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The maximization of fitness is often used to analyse the action of natural selection on the life history
of animals but short periods of behaviour receive ad hoc treatment. This article describes a dynamic,
stochastic model for analysing behaviour in terms of the maximization of fitness.

THE Darwinian concept of evolution by natural selection' has
led to the introduction of optimization methods in biology’™*.
The basic idea, as illustrated by life history theory®”, is that
behaviours have evolved in a way that maximizes some measure
of reproduction (usually called ‘fitness). In general, life history
theory deals with relatively gross decisions about allocation,
such as yearly reproductive effort, and is not well suited for the
description of fine-scale decisions, such as when a bird should
remove an empty egg shell that might attract predators to the
nest®. The classic work of ethologists such as Tinbergen and
Lorenz showed that such fine-scale behavioural traits are also
subject to the principles of natural selection. Here we describe
mathematical methods that can be used to treat behaviour from
an evolutionary standpoint by describing a framework for
dynamic modelling of behavioural decisions in the context of
the life history of an animal™'’.

Earlier attempts to apply the principle of natural selection to
fine-scale decisions typically maximized a simple surrogate cur-
rency instead of fitness''. For example, most models that come
under the heading of optimal foraging theory use the rate of
energy gain as a currency, and assume that maximizing this rate
is equivalent to maximizing fitness. Although these models some-
times can predict short term behaviours'?, they have limitations
such as not being able to compare predation and starvation
risks, not considering sequences of actions, and ignoring the
state of the animal and the information it has about the environ-
ment. To include these aspects, a dynamic, state-variable
approach to the analysis of behavioural decisions is required.
For example, consider a fish in a lake which contains a number
of different habitats'®. If the potential food intake and risk of
predation vary between habitats, how would it judge which was
the better foraging habitat? Ideally, an optimization model
should be able to explain both short-term (daily) movements
between habitats and long-term habitat shifts over the lifetime
of the fish. Thus we are concerned with both entire life histories
and shorter periods in the life of an animal that involve detailed
choices.

The four components of the framework we propose are a set
of variables characterizing the state of the animal, a set of actions
that the animal can perform, dynamics which specify the
relationship between actions and subsequent states, and a state-
dependent reward function that specifies future reproductive
success in terms of the state of the animal at the end of a
relatively short interval. To illustrate the framework, we begin
with a simple paradigm for habitat selection’, then provide
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examples concerning the behaviour of a number of different
organisms.

A simple model

Imagine an animal that can choose one of n ‘habitats’ (H;) in
which to forage on a particular day t. Each habitat H; is charac-
terized by three parameters: B;, probability of death due to
predation, Y;, energetic value of food items, A;, probability of
discovering a food item.

The most interesting situation arises when the riskier habitats
also happen to be the most productive. The question then is,
assuming that evolution has led to the selection of ‘optimal’
foraging behaviour, which habitat would we expect the animal
to choose?

To answer this question we introduce a state variable, X,
representing the animal’s bodily energy reserves at the start of
day r. Thus energy reserves are increased by daily food consump-
tion Z,, and decreased by daily metabolic expenditure, denoted
by a, so that reserves at the start of day ¢+1 are given by the
equation:

X“_‘:X,—CI"'Z, (1)

Z, is a random variable whose distribution is determined by
the animal's choice of habitat. If habitat H, is chosen, then Z,
equals Y; with probability A;, and equals zero with probability
1-A;.

Energy reserves cannot be negative, and are bounded by the
animal’s capacity Cap:

(2)

If energy reserves decline to a low level, the forager is likely
to die of starvation; we simplify this situation by assuming that
the animal dies if X, =0.

This framework now allows us to compare, in terms of fitness,
the benefits of food consumption with the risks of predation.
Death may occur either from starvation or predation. If, for the
moment, we limit attention to behaviour durir; a nonbreeding -
phase in the animal's life, it may be reasonable to identify fitness
with the probability of surviving until the end of the nonbreeding
period. We then adopt the hypothesis that an optimal
behavioural strategy is one that maximizes the forager's proba-
bility of surviving from 1=0 to t=T, where T denotes a fixed
horizon, corresponding to the onset of breeding activity. (This
simple paradigm can be extended in many directions, one of
which includes breeding activities.)

‘We assume that the animal ‘knows’ the parameter values B;,
Y,, A,, characterizing each habitat H,, and that it can assess its

0=X,=Cap



1. Deri of the stochasti dy

Recall that J(x, t, T) is the maximal probability of survival from
day t to day T given that X, = x. Hence, when = T, I(x, T, T) =
as long as x> 0. For values of 1< T, we proceed as follows. To
survive from day ¢ to T, the organism must first survive day
and then survive from day r+1to T, taking into account changes
in the state variable that occur on day .

Suppose that the org chooses habitat H, on day ¢. If the
animal avoids predation on this day, its energy reserves at the
beginning of day ¢+1 can have one of two values, x —a and x/,
where x| is the minimum of x~a+ Y, and Cap. These values
correspond to finding no food and finding a food item of energetic
value Y; and occur with probabilities 1 - A, and A,, respectively.
The corresponding maximal probabilities that the animal survives
fromday r+1to TareJ(x—a, t+1, T)and J(x}, 1+1, T) respec-
tively. Thus, conditional on the animal avoiding predation on
day i, its probability of surviving until T is

(A=A (x=a, 141, T)+AJ(x}, t+1, T).
Taking into account predation risk on day ¢ the survival probabil-
ity is

ic programming equation

Pi(x t, T)=(1-B)[(1-AM(x—a,t+1, T)
+AJ(x{, t+1, T)].

Because J(x, 1, T) is the maximum probability of surviving from
day f to day T, we simply maximize P, over habitats to find
J(x, t, T), which gives equation (4) of the text.

energetic state X, on each day r. The computation of the optimal
strategy for selection of habitat can be carried out using the
method of stochastic dynamic programming. Details are given
in Ross'*, see also Box 1. Let J(x, f, T) denote the probability
of survival from day ¢ until day T, given that X,=x, and
-assuming that the animal uses the best strategy. We then have
1 ifx>0
X T, T) {e o 3)
(the animal is alive on day T if and only if x> 0).
It is shown in Box 1 that in general J(x, t, T) satisfies the
equation

Jx, t, T)=maximum P,(x,1, T) x>0 (4)
where
Pi(x 6, T)=(1-B)[AJ(x{, t+1,T)
F+F(1=A ) (x—a,t+1, T)], (5)
and where x{=min (x—a+Y,, Cap) (6)

Equation (4) is known as the stochastic dynamic programming
equation.

If the values of the model parameters are known, then J can
be found by an iterative process called backward induction. We

first take 1 = T—1. Because of equation (3), all expressions on .

the right side of equation (5) are known, Thus P,(x, T—1, T)
is known for each choice of habitat H, and J(x, T—1, T) can
be found from equation (4). The value i* of i that yields the
maximum in equation (4) specifies the optimal habitat H,.. In
general i* depends on x. Having computed J(x, T—1, T) as
above, one can then use the same process to compute J(x,
T-2,T), and subsequently J(x, T3, T),...,J(x,0, T). The
computations are easily coded for automatic computation, and
can be performed very rapidly on a desktop microcomputer.
The procedure is illustrated in Box 2.

The qualitative predictions are that (i) foragers will accept
greater risks of predation in habitats with higher food availabil-
ity, and (ii) a forager will accept greater predation risks when
hungry than when it is well-fed. This provides an explanation
for the decrease in feeding rate as total intake increases'®. Such

2. NMlustration of backward induction

We take the upper limit on reserves, Cap, to be 20 and consider
three habitats, with 8, =0, 8,=0.01, 8, =0.05, A, =0.4, A, = 0.6,
A;=08and ¥,=Y,=Y,=2 a=1. Thus as the predation risk
in a habitat increases, so does the mean net gain. The table gives
Py(x, 1, T) for a range of x and t. (Top entry, P,; middle entry,
P;; bottom entry, P;). To compute these values, start at the
right-hand column, where J(x, T, T} is given by equation (3). At
time T—1, P(x, T—1, T) is given by equation (5), and J(x, T -
1, T) is equal to the maximum value of P, This value is under-
lined. It can be seen that it is optimal to choose habitat 3 only
if reserves are one. Calculating J(x, T -1, T) for all x shows that
habitat 1 is chosen for all x=2. The values of J(x, T—1, T) can
be used to find P(x, T -2, T) and hence J(x, T -2, T) etc. Using
this procedure it can be shown that, for T—1 sufficiently large,
the optimal policy has the form ‘choose habitat 3 if 1=x=2,
choose habitat 2 if 3= x =11 and choose habitat 1if 12=< x < 20",
This is the long-term policy for maximizing survival in this
environment,

In addition to finding the optimal policy, it is possible to
calculate the probability that an animal following it will be in
any given state. From this, the probability that a given habitat is
selected can be found. In this example, the probabilities of

lecting habi 1 to 3, respectively, are 0.526, 0.471 and 0.003.
Thus in a large population of animals, the percentage of animals
in these habitats would be 52.6, 47.1 and 0.3.

K x, 1, T) is underlined Jx, T, T)
t=T=4 =T-3 (=T-2 =T-1 t=T

Px,,T) 09713 10000  1.0000 1.0000 1
Pix T) 09711 09900 09900  0.9900
Pi(x,, T) 05409 09500 09500  0.9500

3 P(x,T) 09426 09426  1.0000  1.0000 1
Pyx,, T) 09521 09521 09900 09900
Pyxt, T) 09318 09318 09500 09500

2 P(x,4T) 07933 08560  0.8560  1.0000
Py(x,1, T) 08378 08950 08950 09900
Pyx,, T) 0.8542 09440 09440  0.9500

1 P(xt,T) 03618 03618 04000  0.4000 1
Pyix, 4, T) 05372 05372  0.5940  0.5940
Pix,, T) 06873 06873 07600  0.7600

0 J0,,T) 0 0 0 0 0

predictions are hardly surprising, but one cannot expect to derive
deep insights from such a simple model. The intuitively appeal-
ing prediction that foraging behaviour should be affected by the
forager’s current state of hunger is one that does not arise from
classical foraging models. Box 2 also shows that quantitative
predictions can be made about the long-term distribution of
animals among habitats.

The dynamic modelling approach offers several advantages
over previous methods. First, the use of dynamic state variables
means that models can be made more realistic and biologically
meaningful. Constraints on variable values and rates are easily
included—indeed they can hardly be omitted. The models can
be made time-dependent and fully stochastic, realistically
reflecting environmental conditions. Alternative behavioural
choices (for example, foraging, resting or reproductive activities)
can be treated simultaneously in a unified way®'%'%, Evolution-
ary fitness can be modelled in a direct manner, by including
reproduction as well as survival. In fact, this approach is a
generalization of classical life history theory®"'%, but, by work-
ing with a representation of the animal’s state, a better insight
into the nature of life-history tradeoffs is obtained'®. Moreover,
the approach enables us to calculate the loss in expected future
reproductive success that results from adopting a suboptimal
action'®, referred to as the canonical cost of an action'®. These
costs can be used to assess the robustness of the conclusions of



a model and the selection pressure for a given behavioural
strategy '™,

In short, the stochastic programming approach to behaviour
modelling is extremely flexible, and can be used to help organize
and understand a wide variety of both field and experimental
data; some recent applications are described below.

Foraging in lions

The African lion is the only social member of the cat family®™.
Lions live in prides typically consisting of up to 18 related adult
females plus offspring and unrelated adult males. Female lions
from a given pride hunt prey in cooperative groups ranging
from one to eight, depending on prey size and other circum-
stances.

Caraco and Wolf*® analysed data collected in the Serengeti
by Schaller®® and calculated average daily food intake per lion
as a function of hunting group size. In all cases, groups of size
n =2 maximized the average individual food intake. For large
prey such as zebra and wildebeest, however, the average number
of lions observed feeding at kills ranged from four to eight.
Caraco and Wolf calculate that these large groups would
experience up to 50% reduction in food intake, compared with
groups of two. When hunting small prey such as Thomson’s
gazelle, on the other hand, lions either hunt individually or in
small groups of two or three.

Packer'® has re-examined the results of Caraco and Wolf and
concludes that “there are no good data showing that cooperative
hunting is in fact beneficial to individual lions” in terms of
average rate of food intake. Instead, Packer suggests that lion
sociability is primarily an adaptation to the opportunity for
scavenging from conspecifics in a region where both lions and
their prey occur at high densities. When food items are large
and infrequently obtained, variance in the amount of food
acquired may have as great an influence on fitness as does the
average feeding rate. By increasing the frequency of kills and
decreasing the food per hunter per kill, group foraging generally
decreases the variance in food intake.

To assess the implications of group foraging in greater detail,
Clark® developed a dynamic model of lion hunting behaviour.
In simplified form, the model is equations (1) and (2) with Z,
a random variable given by

probability (Z, = E/n) = A,, probability (Z,=0)=1-4,

where X, denotes stomach contents at the beginning of day 1,
Z, is food intake, n denotes hunting group size, a is the daily
minimum food requirement per lion (= 6 kg), Cap is the stomach
capacity (=30kg) and E is the average food content per prey
item { = 164 kg for a zebra and 12 kg for a gazelle; zebra carcasses
last up to three days; gazelle are consumed immediately). The
kill probabilities A, depend on group size n, and also on the
type of prey and habitat. We wish to find the behaviour that
maximizes survival over a time period of T days. Thus equation
(3) holds, and the resulting dynamic programming equation is
similar to that given by equations (4)-(6) above but with g, =0,
because lions are not preyed upon.

Typical predictions of this model are shown in Table 1a,
which shows survival probabilities P and optimal hunting
groups sizes n* as functions of initial stomach contents x(T =30
days), for three sets of prey/habitat combinations.

Notice that the optimal group size n* predicted by the
dynamic model depends on the lion’s current state x, as well as
on prey type and habitat. For example, well-fed lions shouid
hunt zebra in groups of size six, rather than two as predicted
by Caraco and Wolf’s model. In fact, hunting in groups of size
two is severely suboptimal, yielding only a 78% probability of
survival over a 30-day period. The main reasons for this result
are (i) small groups hunting zebra have reduced kill probabilities
(A3=0.30, As=0.43), and (ii) two lions cannot consume a whole
zebra before the carcas rots so that much meat is wasted if only
two lions share a zebra kill. The importance of this constraint

Table 1 Probability of survival and hunting group size

a
—= —_— b

() (2) 3) — —_
x(kg) P n* £4  n* P n* N P n*
5 086 3 026 2 0.06 1 2 018 2
10 090 4 0.43 2 0.13 1 4 075 2
0 097 4 0.64 2 0.26 2 6 095 2
o 099 6 074 2 035 2 8§ 0993 2
10 0999 2

a, Maximum probability of survival (P) and optimal hunting group
size (n*), as functions of current stomach contents (x) with a 30-day
horizon, for lions hunting (1) zebra in wet-season Serengeti habitat, (2)
Thomson's gazelle in wet-season habitat, and (3) gazelle in dry-season
habitat. From Clark®'. b, Maximum probability of survival (P) and
optimal hunting group size (n*) for prides that communally share kills,
as a function of pride size (number of adult females), N. Prey is zebra,
dry-season habitat.

is made obvious by the dynamic approach, but was overlooked
in previous analyses of lion hunting behaviour.

A second prediction of the dynamic model is that hungry
lions should hunt in smaller groups than well-fed lions. In times
of prey scarcity, for example, lions may be hungry most of the
time, and our prediction is that smaller hunting groups will then
be observed. The breakup of lion prides during the dry season
in the Kalahari has been described by Owens and Owens™.

This model can be modified to allow for scavenging of kills
by pride mates, which Packer suggests as the main mechanism
underlying lion social behaviour. Consider a pride containing
N adult females, and suppose that the pride hunts in k separate
groups each containing n females so that N =kn. Kills are
assumed to be shared equally among pride members. These
assumptions lead to a binomial distribution for Z,.

Table 15 shows the optimal hunting group sizes n* and 30-day
survival probabilities P for this model of communal scavenging,
as a function of pride size N. The corresponding results for a
pride of size N =6 that does not share kills are n*=6 and
P =0.42, indicating that communal scavenging of kills may
greatly increase survival rates for individual lions under certain
circumstances—namely where prey is large, relatively scarce,
and perishable, and where ecological conditions permit separate
hunting groups to communicate to pride mates the fact that a
kill has been made. These circumstances are characteristic of
the African savannah.

Small birds in winter

During the winter small birds must forage most of the daylight
period if they are to obtain enough food to satisfy their daily
requirement”, Under these conditions adverse fluctuations in
the amount of food obtained can easily result in starvation.
Foraging activities also expose a bird to predators, so that there
is often a trade off between the need to obtain food and the
need to avoid predators.

To model the foraging decisions of a bird over a single day,
let time t =0 be dawn and let time ¢ =T be dusk. At each of
the times ¢=0,1,..., T—1 the bird must choose a foraging
option from some set of available options. The option chosen
at time ¢ determines the distribution of the amount of food
obtained between time ¢ and 1+ 1 and the predation risk. The
option also determines metabolic c ption between ¢ and
1+ 1. Overnight the bird uses x_ units of energy reserves.

To model foraging behaviour in winter, we assume that each
day in winter can be described in this way. Given a terminal
reward (expected future reproductive success) for the various
energy states at the end of winter, the optimal policy on each
day can be found by working backwards from the terminal
reward. When there are sufficiently many days left in winter,
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the optimal policy on all days is the same. This policy is the
one that maximizes the bird's long-term survival probability.

This sort of model can be used to analyse the value of a given
increase in energy reserves, the trade off between starvation and
predation risks, or the importance of variability in foraging
returns. We discuss some results concerning the last of these
topics.

The calculations that yield the optimal policy also give the
long-term survival probability as a function of energy reserves.
In particular, the survival probability of a bird at dusk is a
non-linear function of its energy reserves. This function is convex
for low levels of reserves and concave for high levels of reserves.
One can regard this function as a terminal reward function at
dusk. The consequences of non-linear reward functions are
well-known (see ref. 12 for review). Given a choice between two
options that result in the same mean gain but have different
variances, it is optimal to maximize variability (risk-prone
behaviour) when the derivative is increasing and to minimize
variability (risk-averse behaviour) when the derivative is
decreasing. In the small-bird-in-winter paradigm the situation
is complicated by the need to avoid daytime starvation, and can
be summarized as follows.

Suppose that two actions ay and a, are available at each of
thetimes of day r=0, 1,..., T - 1. These actions have no preda-
tion risk and result in the same mean energetic gain u per time
unit, but the variance in gain is greater under a,, than under
a.. We refer to ay as the high-variance option and a, as the
low-variance option. The general form of the optimal policy is
shown in Fig. 1. The switching linc in this figure has slope u.
An animal whose reserves are below this line will not survive
the night if it obtains energy at the mean rate. It is thus optimal
to take risks in the shaded region of the graph by choosing the
high variance option ay;. When reserves are very low, it is always
optimal to be risk-averse and choose the low varance option,
because the high variance option has a greater risk of immediate
starvation. An animal with reserves above the switching line
expects to survive the night and therefore plays safe by being
risk-averse. The result of these effects is to give a wedge-shaped
region in which it is optimal to be risk-prone.

Given a choice between several actions we define the canoni-
cal cost of choosing a particular action as the loss in expected
reproductive success which is incurred as a result of this choice'®.
In the small-bird-in-winter model the ical cost of acti
a, c(a, x, t), depends on reserves and time of day, and is essen-
tially the reduction in overwinter survival probability which
results from choosing a.

Fig. 1 The region of risk-prone behaviour as a funetion of energy

reserves and time of day. An animal has two possible courses of

action, a,, and a,, of high and low variance, respectively, in the

energetic gain resulting from the course of action. The dashed line

has slope u equal to the mean rate of gain under both foraging

options. In the shaded region of the figure it is optimal to choose
the ‘risky” option ay,.

In this example the canonical cost of choosing a; when a,
is optimal and of choosing a;; when a, is optimal can be quite
high. But the probability of being in the shaded region in which
ay is optimal is small. Houston and McNamara'’ use this to
argue that the selection pressure to be risk-prone under the
appropriate circumstances is much smaller than the correspond-
ing selection pressure to be risk-averse. This conclusion is sup-
ported by analysing the total mortality under various strategies.
If a bird with a single behavioural option is given a further
option yielding the same mean amount of food but having a
higher variance, the bird can slightly reduce its probability of
starvation by choosing the high variance option in appropriate
circumstances. If instead the second option has a lower variance
it is optimal for the bird to use this option most of the time,
and the resultant drop in starvation probability is usually mass-
ive. In line with this, the data suggest that risk-prone behaviour
is a much less robust phenomenon than risk-averse behaviour
(see refs 17, 24 for further discusson and references).

The dawn chorus

In spring, many songbirds produce an intense burst of song at
dawn, the dawn chorus. McNamara er al** use a dynamic model
to analyse the factors that can produce this chorus. The model
considers a male bird that sings to attract a mate. A period of
five days is modelled. The daylight period of each day is divided
into 96 equal time intervals. During each interval the bird can
either forage or sing. If it forages it gains no mate but finds
food of energy value Z,. The energy expended during the interval
is a linearly increasing function of the bird’s energy reserves
(and hence body mass). If reserves at time f are x then reserves
at time ¢+ 1 satisfy.

X =x+2Z,—(ap+kex)

If the bird sings it finds no food and its reserves at time t+1
are given by
- Xesr =x—(as+ksx)

A singing bird attracts a mate with probability m,. A bird which
manages to attract a mate can spend the remaining time foraging.
Birds rest between dusk and the following dawn. Overnight
energy consumption is assumed to follow a normal distribution
with mean u, and variance o%.

During the five-day period a bird starves if its reserves fall to
zero. If the bird survives till dawn on the sixth day it receives
a reward of one unit. If it has also obtained a mate by this time
it receives a further reward. The optimal policy maximizes
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Fig.2 a, The optimal policy in the model of singing and foraging.
The bird can either sing or forage. When there is a constant loss
of energy each night (g, >0, o, =0) itis optimal to forage if and
only if reserves are in the double hatched region. When o =9it
is optimal to forage if and only if reserves are in the single or
double hatched region. b, The proportion of birds singing under
the two policies shown in a. When o, =0, the proportion is given
by the broken line and there is no dawn chorus. When oh =9, the
proportion is given by the solid line. There is a marked dawn
chorus and a slight reduction in singing at dusk.

expected total reward. In general the optimal action depends
on reserves and time of day, but is a very similar function of
these on all days except the last.

In describing the results of the model, it is important to
distinguish between the optimal policy and the expected
behaviour that is generated by following the optimal policy. The
optimal policy is a specification of a critical level of reserves
%, such that if X,> £, then it is optimal to sing and if X, <%,
then it is optimal to forage. The expected behaviour depends
on the proportion of time spent above or below £, and gives
the proportion of birds singing in a large population of identical
birds. In the absence of an energy loss overnight, %, is constant
and there is no circadian rhythm. Adding a constant loss of
energy per night (that is, uy >0, 0% =0) results in a ris¢ in £,
in the afternoon as a bird must build up its reserves to survive
the following night (Fig. 2a). This results in a dip in the propor-
tion of birds that are singing in the aftemoon (Fig. 2b). As might
be expected, a burst of song at dawn can be produced by
increasing the probability of getting a mate m, at this time or
decreasing the returns from foraging Z,. McNamara et al™®
found, however, that making the energy lost overnight a random
variable (%, > 0) could also produce a dawn chorus. The reason
is that a bird must get its reserves at dusk above the amount

Propor ton of
Population I—
policy }'. pClDufah;:: singing
Best policy Frobability singing

for a mutant bird attracts a
xy mate my

Fig. 3 The iterative procedure for finding a dynamic ESS (after
Houston and McNamara®). The procedure starts with a popula-
tion following the policy "sing if reserves at time ¢ are greater than
£, From this policy, the proportion of the population singing at
time 1, s, is calculated. Using the interaction between singing
males, the probability m,, that a singing bird attracts a mate at
time 1 is found. From m,, the best policy %, for a single mutant
can be found. The population policy is then replaced by X, and
the process is repeated.

required to survive an unusually bad night. To do so, it sacrifices
some singing at dusk (Fig. 2). On most nights it does not use
up all the reserves that it has accumulated, and so starts the day
with its reserves above £,. It sings until its reserves fall to %.In
this case the bird sings at dawn not because dawn is a good
time for singing but because the problems posed by variable
energy loss overnight require it to trade some singing at dusk
for some singing at dawn. Thus the intensity of the dawn chorus
may depend on the fluctuations in overnight temperature. Reid
found a relationship between overnight temperature and song
in the Ipswich sparrow™.

This example can be used to introduce the idea of dynamic
evolutionarily stable strategies. An evolutionarily stable strategy
(ESS) renders a population safe from invasion by 2 mutant that
adopts a different strategy®’. Most previous ESS models have
been concerned with a single choice of action that does not
depend on the animal's state. If the probability of attracting a
mate by singing depends on whether or not other birds are
singing, then a game-theory analysis is required. A dynamic ESS
is a rule for determining a sequence of actions as a function of
an animal’s state, the behaviour of other birds, and time of day.
Houston and McNamara® consider a large population limit in
which the probability of attracting a mate depends on the
proportion of other birds that are singing. The procedure for
finding the ESS, as shown in Fig. 3, is based on finding the best
response for a mutant when a population follows a given
strategy. For an initial population strategy, the best response
for a mutant is found, and the population strategy is then
replaced by the best mutant strategy. The procedure is repeated
until the best response for a mutant is the current population
strategy. This strategy is then the ESS for the population. The
procedure can be applied to a wide range of games; Houston °
and McNamara® use it to analyse a dynar.ic version of the
hawk-dove game.

Clutch size in parasitic insects

Parasitic insects, such as the wasp Nasonia vitripennis or various
tephritid fruit flies, provide an ideal setting for the study of
reproductive behaviour using dynamic models. The adult of
these species is free living, laying its eggs in the host. We begin
by identifying one or more state variables. Natural choices are
energy reserves, mature €ggs remaining, or a combination of



mature eggs and oocytes (potential eggs). For simplicity, we
will use only the number of mature eggs remaining as a state
variable. The ‘reward function’ for parasitic insects is related to
the fecundity of mature offspring from a particular clutch™.
This function involves a combination of survivorship, size, and
egg production of offspring. Also of particular importance for
parasitic insects is adult survivorship from one potential host
to another (or from one day to another).

We consider the behaviour of an insect that starts its search
for hosts with a complement of X, mature eggs, and let X,
denote the number of eggs remaining at the start of period
We assume that foraging for hosts stops-at some period T. For
example, if eggs are resorbed at the end of a day, then T would
denote the number of search periods in a day. Alternatively, if
we are interested in a lifetime problem, T might be the time at
which the insect dies or the time at which its eggs no longer
hatch. We then define J(x, , T) as the maximum expected fitness
from laying eggs between ¢ and T, given that X, =x

We are interested in computing J( X, 1, T). Assume that there
are n different kinds of hosts (indexed by volume, fruit or insect
type) and that A, is the probability of encountering a host type
i in a period of unit length. If a clutch of size C is laid in a
host of type i, the fitness accrued to the mother is f;(C) and the
handling time is 7,(C). We specify survival through a function
Pi(x, t) representing the probability of surviving from period ¢
to period t+1, given that the insect is alive at period ¢, that
X, = x, and that a host of type i is encountered. The index i =0
is used to indicate that no host is encountered in a given period,
Ao=1-T A, is the probability of no encounter, and Py(x, 1) is
the survival probability. With these assumptions, the funda-
mental equation is

36, )= £ A max (f(C)+ Pl 1)
xJx—-C t+7(C), T) N

with f,(C) =0 for all values of C, and t+7,(C) is replaced by
T if it exceeds T. This equation shows that the interplay of time
and state variable is crucial for the analysis of insect oviposition
decisions.

Mangel'® analyses a simple version of equation (7) in which
all 7,(C) = 1 and P,(x, 1) = P, = constant. This model can explain
observed frequency distributions of clutch sizes¥, some aspects
of superparasitism®', and the response of the apple maggot
Rhagoletis pomonella (Walsh) to its oviposition-marking
pheromone®'. In the first case, small clutches predominate in

1. Darwin, C. On the origin of species by nanural selection (Murray, London, 1859).
2. Oster, G. F. & Wihon, E. O, Caste and Ecology in the Soclal Insects (Princeton University
Press, 1978).

3. Maynard Smith, J. A Ren. Ecol Syst 9, 31-56 (1978).

4. McFarland, D. J. Narure 269, 15-21 (1977).

5. Stearns, §. C. Q. Ren. Biol 51, 3-47 (1976).

6. Schaffcr, W. M. Arv Nat. 121, 418-431 {1983).

7. Sibly, R. & Calow, P. J rtheor. Biol 182, 527-547 (1943).

8. Tinbergen, N. ef al Behaviour 19, 74-117 (1962).

9. Mangel, M. & Clark, C. W. Ecology €7, 1127-1133 (1986).
10. McNamara, J. M. & Houston, A. 1. Am. Nat 117, 358-378 (1986).
11. Schoener, T. A Ren. Syst Ecol 1, 369404 (1971).
ILSEMD.W.CMLKMM(MMMI”).
13. Werner, E. E. & Gilliam, J. F. A Rew Ecel Syst. 15, 393425 (1984).

5. Introduction o Stach Dy [ ing (Academic, New York, 783).

Ross, Prop
15. McCleery, R. M. Anim. Behan 25, 1005-1015 (1977).
16. Mangel, M. J. Marh Biol 25, 1-22 (1987).
17. Houston, A_ I. & McNamara, J. M. in Relevance of models and theories in ethology (eds
Campan, R. & Zayan, R) 61-75 (Privat, LE.C., Toulouse).

the observed frequency distribution of clutches of the parasitic
wasp N. vifripennis. This is exactly what is predicted by equation
(7). The (requency of small clutches should increase with the
time left for searching and the probability of encountering a
host. The model can also be used to predict when an insect
should oviposit in a previously parasitized host. I the remaining
search time is great or the insect has few eggs, then a previously
parasitized host should be rejected. As ¢ approaches the time
horizon T, the theory shows that hosts which would be con-
sidered unacceptable for small values of  become acceptable.
In all three cases, the interaction of the time horizon and state
variable is needed for understanding the oviposition problem.
We see this as a general feature of dynamic models.

Conclusion

The technique for analysing behaviour we present here has the
following advantages: (i) It takes account of the state of the
animal and how that state changes according to the animal’s
actions and the environment; (ii) it provides a common currency
for assessing behavioural choices in terms of overall fitness,
which can be used to analyse trade-offs between different
actions; (iii) it includes constraints on state variables or
behaviour. Models based on this technique often include a
higher degree of biological realism and lead to predictions and
insights not provided by simpler models. Stochastic dynamic
programming provides a method for finding the otimal
behaviour (or behaviours) within the dynamic framework. As
a computational technique, stochastic dynamic programming
has certain limitations, perhaps the most serious of which is the
‘curse of dimensionality’ in which computational needs grow
vastly as the number of state variables increases. Hence, there
is an upper limit to the degree of biological complexity that the
method can realistically encompass.

We have applied this dynamic approach to many other situ-
ations, such as diel vertical migration of aquatic organisms™,
optimal choice of prey items®, diving behaviour of water birds,
growth and migration of salmon, sex change in slugs, web
locations of spiders, and food hoarding by small birds.

In our main examples, there,are no interactions between
animals. We have mentioned that under some circumstances
evolutionarily stable dynamic strategies can be modelled in a
relatively simple way. In general, the development of such
models is likely to encounter conceptual and computational
difficulties. Nevertheless, we believe that this is a biologically
important issue that deserves further theoretical and empirical
research, and that the technique of stochastic dynamic program-
ming will be a powerful tool in this enterprise.
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