptotic methods, we shall obtain asymptotic
solutions from the start. For definiteness, we will
be concerned with two-dimensional systems.,

There are essentially no new physical ideas in-
volved in the study of relaxation from multidimen-
sional instabilities. The one-dimensional problems
have given us all the physical insight, On the other
hand, the mathematical difficulties involved by
going from one to many dimensions are consider-
able. Some of the necessary mathematicsare in Ref.
23; our goal in this section is to point out how the
one-dimensional problems generalize and to sketch
the mathematical methods,

A. Kinds of two-dimensional instabilities

The systems we study are now described by a
pair of variables X () =[X,(t), X,()], assumed to
satisfy Langevin equations

L —bu(X, @) +[eay (X, )] V26,0,

i,j=1,2 4.1)
with summation over repeated indices. As
before, let X =(0,0) be a zero of the vector
b(X, a)=[b(X, @), by(X, a)]. Let

2b; 3by
39X, 0X,

o
1

ab, ab, ‘ 4.2)
0Xy 03X, 0,0
An instability is called laserlike if when a >0 the
matrix B has two positive eigenvalues, and chem-
ical-like if when a >0, B has one positive and one
negative eigenvalue. These definitions are moti-
vated by Egs. (2.1) and (2.4), respectively.
Consider a laserlike instability. Since B has
two positive eigenvalues, there is repulsion from
the origin in every direction [Fig. 2(a)]. For ex-

(@

X2

(b)

s]/ L

S

4

FIG. 2. Two kinds of two-dimensional instabilities:
(a) laserlike and (b) chemical-like.

ample, if the laser equations, without noise, are
rewritten in terms of R= (B%+B}) and 6
=arctan(B/B,) then (2.1) becomes

dRr de

il - p? =y _
gt —PRE@-RY), =

0. (4.3)
For an instability such as this one, the most ap-
propriate relaxation problem is the following,
Surround the instability at (0,0) by some closed
trajectory @ (e.g., the circle R=+Vd for the laser).
One then asks for the distribution of exit points on
€ and for the probability of exiting through a spe-
cified arc, a, of Q, given an initial point X(0)=x.
The first question is adequately treated by Fokker-
Planck methods.*~? The second problem is not ef-
fectively treated by.those methods.

Consider a chemical-like instability. The eigen-

~ vector corresponding to the negative eigenvalue of

B gives rise to a deterministic separatrix? which
separates the phase plane into two domains of at-
traction [Fig, 2(b)]. The observation region
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[- L, L] is now generalized to a band around the
separatrix S bounded by two curves S, and S,
which do not intersect S. We will study relaxation
in the observation region bounded by S, and S,.

In this paper, we will concentrate on chemical-
like instabilities,

B. System preparation

As in Sec. III, we assume that the system is
prepared so that X=0 is a stable state, We as-
sume that when @ <0, B given by (4.2) has two
negative eigenvalues. At {=-«, the system is
prepared with @ < 0. Thus, by {=0 a stationary
distribution f;(x) is achieved; it is characterized
by the Fokker-Planck equation

2
0:;— E L [a;; 0/ ]

o7 0%;0%;

- 2; a—fj:[(bi(x)+% }; au(x)) fo] . (4.4)

There are many approximation schemes for the
solution of (4.4).2°~3! All methods exploit the
smallness of € and obtain solutions of the form
folx)~g(x,e)e~** % where ¢(r) satisfies a Hamil-
ton-Jacobi equation and g(x, €) is represented as a
power series in €, The coefficients of g(x, €)

=2, g,(x)e* satisfy certain ordinary differential
equations on the characteristics of the Hamilton-
Jacobi equation.30-32

C. Equilibrium distribution for chemical-like
instabilities

The generalization of the equilibrium distribution
of MIC is obtained as follows, Let

u(x, @) = Prob{X(t) exits region bounded by
S, and S, through S,|X(0)=x}. (4.5)

The equilibrium distribution is then obtained by in-
tegrating u(x, a) f;(x) over the region of interest.
u(x, o) satisfies the elliptic equation

0 ai!(xa CY)

T2 & x,0%;

€ 0 ou
+Z <b‘(x, a)+-4- ;a—x;au(x, Ol))'ax—i, (4.6)
with boundary conditions

0, xS,

u(x, a)={ 4.7

1, xeS,°
An approximate technique for solving this kind of
equation is given in Ref. 23.

The results derived there show that

u(x, a)=g(x, ) E(@(x, a)/VeE )
+e/2n(x, E'(Y(x, a)/VE ), 4.8)

where g(x,e) and h(x,€) (to be determined) are
power series in €, g(x,€) =2 g,(x)*, h(x,€)
=27k, (x)e*. E(z) is the error function

E@)= [ e?lus, 4.9)

and P(x, o) is to be determined. The leading term
in the asymptotic expansion (4.8) is

o (x,a)/ve
u(x; 0[) ~g0(x)f e-SZ/zds: (4'10)

which is an analog of (3.12). It turns out that
&,(x) is a constant, given by

¥ (xy @) M€ 2 -1
go(x)=(f e-s /zds) . (4.11)
®i 6, a) /VE

Here ¥;(x, o) is the value that ¥(x, L, o) takes on
boundary S;. The function u(x, o) given by (4.8)
asymptotically satisfies (4.6) if ¢(x, a) satisfies?s:

0=2 bitr, ) L 23, ) 2 2

x; 24 x; ox; "
(4.12)

Regularity of ¥(x, ) requires that ¥(x, o) =0 for
x € S, the deterministic separatrix.

The trajectory S in Fig. 2 plays the same role
as the single point of instability in the one-dimen-
sional problem, In particular, if S; and S, are far
apart, we let ¥(x, a) =~ — o, ¥,(x, @)~ <, and then
u(x, @)~ % for points x € S. This result accords
with intuition and generalizes the result of Sec.
IIC that u(x, L, @)~ 3 at the point of instability.

For points x not on S, but close to it, ¥(x, a)
can be determined by a Taylor expansion, as
follows. We switch from (x4, x,) to coordinate
tangential and normal to the separatrix S. Since
p=0on S, its tangential derivative vanishes.
Equation (4.12) gives an equation for the normal
derivative ¥,:

dp, 2 P
- a —4
—ldt +biy, —2 0. (4.13)

Here b and a are coefficients involving the b;(x)
and a;;(r).” The point is that (4.13) gives the
normal derivative of ¥; for points a distance on
from the separatrix $~,6n. Thus there is a sym-
metry in the value of ¢ about the separatrix. This
is the same kind of symmetry that allowed the
asymptotic expansion of (3.11) to give the quotient
of error functions. Such symmetry is not present
at critical points in parameter space and more
complicated asymptotic solutions are needed?? (see
the Appendix for a simple example).
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The results presented in this section pertain only
to the first part [goE(¥(x)/Ve )] of the expansion
(4.8); other terms are calculated in a like fashion.

D. Relaxation times for chemical-like instabilities

As in Secs. IIID and IIE, we can consider two
types of conditional relaxation rates, The first,
denoted by T,(x), is the mean time to leave the
region bounded by S; and S, given that X(0)=x, It
satisfies the equation

€ 2T
-1=" £ oy
§ 2 %y, @) 0x ;0x,

€ 0 oT
+ = —_— 21
X (o, 45 oy, )2,
(4.149)
with the boundary conditions
Tix)=0 ifx€S; orxcS,. (4.15)
Equation (4.15) is the two-dimensional generaliza-
tion of (3.17).
The second conditional relaxation time, denoted
by T,(x), is the mean time to exit the region

through S, given that X(0)=x and that the process
exits through S,. This time satisfies the equation

€ 3T,
- . 9T
u(x, @) 12,1: 3 ¢ilx, @) oxy0%,

' d
+ Z (b{(x, a) +§ ; é‘;l'au(x; a))%f’ .
(4.16)

The boundary conditions that we apply to (4.16)
are generalizations of the boundary conditions to
(3.22):

Ty(x)=0, x€8,

(4.17)
a_Ta‘Znﬁ)_=0, xe Sl’

Here 9T,/on is the normal derivative of T,(x) on
Sil'..et T(x) represent either T,(x) or T,(x). We
seek a solution of (4.14) or (4.16) in the form??
T(x)~gx, ) F(y(x)/Ve )
+e'/2ni, ) F'(P(x)/VeE V+k(x,€). (4.18)
Here g(x,€), h(x,€), k(x,€) are power series in €

[e.g., k(x,e)=20€,,(x), etc.]. F(z) is a special
function defined by the differential equation

d®F dF
7;2-=—ZE—1 (4.19)

[the error function (4.9) satisfies d2E/dz:=
—zdF/dz].

In Ref, 23 it is shown that (i) ¥(x) satisfies the
equation (4.12) and (ii) g, is a constant determined
so that the solution of the equation

oky (x,a) 3y oY
i - gy o—— = T =
2 :b:(x’ Cl) axi § au 2 ax,- ax! go Q

(4.20)

is regular at the instability. Here Q =—1if T
=Tjand Q=-u(x, @) if T=T,. The function &,
is then determined by the method of character-
istics,?%33

As in Sec. I, the appropriate relaxation time
is obtained by integrating T';(x)f,(x, @) or i
T,(x)fy(x, @) over the region bounded by S;and
S,.

E. Rate of relaxation to a specified state

The last quantity we consider is a generalization
of u(x,t,L) given by (3.24). Let

u(x,t) = Prob{X (¢) exits region bounded by
S, and S, through
S, by time ¢|X(0)=x}. (4.21)
This probability satisfies the equation

u € 9%
ot ~ 2 ; 465, “)axiax,

€ 0 ou
+ '2 <b,-(x, a) +3 ; o, ax, a)) 5%,

4.22)
with initial and boundary conditions

u(x,0)=0, xc region bounded by S, and S,

0, xS,

u(x, t)={ (4.23)

1, xe8,°
As in Sec. IIIE, we seek a solution u(x, t) ~u(x)

- w(x,t), where u(x) satisfies (4.8) and w(x, t)
thus solves (4.22) with initial condition w(x, 0)
=u(x). A solution of (4.22) with this initial condi-
tion can be obtained by the method described in
Sec. IV B.

V. SPONTANEOUS ASYMMETRIC SYNTHESIS

We conclude the paper by applying the methods
of the preceding section to the problem of sponta-
neous asymmetric synthesis. Our goal in this
section is

(i) to estimate the size of the region in which
fluctuations are important (i.e., affect the out-
come of the experiments);

(ii) to estimate the mean relaxation time to
leave this region. Both of these quantities are
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important if one tries to experimentally verify
the occurrence of spontaneous asymmetric syn-
thesis. The first condition indicates how precise
the initial conditions must be and the second indi-
cates how long one needs to wait to observe the
asymmetric evolution, !

We start with the deterministic equations for
spontaneous asymmetric synthesis. We assume
n, and n, are two enantiomers that are catalysts
for their own production and anticatalysts for the
other enantiomer. They are assumed to satisfy
mass action kinetics given by
%“ ny(ky=kynp—kyny),

i (5.1)
7” np(ky— Ry = kynp).

We now determine conditions on the rate constants
so that the racemic state (np=n.) is unstable. De-
fine scaled variables x=n, /n%, y=n,/n’, t="kyt
so that

; 3 (5.2)

dy _ (ke Ry )

di (kanb Ry © 7
The scaling parameter 7 is picked so that

k k )

Ry _ —

ka_a andk—mlo-—1+a (5.3)
i.e., n’=Fk,/(ky+k3)]. The Egs. (5.2) become

1/ (kg + g
Z—:zx(1+a— ay—x),
(5.4)
d
%=y(1+a— ax-y).

The racemic state is (x,y)=(1,1). The eigenvalues

of the matrix B given by (4.2) are — 1+ a, so that

a sufficient condition for the racemic state to be

an instability is that a>1 (i.e., &y /kg>1).
Introduce random variables N, and N, that satis-

fy the Langevin equation:
J

%L'=NL(’?1 —ky Np— k3Ny)
+[ay (N, Np)] 172 (8) + [ap (N, Np)] V26, (8)
dN

‘gf‘ =Np(ky—koNy = k3Np)
+[ayp(Ny, Np)] 12, () + [ag2 (N, Np)] V2gy(t),
(5.5)

Applying a birth-and-death formulation,' we ob-
tain

1
all(NL!ND)z(kINL +k3N!? _f; ’
1
@1, (Ny, Np) = (N Npk,) v (5.6)

1
5y (Ny,, Np) = (k4N +k3Nb) v

Here V is a measure of the volume of the sys-
tem.3 Applying the scaling above (5.2) to (5.6)
gives

aylx,y)=[A+a)x+x*]e,
alZ(xsy)z(axy)e ’ (5.7)
a22(x,y)=[(1 + 0‘)3? +y2]€ ’

where e=1/V«1,

We first solve the backward equation (4.6) for
the equilibrium distribution, A simpler set of
variables [instead of (x,y)] is

Z=%x-y, wW=x+Yy. (5.8)

From (5.4) it follows that the deterministic dy-
namics for z and w are

Z—:=(1+a)z—zw, _
(5.9)
‘Zf—(l+a)w+ @r-wh) - 5 (22 +w?).

The point (0,2) is a saddle point instability and
the w axis (i.e., z=0) is the separatrix.

The backward equation (4.6) in (x,y) variables
is

3% % /
0=€§(a—x1;- [@+a)x +x%] +2 2% Py ay axy +a—y;[(1 +a)y +y2]) +g—2(x[(1 +a)- ay-«] +%[(1 +a)+2x+ ay])

+g—:(y[(1 +a)- ax-y] +Z [A+a)+2y +ax]),

(5.10)

We switch to the variables (z,w). The equation (5.10) is transformed to

0-—2[22“((1+a)w+ (22 +wz)+ (% - 2))+2

o%u

ou
ow

+—[(1 +a)w +%(z2—w2)—<£2+—z—) +% [2(1+a)+(2+ a)z]]

[(1 + a)z +zw)

+—a—f((1 +a)w+ L2+t +% (w - z2)>] +g—:\((l + )z - wz +f—1 Qw - az)>

(5.11)
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The boundary conditions for (5.11) are u(- L,w)=0, u(L,w)=1,

We use the ansatz (4.8) to solve (5.11); the leading term is given by (4.10) and (4.11); from 4.11), g,
~1/V27 so only ¥(z,w) needs to be determined. To do this, we use (4.12). We differentiate (4.12) with
respect to z and evaluate it on the separatrix z =0, where =0 and thus ¢, =0, This gives an equation

for ¢, on z2=0:

1+a)w +%2—(1 +a)

2
((1+a)w—z;—(1+a))2d; 3, +9,[(1+a)-w-

At the saddle point the first term vanishes, This
gives an algebraic equation for , (¥, =0 is re-
jected as a solution), Solving gives

a—1 \ 172
ll’,(w:z):(m . (5.13)

With this condition, (5.12) is solved by standard
methods.?*3 We are not as interested in the
exact solution as in the order of magnitude.
Namely, from (5.13), the argument of the error
function [¢(z,w)/Ve ] is order

a-1\¥2 1
(m) z e (5.14)
Let us reconsider (5.14) is the physical variables.
It becomes

((kz—ka)"n 1/2(4__9.” i )Vl/z
7

2k,
by, -k 1ﬂ((n - ny)k
= =2_"3 AL TpiTty 1/2
(2(k2+k3)) Ty + g )V . (5.15)

As a measure of V, we take the total number of
molecules in the sample; for a 20-mg sample of
an optically active substance such as 1,1’-
binaphthyl,’ this means that V1/2~108 to 10°,
For the experiments in Ref. 16 the concentrations
are about 1073 molar. Let us fix n, - n,/n, at
0.01, say a 1% difference in optical activity. An
estimate of k, is O(10~ !/sec).® The probability
integral goes from 0.01 to 0.99 as its argument
goes from - 1.3 to 1,3, This means that (5.15)
should be O(1) for the fluctuation effects to be
observable. Assume that k,, k5 are O(1). Then we
need [(k, - k3)/2(k, +k45)]1/2~10% to 10-3. We con-
‘clude that the system must be strongly autocata-
Iytic (i.e., &, “large”) but weakly selective on the
anticatalytic dynamics (i.e., k,=kj3, but k,> kj).
We now estimate the observation time for the
relaxation. To completely do the calculation, one
needs to solve (4.14) using (4.18). We will esti-
mate g, in (4.18) at the point of instability, using
(4.20). We obtain

2 2k
_ — 3
g"_—a—-l_kz—ks' (5.16)

Using the estimate (k, - k3)/2 (k, +k5) ~10~¢ gives

5 vzl=0" (5.12)

an estimate for g,~10* to 10° sec (since #,~k,).
This estimate for the relaxation time is the same
order of magnitude as the times observed in the
experiments.!® This estimate also shows that
spontaneous optical resolution should be experi-
mentally observable,

V1. SUMMARY

We have seen in the previous sections that the
backward-diffusion equations can provide a good
deal of useful information about relaxation from
instabilities. The questions that are easily
answered by using the backward equation comple-
ment the equations that are easily answered by
using the Fokker-Planck equation. For example,
consider the mean time to leave an observation
region in a one-dimensional problem, starting at
the origin (which is assumed to be the instability),
Using the backward equation, we find this time
by solving an ordinary differential equation (3.17)
by simple quadratures. If we approach this prob-
lem via the Fokker-Planck equation (see, e.g.,.
Refs. 31 and 22), then a partial differential equa-
tion or a difficult eigenvalue problem must be
solved. There are, of course, questions that
cannot easily be answered by the methods of this
paper and the backward equation techniques will
never replace techniques using the Fokker-Planck
equation, Instead, the two kinds of methods com-
plement each other and provide the capability to
study many interesting questions about relaxation
at instabilities,
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APPENDIX: CRITICAL INSTABILITIES

Our analysis explicitly avoided critical points
in the parameter space, i.e., points where
b(xy, @)=0 and b'(x,, @) =0, In order to study
fluctuations at these points, one cannot use
Gaussian densities but more complicated densities
are needed.'*? To illustrate this idea, we will
redo the calculation of Sec. III C near the critical
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point @ =0. We start with (3.11), and assume for
notational convenience that a(y)=2. Then (3.11)

becomes
x 8
f exp(— f —b(f’ Q) dy)ds
=L

Q
[L exp(-f’ b(—fi)dy)ds
-L 0
In Sec, II, we proceeded by expanding b(y, @) in
a Taylor series around y =0 and keeping only the
first two terms, This will not work at a critical
point. Instead we expand as follows:

1 2%
4
1) 3! W ©

i) = (A1)

s 13b
b -
fo (v, )y =5 =

s* (A2)

and assume that
ab
oy
9%
W 0y )
2%
ay°
where g,(0) > 0. The assumption about the second
derivative is made for convenience. Near the
critical point, @ =0, the numerator of (Al) is
replaced by

[ ol 2022 )

,,j: exp(— ﬂﬁﬂ‘zz‘_gzﬂ‘i)ds . (Ad)

=2ag,(a),
0, a)

=0, (A3)

In going from (3.11) to (3.12) we used Laplace’s
method, which requires that the s? term in (A4)

dominate the s*term in (A4). Thisistrueaslongas
ag,(a)and g,(a)are the same order. Near the critical
point this condition fails, Laplace’s method cannot
be used and (A4) is the canonical integral for the
asymptotic analysis.?®> When « is nonzero, but
small, (A4) must still be used. To estimate the
size of the region of non-Gaussian fluctuations,

we proceed as follows, The main contribution to
the integral in (A4) comes from a vicinity of the
origin, Let us consider the value of s at which
exp{- [ag(a)/e]s?} is equal to exp(- N) where N
is a suitable integer (e.g., N=4 implies e~*
=1,83x107%), The requisite value of s is

eN \W o
s*=i(agl(a)) . (a5)

The non-Gaussian term in (A4) can be ignored if
the s term in (A4) is much less than the s? term,
when s=s*. This means that

eN 2
gz( )(ag (a)) <N, (A6)
This gives the requirement
£z(a)
a’gy(a) <N (A7)

Equation (A7) provides a bound on the region of
non-Gaussian fluctuations. For example, assume
that g,(a)=g(a) =1 and N=4; then (A7) becomes

Lol
ol e
or
a>2Ve , (A8)

i.e., if the parameter o« satisfies (A8) then the
fluctuations are adequately described by a Gaus-
sian model.
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