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Motivation, Learning, and Motivated
Learning

Marc Mangel

Introduction

As many of the papers in this volume illustrate, the behavior of an
organism can be influenced by its own physiological state, by the state of
the environment, and by the information that the organism has about the
state of the environment. In this chapter, I develop a functional (i.e.,
evolutionary) approach that can be used to both separate and integrate
physiology and environmental information, since each is connected with
changes of behavior as a result of experience. The approach is based on
dynamic, state-variable modeling (Mangel and Clark, 1988) which explicitly
couples physiology and ecology within the framework of a Darwinian meas-
ure of fitness and thus responds to Kamil’s (1983) call to integrate the
“optimization approach” to behavior with other methods of ethology and
psychology. Functional interpretations of learning require an assessment
of the fitness, measured in terms of expected reproduction, of suites of
behaviors. The technique used to determine fitness is called stochastic
dynamic programming. Ward (1987) gives a simple example of stochastic
dynamic programming for habitat acceptance; this example is in fact a
special case of the methods developed by Mangel and Clark (1986).

Definitions

I modify Dudai’s (1989, p. 6) definition: Learning is ‘“‘an experience-
dependent generation of enduring internal representations of the external
environment, and/or experience-dependent lasting modification in such
representations.” In the language of neural networks (Edelman, 1987,
Putters and Vonk, 1990) an “enduring internal representation” is a de-
scription of the external world based on connections between different
neuronal groups and rules for modifying those connections. Learning rep-
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resents changes in the pattern of connections or the rules for modifying
those connections (e.g., Mangel, 1990a; Putters and Vonk, 1990). External
cues and experience lead to modification of the pattern of connections and
the rules for modifying those connections. With this definition, an organism
cannot learn about its own internal state and learning consists of gathering
information about the external environment and using that information to
change the description of the environment. For example, if we want to
study how oviposition behavior depends upon the rate of encounters with
hosts, egg complement and age should be held constant as encounter rates
are varied. By holding egg complement constant, we are able to understand
how different encounter rates lead to different behaviors at a constant
physiological state.

Motivation is a measure of physiological state directly related to the
behavior of interest. Changes in motivation, via experience, can lead to
changes in behavior, but this is not learning. For example, egg complement
will increase over time if hosts are not encountered, and this can lead to
a change in behavior {usually acceptance of an inferior host for oviposition).
The objective in the host encounter study would be to separate changes
in behavior due to increased egg complement (motivation) from changes
in behavior due to changed descriptions of the world (learning) as en-
counter rates with hosts are varied.

The definition of learning that I adopt is narrower than “changes of behavior
with experience.” Alex Kacelnik (personal communication) has suggested the
following analogy (modified for Central California): If I drive a car equipped
with automatic transmission from Davis (elevation 19 m) to Lake Tahoe
(elevation approximately 2,000 m), the car will change gears as the mountains
are traversed. Although these changes of gear are determined by the “ex-
perience” of the automobile, they do not represent learning: gear changes
are engineered responses to the state of the transméssion.

The next two sections contain examples of learning and motivation sep-
arately, within the context of a functional determination of the value of
information. In the third section, I show how the two can be combined.

Learning: Parasitoids and Patches of Drosophila

In this section, I model learning by a drosophilid parasitoid which is
time, rather than egg, limited (e.g., van Alphen and Visser, 199); Janssen,
1989) (see Table 6.1 for an explanation of parameters and their interpre-
tations.) The assumption that the parasitoid is time limited means that the
physiological variables (egg complement, nutritional status) can be ignored,
In addition, | assume that patches of hosts consist of discrete clumps of
rotting fruit which contain larvae of hosts and that the patches are hard to
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Table 6.1. Parameters and their interpretations: parasitoids and patches of

Drosophila

Parameter Interpretation

A Encounter rate of a parasitoid, once it is in a patch of hosts

a, v Parameters that describe the probability density of values
of \; in particular, the mean value of \ is
2 and the coefficient of variation is L
o Vv

ag, Vo Initial values of the parameters, before a patch is visited;
these correspond to ‘“‘evolutionary information”
concerning the distribution of possible values of A

fo(N) Prior probability density of A, before a sampling is done

I'(v) Gamma function (for integers I'(v) = (v — 1)!)

L(AK, S) Posterior probability density of A, given that K hosts were
encountered in search time S

Fv, o, t) Expected (averaged over random encounters with hosts)
accumulated ovipositions between ¢t and T, given that the
current values of the parameters describing the
probability density of A are v and a

p Probability that the parasitoid encounters a patch of hosts
in a single period of search

1 Probability that the parasitoid is killed during a single
period

Vieave Fitness value of leaving the current patch

N Random number of hosts encountered in a single period of
search, given that the parasitoid is in the patch

Viay - Fitness value of staying in the current patch

m Memory parameter used to weight past information

find. Since the parasitoid is not egg limited, when such patches are found
there are fewer hosts available for oviposition than eggs. Patches of hosts,
however, will vary in quality (number of hosts per unit volume, ratio of
unparasitized to previously parasitized hosts) both over space and time
(i.e., within the context of an individual’s life) and over years (i.e., within
the context of evolutionary time).

Here I adapt a model of learning by fishermen (Mangel and Clark, 1983;
Mangel, 1990b) to describe learning by such parasitoids. For simplicity, I
assume that patches are large enough such that depletion (see Mangel and
Clark, 1983) and superparasitism (see Mangel, 1989, 1990b) can be ignored;
these can be included in more complex models. In this case, the quality
of a patch is determined solely by the encounter rate of hosts within that
patch. The objective of the model is to provide a description for learning
by the parasitoid as it encounters hosts.
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Consider a parasitoid that has already found a patch of hosts. If hosts
are randomly distributed in the patch, then we may assume that encounters
with hosts in the patch follow a Poisson distribution (random encounters).

Pr {parasitoid encounters k hosts in time ¢ given that the encounter rate
is A}

. - M{J'-.If}'t

o (n

The encounter rate A is not known to the parasitoid—it must be learned
from experience in the particular patch. There is, however, a priori a
probability distribution associated with different values of A,

This prior density of possible values of A represents an “internal rep-
resentation” of the world in that the encounter rate in a particular patch
is assumed to be randomly drawn from the probability density of . Ex-
perience (search and encounters with hosts) leads to modifications of this
prior density and thus a change of the internal representation. The prior
density provides a template for learning; the mechanism of learning still
needs to be described.

A commonly used (e.g., DeGroot, 1970; Mangel, 1985) prior density is
the gamma density

f—ﬂ!hk—lﬂ\l

folA) = —'m‘— (2)

That is, fi{A)AX is the probability that the actual encounter rate is between
hand A + AA. Here I'(v) is the gamma function. For integer values,
[(v) = (v — 1)!; otherwise it can be viewed simply as part of the constant
that ensures that the integral of fy(A) over 0 = A = = is equal to 1. The
gamma density has two parameters, e and v, that can be interpreted as
follows. When A has the density given by (2), its mean and coefficient of
variation (standard deviation divided by the mean) are

ED) = i
and
1
Vi = =

This form is convenient, because we can specify a mean encounter rate
and then adjust the variability of this encounter rate by changing v.
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Combining (1) and (2) shows that

Pr {parasitoid encounters k hosts in time }

£

o

k v
Tk +v) [ 1 w
T (u n r) (u ¥ r) )

This is a negative binomial distribution (Mangel, 1985) and can be put into
the form more commonly used by ecologists (Southwood, 1966) in which
the mean and overdispersion parameter are specified. One finds that the
mean is m = (wa)f and the overdispersion parameter is v. The mean
number of encounters is m and the variance of the number of encounters
15 m + (1/v)m*. Thus, when v is small, the variance in the encounters will
greatly exceed the mean. Parasitoids will experience, once in patches,
clumped encounters with hosts: in some patches many encounters will occur
and in other patches very few encounters will occur.

Learning is the process of changing the description of the probability
associated with different values of A. We employ the methods of Bayesian
updating (DeGroot, 1970). That is, suppose that the parasitoid has been
in the patch for § units of time and has encountered K hosts. Learning
maodifies the prior density by the use of this information and produces a
pasterior density of A

folh | K, §)Ah= Pr {encounter rate is between A and A + Al given that
K hosts were encountered in § units of time}

Applying Bayes’s theorem shows that f,(A|K, 5) is again a gamma density
with updated parameters v + K and @ + § (DeGroot, 1970). The Bayesian
analysis provides an “‘updating rule” for the parameters:

v—v + K

o=+ g 4+ 5

Given the information concerning encounters, the posterior mean and
coefficient of variation of A are E {A} = (v + K)/(a« + 5) and CV,{r} =
1w + K. These updated parameters represent a change in informational
state (estimate of encounter rate distribution) caused by experience (actual
encounters with hosts). The prior and posterior densities are “internal
representations™ which can be modified by experience.
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We can compute the selective advantage of learning by relating learning
to expected lifetime reproduction of the parasitoid. Assume that at emer-
gence, the prior density of A (the evolutionary template on which learning
occurs) is given by (2) with parameters v, and o, and that the maximum
reproductive life span of the parasitoid is T. As the parasitoid encounters
patches and hosts within patches, the probability distribution of the en-
counter rate is described by the prior density or the current posterior
density. We seek the behaviors that maximize expected lifetime repro-
duction. In this case, the behavior is particularly simple: the parasitoid can
remain in the current patch or leave it and search for another patch. At
any time between emergence and T, let

Flv, o, ) = maximum E {accumulated reproduction from
ovipositions between f and T | current values of
parameters are v and o} (4)

The “maximum’ in (4) corresponds to a maximum over behavioral deci-
sions (to remain in the current patch or leave) and the “E" denotes ex-
pectation over the random distribution of encounters. We can derive an
equation for F(v, a, f) by considering the consequences of the two behav-
ioral options.

First consider the value of leaving the current patch. If patches are
randomly distributed and p is the probability that the parasitoid encounters
a patch in a single period of search, then the probability that it takes s
periods of search to find the next patchis (1 — p)*~'p. If w is the probability
of death in a single period, then the probability that the parasitoid survives
these s periods is (1 — p). If encounter rates in patches are independent
of each other, then the expected fitness upon encountering a patch after
s units of search will be Flwy, o, ¢ + 5). That is, since there is no information
about the newly encountered patcli, we assume that the probability dis-
tribution of A is (2), with the initial parameters v, and «,. The fitness value
of leaving is thus

=4

Viewe = 2 (1 = p) 'p(l — py¥F(vg, o, t + 5) (5)

g1

Since T is the maximum time available for oviposition, if ¢ + s > T'in (5),
we replace r + sby T,

If the parasitoid stays in the current patch, it may encounter any number
of hosts in the next period. This number is a random variable N, with
distribution given by (3). For simplicity, assume that superparasitisms are
rare. This would occur, for example, if the parasitoid population is low
and parasitoids systematically walk along the host patch. In this case, each
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encounter with a host increments lifetime fitness by an amount f. The value
of staying is composed of two terms. The first is the expected fitness from
hosts encountered in period r + 1. The second is the expected fitness from
hosts encountered after period ¢ + 1, taking into account the new infor-
mation (1.e., that N hosts were encountered in one period of search in the
patch). Hence we obtain

Vstay = 2 {Nf+ (1 = WF(v + N,a + 1, t + 1)}

tN+v [ 1\ a Y
:{{ I'{w) (u+1) ({!+1)] 6)

The maximum expected fitness is then determined by comparing the value
of leaving the patch and the value of staying in the patch:

Flv, o, 1) = max{Vy .. Vit (7

Eq. (7) is called an equation of “stochastic dynamic programming”™ (Mangel
and Clark, 1988). As seen from the derivation, it is simply a method of
bookkeeping, augmented by the assumption that the parasitoid behaves
to maximize expected reproduction.”

The solution of (7) determines values of v and «, as a function of time,
for which the parasitoid should stay in the current patch and for which it
should leave the current patch. (Whent = T — 1, the optimal decision is
obviously to stay in the patch, regardless of parameter values. This provides
a check on the numerical solution).

A number of features emerge from the solution of (7). First (Mangel
and Clark, 1983), even in the simplest case of T = 2 (s0 that at most two
patches can be encountered), the value of acquiring information and up-
dating parameters as described above can be considerable. For example,
when p = 1 (so a patch is found with certainty in each period), n = 0 (s0
that the parasitoid survives each period up to T with certainty), and « =
0.1 and v = 1 (so that the mean encounter rate is ten hosts per period

'Computing (5)}-(7) is not completely trivial because the sums may involve many terms,
This “curse of dimensionality” in dynamic programming is alleviated as better and faster
computers allow us to deal with such problems more easily. There are two main difficulties.
First, in principle at least, the value of 5 in (5) and A in (6) may be very large. The way
around this difficulty is to choose maximum values of 5 and N that correspond to most of
the cumulative probability (e.g., 99.9% ) and restrict s and A to be less-than-or-equal-to those
values. The second difficulty is that v can also become very large. Again, a simple solution
15 to restrict v to be less-than-or-equal-to some maximum value v, in the sense that N +
v is never allowed to go above v,
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corresponds to rejection of the host. In this case, one period of time is
used, s0 egg complement is increased by one egg, up to the maximum egg
complement. Hence x' = min(x_,.. x + 1).

As (9) is solved for lifetime reproduction, decisions d,(x, f) are generated.
These are to either accept or reject for oviposition a host of type i en-
countered during period ¢ when egg complement at the start of the period
is x. Depending upon the egg complement at the time of acceptance of a
host, different clutches will be realized over time and host types. As the
differcnce T — ¢ increases, so that “end of life” effects are less important,
the behaviors become independent of time and depend only upon egg
complement. From such behaviors, it 1s possible to predict the results if
an insect is presented with a two-type choice experiment (Fig. 6.1).

In such an experiment, an insect is allowed to oviposit. After an interval
following the oviposition, she is presented with two hosts and her willing-
ness to oviposit on each host is determined, usually by observing stereo-
typical preovipositional behavior, but she is not allowed to oviposit (see
Singer, 1982, 1983, 1986; Singer et al., unpublished data). This procedure

o o

| :} TIME
Reject Accept 1 Accapl
Both Reject 2 Baoth

Acceptance Phase (AP)

Refractory I
Phase (RP) | 1

Discrimination Phase (DP)

Figure 6.1, Results of the motivational model (). O denotes an oviposition.
See text for further details.
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1s repeated after another interval. The general prediction, which holds over
a wide range of parameter values, for the time course of such an experiment
is depicted in Figure 6.1. In the figure, O's denote ovipositions, After the
first oviposition, the insect enters a “refractory phase™ (RP) in which she
rejects hosts, regardless of type. The fixed handling time 7, is the source
of the refractory period. That is, when 1, is very small, we anticipate a
small refractory period. Alternatively, when 1, is non-negligible, there is
a ““fixed survival cost” for any oviposition. This causes a delay in oviposition
until egg load is such that a sizeable clutch can be laid. For example, laying
a single egg requires time 7, + 7, and laying ten eggs requires time 7, +
10+,. If, for example, 7, = 107, then the relative risk in oviposition of ten
eggs rather than one egg is about twice as great (20r, time units vs. 117,
time units), but the relative fitness difference is tenfold if there is no larval
density dependence.

As time continues, and egg load increases, there is a point at which the
insect will accept type 1 but reject type 2. She is now “motivated” to
oviposit and will continue to be so until the next oviposition. For a period
defined as the “discrimination phase™ (DP), she will be motivated but
discriminate between host types 1 and 2 in that she will oviposit in host
type 1 but not in host type 2. As time progresses (and no host type 1 is
encountered), egg load continues to increase until the insect is both mo-
tivated and nonselective. During this “acceptance phase” (AP), the insect
will oviposit on the next host presented. After that oviposition, depending
upon values of parameters (Table 6.2), the insect may return to any of the
three previous behavioral states (RP,DP, or AP). This insect, then exhibits
a wide range of behaviors, and these change with experience, although no
change of the description of the environment is involved. This is a case in
which motivation changes as a result of experience and behavior changes
as a result of motivation. However, learning, as defined above, does not
CCur.

Aninteresting, possibly counterintuitive, result emerges from this model.
The superior host (type 1) will be accepted for oviposition over a wide
range of egg complements. The inferior host (type 2) will be accepted for
oviposition only for large egg complements, since it is better to oviposit
on the inferior host than to simply waste eggs. Because of this, we predict
that a range of clutches will be observed on host type 1, but only large
clutches will be observed on host type 2. An investigator studying such an
nsect might reject the “optimality” model because the insect “puts only
large clutches into the poor host and this is clearly not optimal.” But this
is completely consistent with the optimality model. Furthermore, if an
investigator simply went to the field and measured clutch sizes as a function
of plant quality, he or she could be misled concerning the relationship
between preference and host quality or preference and performance. We
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Table 6.2. Parameters and their interpretations: behavioral changes induced by
ege maturation

Parameter Interpretation

A Probability that the insect encounters host type i in a
single period of search

f; Increment in lifetime reproduction from oviposition
of one egg on host type i

X Egg complement at time ¢

x Particular value of the egg complement

Xomax Maximum allowed value of the egg complement

7(x) Handling time needed to lay a complement of x
eggs; it is composed of a fixed time 7, and a variable
time T,x

F(x,t, T) Maximum expected accumulated reproduction from
ovipositions between time ¢ and 7, given that the
egg complement at time ¢ is X(¢) = x

Mop Probability of death during a period in which the
insect is ovipositing

™ Probability of death during a period in which the

insect is searching

can only understand acceptance of poorer hosts in the context of life history,
and not in the context of single host encounters.

We thus see that behavior changes with internal environment (egg com-
plement), which itself changes according to the state of the external en-
vironment. This is, however, not learning in that parameters characterizing
the external environment are not updated according to experience.

Combining Environmental Information and Physiology:
Motivated Learning

The methods of the two previous sections can be combined to deal with
motivated learning, i.e., situations in which both an informational state
variable, which characterizes the external environment, and a physiological
state variable, which characterizes the internal state of the insect, determine
behavior. In this case, experience (e.g., host deprivation) changes both
the information state (e.g., estimates of encounter rates with hosts) and
the physiological state (e.g., egg complement). Mangel (1989) and Mangel
and Roitberg (1989) describe two examples in which physiological and
informational state variables are combined.

Mangel and Roitberg (1989) considered the so-called superparasitism
behavior of the apple maggot Rhagoletis pomonella. Female apple maggots
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held in field cages usually oviposited in unparasitized fruit and on occasion
would oviposit in previously parasitized fruit (i.e., “superparasitize” fruit).
Because each fruit in the field cage was individually tagged and individual
flies can be observed, the data could be collected according to the encounter
history of the fly (the fraction FRAC of previously parasitized hosts in the
last five encounters) and the time since the last oviposition (TSLO). Using
methods (Iwasa et al., 1984; Mangel, 1987) similar to the ones described
in this paper, the plane “TSLO-FRAC” can be divided into two regions.
In one region, the next previously parasitized host encountered should be
accepted and in the complementary region it should be rejected. When
this theory was compared with the empirical results, however, 50% of the
observed ovipositions fell into the “wrong” portion of the plane: the flies
superparasitized when the theory suggested that they should reject the
host. Adding an informational state changes the theoretical predictions.
In particular, the TSLO-FRAC is now divided into three regions: one in
which the next previously parasitized fruit should be accepted, one in which
it should be rejected, and one in which it may be accepted or rejected
depending upon the encounter history (information). All but two of the
observed acceptances of previously parasitized fruit fell into the “accept”
or “maybe” regions (Mangel and Roitberg, 1989: Fig. 4).

Mangel (1989) developed a model for the parasitization of sycamore
aphids by Monoctonus pseudoplatani Marsh. In this case, the physiological-
state variable was egg complement and the informational-state variable
was the probability that an encountered aphid would be unparasitized. The
patterns of parasitism predicted by the theory compared favorably with
the observed patterns of parasitism.

Neither Mangel (1989) nor Mangel and Roitberg (1989) used a Bayesian
model of the type described in the current paper. The combination of
models of Bayesian updating and physiological variables is an open and
fruitful area of research.

Discussion: Can Learning and Motivation be Separated?

In a sense the theory is now ahead of the experimental work, since the
task of separating informational and motivational determinants of behavior
remains a challenge to empiricists. Progress is being made. For example,
Tatar (1991) suggests that informational state (seasonal host quality) in-
teracts with physiological state (egg load) to influence clutch size in ovi-
position by a butterfly. Rosenheim and Rosen (1991), in an elegant study
of the behavior of a parasitoid, show how informational and physiological
states may be separated and how the predictions of models such as the
ones developed in this paper can be tested. The physiological state variable



Motivation, Learning, and Motivated Learning / 171

(egg complement) was controlled through parasitoid size and ambient tem-
perature. Informational state was controlled by encounter rates, holding
egg complement relatively constant.

Roitberg et al. (1992) use photoperiod [the “closeness™ of t to T, as in
Eq. (4) or (9)] and encounter rates to provide cues about the state of the
external environment in situations in which the physiological variable, en-
ergy reserves (rather than egg complement), determines survival. Theories
similar to the ones developed here are used to predict the time on a patch
and number of superparasitisms by a drosophilid parasitoid. The theoretical
results are supported by empirical observation.

On the theoretical side, we still need models that effectively describe
the “internal representations” in terms of neuronal groups. For example,
it is unlikely that animals perform Bayesian updating in the manner de-
scribed above. On the other hand, it is likely that a neural network which
effectively performs the equivalent of Bayesian updating could be con-
structed and such networks need to be developed. Again, progress is being
made (Putters and Vonk, 1990), but there is still much work to be done.
The most progress will be made by developing theory and experiments in
tandem, so that we will have practicable theories which can provide under-
standing of experiments on learning and motivation.
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