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CAPTURE-RESIGHT DATA!
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Abstract. The use of capture-resight data for population estimation has seldom been
exploited. It offers potential flexibility and advantages to the design of biological investi-
gations in which a population estimate is required. Presently, the Petersen model is the
only method for estimating closed populations using capture-resight data. A simple Monte
Carlo simulation method can lead to a full probability distribution for the population.
From this probability distribution, one can compute maximum likelihood estimates and
a likelihood interval on the population. The shape and asymmetry of the distribution and
width of likelihood intervals are determined by sampling heterogeneity and sample size.
The method is simple and can be used by anyone with access to a microcomputer. Since
it is data-intensive, estimates based on small data sets (including capture-recapture) with
few animals can be quickly calculated. The method is especially applicable to species and
habitats in which capture-resight, radiotelemetry, or other tracking data can be obtained
and to situations in which nonrandom catchability or sightability is likely after the initial
capture. The technique successfully estimated populations of badgers, bison, and crested
porcupines. We compare observed with theoretical sighting distributions to examine the
effects of model and sampling biases.

Key words: animal tracking; capture—recapture; capture-resight; experimental design; mark—re-
capture; mark-resight; Monte Carlo simulation; population methods; population-size estimation; ra-

diotelemetry, sample bias.

INTRODUCTION

In contrast to theoretical and statistical progress, there
has been limited progress estimating fundamental pop-
ulation characteristics in the field. The increasingly ef-
ficient methods developed by biometricians in the last
two decades have not markedly improved design
guidelines or decreased research cost and effort (Eber-
hardt 1978, Arnason and Baniuk 1980, Pank 1981,
Pollock 1982, Skalski 1985, Seber 1986). However, we
do know more completely when and how an estimate
is likely to be reasonable. We are more aware of how
critical assumptions can be, and that we must always
assess deviations from them (Cormack 1972, Caroth-
ers 1973, Roff 19734, b, Burnham and Anderson 1979,
Buckland 1982, Pollock and Raveling 1982). This has
become the major analytical task, and coping with these
methodological assumptions has so increased statisti-
cal and procedural complexity that large software sys-
tems are almost mandatory for an acceptably thorough
analysis (Nichols et al. 1981, Brownie and Pollock
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1985). Unfortunately, these highly developed systems
require large data sets to justify their use and are, ad-
mittedly, not for the one-shot or occasional user (Ar-
nason and Baniuk 1978, 1980, Pollock 1981). There
are potentially many occasional users, since most re-
searchers have diverse objectives and costs, of which
population estimation is but one (Skalski et al. 1984,
Greenwood et al. 1985). The occasional user may not
understand key points fully and therefore be unable to
use the methods effectively (Nichols et al. 1981). There
is a need for: (1) simpler and less expensive population
estimators for the wide range of applications and users,
and (2) alternative estimators for accommodating the
variety of experimental conditions and deviations from
assumptions.

In this paper we introduce modifications of capture—
recapture (mark-recapture), especially capture-resight
(mark-resight) and radiotelemetry, which can be ap-
plied to a variety of organisms. We then introduce a
Monte Carlo method for capture-resighting and show
how this simulation method can lead to a maximum
likelihood estimate and confidence levels on the pop-
ulation. All capture-recapture methods require inde-
pendence of initial marking and subsequent recapture/
resighting probabilities. However, variance estimators



December 1989

based on a Petersen model are biased when used with
aggregated recapture or resighting data from animals
with heterogeneous recapture or sighting probabilities.
By using all of the information contained in individual
capture probabilities, the simulation approach yields
(1) variance estimates that should be nearly unbiased,
and (2) asymmetrical confidence intervals that in prac-
tice are likely to perform better than normal approx-
imations.

CAPTURE-RECAPTURE

Some type of captufe—recapture has been applied to
nearly all forms of animal life but its usefulness may
be much overrated (Roff 19734, Carothers 1979, White
et al. 1982). The method never purported to be uni-
versally applicable, but in the absence of competing
methods biologists use what is available and familiar.
Unfortunately, the capturing, marking, and recapturing
of animals is a highly nonrandom process and can
severely disrupt a population. Although catchability is
the major consideration of capture-recapture models
with which we can partially contend, it is also the source
of greatest confounding variation (Otis et al. 1978, Car-
others 1979, Mares et al. 1981, Pollock 1981, Buckland
1982, Seber 1982, Nichols and Pollock 1983). There
is a long list of sources of variable catchability, and the
resulting matrix of possible interactions is bewildering.
Differential catchability has plagued researchers who
must use capture—recapture estimation. The annotated
bibliography of Tepper (1967) and reviews by Roff
(1973b), Smith et al. (1975), Tanaka (1980), and Seber
(1982) cover many sources of variation. Most of the
progress in capture-recapture experimental designs and
statistical methods has evolved to overcome the prob-
lems associated with nonrandom catchability. While
precision and realism have increased, so has complex-
ity, both theoretical and practical. However, less so-
phisticated but still robust methods may actually per-
form better in application (i.e., Jolly-Seber vs. Lincoln—
Petersen estimates: Blower et al. 1981, Mares et al.
1981, Jolly 1982, Seber 1982, Montgomery 1985).

CAPTURE-RESIGHT

Another approach to more efficient population es-
timation is to accommodate violations of the assump-
tion of equal catchability. Numerous assumptions can
be relaxed or avoided if an animal’s captures are in-
dependent, for instance, by different modes of capture.
Most biometricians strongly recommend the use of
more than one capture method (Burnham and Overton
1979, Nichols et al. 1981) and Arnason and Baniuk
(1978) suggest it should be standard practice. Visually
“recapturing” animals is such an alternative capture
mode. If an animal can be “recaptured” by observa-
tion, that is, without actually being exposed to more
than the initial physical capture and handling, then
even more catchability assumptions are met (e.g., ho-
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mogeneous behavioral response and capture probabil-
ities).

The advantages of capture-resighting have long been
known, and it has been applied to an array of organ-
isms. Pollock (1981) considers capture-resight to be a
design that has great potential, and its promise and
potential utility have also been extolled by Arnason
and Baniuk (1978, 1980), Eberhardt et al. (1979), Nich-
ols et al. (1981), White et al. (1982), and Brownie and
Robson (1983). For many species and circumstances,
capture-resight is cheaper than capture-recapture.
Overall field effort is reduced and after an intense initial
capture/marking period, fewer and less trained per-
sonnel are needed to make reobservations (Arnason
and Baniuk 1978, Pollock 1981). More data can be
accumulated in less time and resightings can be made
while achieving other research objectives. Overall, the
method is less disruptive to the animals and their en-
vironment. In addition, since the general consensus is
that two or more independent population estimates be
attempted (Smith et al. 1975, Berthold 1976, Connolly
1981, Bergerud 1982, Seber 1982, Skalski and Robson
1982), capture-resight can serve as an alternative es-
timator. For many investigations, it will be the pre-
ferred estimator.

Most capture-resight estimates used have been the
Lincoln-Petersen (Petersen) type. In those cases indi-
vidual marks need not be discerned, only marked vs.
unmarked. Multiple capture-resight calls for individ-
ual identification. Consequently, most of the animals
and their marks have been highly observable (e.g., large
size, diurnal, high exposure in habitat) and countable
(e.g., temporally stationary, solitary or in small aggre-
gations). If the goal of capture-resight is in mind, more
highly distinguishable markers can often be planned
(e.g., Patterson 1978, Hill and Clayton 1985). Certain-
ly, animals must be likely to be sighted and counted
at some period of their diel and seasonal life cycle.
Capture-resight requires independence among cap-
tures and observations of animals. Animals need not
be sighted for capture—resight, they need only be de-
tected as individuals. For instance, low-profile terres-
trial animals might be detected through radiotelemetry
and tracking (see Monte Carlo Simulation; Badgers in
Wyoming).

Radiotelemetry has been infrequently used to esti-
mate populations. Seber (1986) considers it to be one
of the few important technological advances that are
relevant to population estimation. The potential ad-
vantage of having an individually marked portion of
a population that (often) can be located and sighted
has not been exploited in the application of rigorous
population estimates. Since animals need only be de-
tected for capture-resight estimates, and since radio-
telemetry provides remote detection without interfer-
ence, then as a type of capture-resight, radiotelemetry”
can be employed to “recapture” animals as part of an
experimental design for recapture or resight. When an



1740

animal is sighted during a sampling interval and in-
dependently of its marked/unmarked status, it is count-
ed as either a ““marked”’ or unmarked individual. Thus,
“after an animal is sighted it can be counted as a marked
individual if it transmits a telemetry signal that can be
used to identify it. Gauthier and Theberge (1985) cal-
culated a Petersen estimate of group-living caribou with
this method.

The application of capture-resight (and radiotrack-
ing) is constrained by a variety of assumptions and
methods, and at least some computational complexity
for multiple capture-resight data. Open-population
models easily incorporate either the strategy of mark-
ing animals before sampling of recaptures or the strat-
egy of continuously tagging all unmarked animals cap-
tured throughout the entire sampling period. Although
it is not a statistical requirement for the closed model,
continuous marking is the only design accommodated
by many capture-recapture programs, including those
of Otis et al. (1978). However, in a capture-resight
design, unmarked animals that are visually “captured”
are not likely to be marked but are still recorded as
unmarked animals and used in analysis of population
size. Consequently, the investigator is confined to a
Petersen estimator for closed populations in which,
following the initial capture and marking, a second
independent sample of sightings is recorded.

MODEL AND SAMPLING BIASES

White et al. (1982) classified biases as model biases
and small-sample biases. Model biases are the more
serious of the two because important assumptions of
the sampling system are not correct. Sample-size biases
diminish as sample size increases; model (and sam-
pling) biases do not go away. The critical assumption
of equal catchability in capture-recapture models re-
quires that there be population and sampling homo-
geneity. Equal catchability can be decomposed into
three distinct assumptions: (1) all animals have the
same probability of being caught in the first sample,
(2) catching and tagging do not affect future catchabil-
ity, and (3) the second sample is a simple random
sample. The Petersen model is robust to departures
from these assumptions, in large part because it works
with the mean capture rate but without any measure
of'the variability. Seber (1970) shows that the estimate,
N, can still be used even when assumption 3 is not true
and a systematic rather than a random second sample
is taken, provided there is uniform mixing of marked
and unmarked individuals and all animals are equally
catchable in the second sample. If a different sampling
method is used for each sample, as in capture-resight,
then Seber (1970) concludes that when assumption 2
is true, assumptions 1 and 3 can be replaced by the
assumption that the catchabilities in the two samples
are independent. In other words, variation in catch-
ability could exist for both samples without introduc-
ing bias if the sources of selectivity in the two samples
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were independent (as in capture-resight); however, in-
dividual heterogeneity of sighting probabilities will
cause the variance of the estimate to be underestimated
(Seber 1970).

Theoretically, the Petersen model produces an un-
biased estimator in that replications will converge on
the population parameter, N, such that £(V) = N. That
is, random replications of a random sampling regime
will produce estimates centrally distributed about N.
White et al. (1982) note that bias is a conceptual quan-
tity because we usually have only one set of data and
can compute only one value of N from the data. Thus,
bias relates strictly to the performance of an estimator.
Yet in application, the researcher who must make a
single population estimate is interested in the perfor-
mance of that single estimate, and one way to gain an
estimate closer to NV is to adhere to assumptions. In
addition, the estimated variance of N will be more
reliable. Sightings should randomly or systematically
represent the entire area of the population to allow for
nonrandom spatial distributiqn and population mix-
ing. This is especially true if NV is to be converted to a
density estimate which is sensitive to heterogeneities.
The sampling design should strive to allow equal prob-
ability of sighting individuals. Nonetheless, if assump-
tions are unavoidably but knowingly violated, and the
researcher has only one set of data, then the statistical
concept of average performance of an estimator is less
meaningful and useful than the practical performance
provided by an estimator that can account for popu-
lation and sampling heterogeneities. Cox (1958:85-89)
and Hurlbert (1984) discuss the similar problem of
randomization in single small experiments and the ad
hocapproach of procedural adjustment. Hurlbert (1984)
quotes Cox’s (1958:88) succinct summary and it is worth
requoting:

... to adapt arrangements we suspect are bad, simply
because things will be all right in the long run, is to
Jorce our behavior into the Procrustean bed of a math-
ematical theory. Our object is the design of individual
experiments that work well: good long-run properties
are concepts that help us in doing this, but the exact
Sulfillment of long-run mathematical conditions is not
the ultimate aim.

When the characteristics of the animal, environ-
ment, or experimental design preclude a single sighting
sample, multiple applications of the Petersen estimator
are computed where the numbers of animals sighted
during separate surveys provide the second sample.
Each survey or distinct sample time produces a new
Petersen estimate which is combined with the others.
Bartmann et al. (1987) and G. C. White and R. A.
Garrott (unpublished manuscript) develop the likeli-
hood under similar assumptions to the Schnabel model
(model M,, Otis et al. 1978) and reiterate the assump-
tions for combining these estimators: the individual
sighting surveys should be independent and each in-
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dividual animal should have the same probability of
being sighted as every other individual on a particular
occasion. Each survey should have equal effort, al-
though the effects of unequal effort have not been fully
explored. Bartmann et al. (1987) found that the ma-
jority of estimates were smaller than true population
values, suggesting a negative bias (see also Eisenberg
1972, Rice and Harder 1977, Mares et al. 1981). They
caution users that heterogeneity may cause some bias
in the estimates and conclude that for small popula-
tions, a large proportion (>45%) should be marked
before reliable estimates and confidence intervals can
be obtained. We reach similar conclusions from a gen-
eral model (see Appendix) and we suggest that marking
such a large proportion may not be practicable for
many species.

The method we propose combines multiple sighting
surveys when surveys are not necessarily independent
and when surveys are not equal in area or effort. The
second sample need not be made up of discrete surveys
as may happen with resightings that cannot be con-
veniently grouped into sample times. In other words,
sampling may be continuous over any period of time
the population remains closed. However, random or
systematic coverage of the entire area within that pe-
riod is assumed. Individual identification of marked
animals is required. More importantly, whereas the
variance for the Petersen estimate is symmetrical and
invariant to population and sampling heterogeneity,
the Monte Carlo method produces likelihood intervals
that allow for asymmetry in the sampling distribution
of the estimator and that vary according to the mag-
nitude of the sample size and model/sampling biases.
There are two issues that must be addressed. Here we
concentrate on resighting heterogeneity and how that
information can be incorporated into population es-
timates. Both the standard Petersen method and our
method assume that initial captures are independent
ofresights. To do otherwise requires an additional layer
of assumptions that we prefer not to make and feel is
difficult to justify.

MONTE CARLO SIMULATION

Populations can be efficiently estimated via a data-
intensive Monte Carlo simulation. Maximum likeli-
hood estimators with likelihood intervals can be de-
rived from a simple program that can be run on a
microcomputer. The general capture-recapture as-
sumptions hold: (1) Animals are captured, marked, and
randomly or systematically resighted. (2) There is geo-
graphic and demographic closure, no tag loss, and proper
recording of observations. (3) The initial captures are
a random sample of the population, and marked ani-
mals are identical to unmarked animals in detection
or observability. The assumption of independence be-
tween capture probability of the initial marking vs.
subsequent resightings is critical. Over the sampling
period, the frequency of resightings of each marked
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animal will be accumulated and all unmarked animals
will be pooled into a category of “total sightings of
unmarked animals.” (When the sampling period has
ended, the resighting frequencies can be simply inter-
preted to resighting probabilities.) If the individuals in
the marked sample are representative of the sample of
unmarked individuals, then we can partition the sight-
ings of unmarked animals into frequencies similar to
those frequencies known for marked individuals. The
randomized process by which we accomplish this “par-
titioning” is through Monte Carlo simulation.

The appeal of this capture-resight design and sim-
ulation analysis lies in the complete extraction of in-
formation from the data structure which allows an ac-
curate assessment of the variance of the estimate.
Unequal visual “catchability” within or among sam-
ples is not a concern. For example, if there are marked
individuals who appear ‘‘sight-happy,” perhaps due to
extreme mobility or dependence among sampling oc-
casions, then we account for them and assume such
individuals have an equal probability of occurring in
the unmarked segment of the population. By simulat-
ing the distribution of all sighting frequencies, the data
on all animals detected in the population are used in
their entirety.

The details and a justification of the Monte Carlo
simulation are provided in the Appendix. Here we will
present the general ideas and illustrate them with three
examples: badgers snowtracked in Wyoming, bison re-
sighted on Santa Catalina Island, and crested porcu-
pines resighted in the Negev Desert. We will describe
the badger example in detail to illustrate clearly how
the assumptions of both the single and combined Pe-
tersen estimates are violated.

An initial subset of N, of animals is marked so that
individuals can be identified. Sighting is then con-
ducted over some period of time. Let .S denote the total
number of sightings. This number is composed of S,
sightings of marked animals and S, = S — S, sightings
generated by unmarked animals. The fundamental
question answered by the Monte Carlo simulation is:
how many different animals out of the N, = N — N,
animals were sighted in the S, sightings?

To answer this question, one can think of the animals
as “‘generating” sightings. The first set of inputs in the
Monte Carlo simulation is then

P, = fraction of marked animals that
generated i resightings. 1)

The P, i=0,1,2,..., N,, where N,, = maximum
number of resightings, is thus empirically determined.
The O category must be verified by telemetry or in-
dependent data collection. The O category refers to an-
imals that are never seen, although they are marked
and known to be present. This is not contradictory;
verification of the 0 category is equivalent to estab-..
lishing an individual’s presence within the area of es-
timation, but not while using the sampling protocol
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specified for population estimation. For example, an
animal may be located regularly for other sampling
purposes (say, by telemetry for evaluation of habitat
~ use) and is always located within the area. We assume
there will be a similar proportion of unmarked animals
corresponding to each P; category, including i = 0.
Thus, verification of the 0 category amounts to testing
the closure assumption; if closure exists, then all ani-
mals marked but not seen again fall in the O category.

From the set {P,} and the value S,, each iteration of
the Monte Carlo simulation generates a feasible num-
ber N, of animals that could generate S, sightings. We
can think of N, = E N,; where N, is the number of

unmarked animals that generated i resightings. Our
method implicitly computes N,,, the number of un-
marked animals that did not generate any resightings,
from information on P,. The possible range for N, is
1 = N, = §,, where the lower limit applies if all
sightings are generated by one animal, and the upper
limit applies if each unmarked animal generates exactly
one sighting. Neither of these limits is very likely. The
output from the Monte Carlo simulation is a frequency
distribution for N,. The outputs are

J; = fraction of Monte Carlo iterations in

which N, = ;. 2)
Thus the numbers {f} are a frequency distribution for
the unknown number of animals. From the {f;}, one
can compute maximum likelihood estimates (essen-
tially the Petersen estimate) and =~ 95% likelihood in-
tervals (see Appendix). The following examples will
illustrate how the method is used.

For each example we will compare the Monte Carlo
maximum likelihood estimate and its 95% likelihood
interval with the Petersen estimate and its 95% con-
fidence interval. We use Bailey’s binomial model for
the Petersen estimate because animals are merely ob-
served (repeatedly) and not actually recaptured; there-
fore, sampling is with replacement (Seber 1982:61):

NS+ 1)
BEEN

P

(3)

NS + 1)(S.)

O S A s D)

“

95% c1 = NP + 1.96 Vir(NF)%. )
The Petersen estimate uses the aggregated sightings;
thus the variance is unaffected by the distribution of
sightings among marked animals. However, if there is
extreme heterogeneity (inequality) among animals in
their sightability, then we would have less confidence
in our estimate and would expect greater variance
around the point estimate. Similarly, if there was ex-
treme homogeneity (equality) among animals in their
sightability, then our confidence in the estimate would
increase and the variance should decrease accordingly.
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The Petersen estimate, since it is based on means and
aggregated data, will not respond at all to the level of
homogeneity in the sighting distribution. The extreme
case would be to mark 10 animals and later obtain 50
sightings. When the marked animals are each sighted
about the same number of times, we trust the estimate.
When a single individual is seen 50 times and no other
animal is resighted, we know we have a model or sam-
pling problem. Biological data fall between these hy-
pothetical extremes. Because the Monte Carlo method
accounts for differential sightability by using the exact
distribution of sightings (not the summed sightings),
we expect those differences to correspondingly increase
or decrease likelihood intervals with little effect upon
the maximum likelihood estimate.

To evaluate the effects of heterogeneous sightability,
we will compare the Monte Carlo and Petersen results
from the empirical distribution (i observed sightings)
with Monte Carlo results from theoretical distributions
derived from the parameters of the empirical distri-
bution. We will generate the “equal” distribution of
extreme homogeneity in sightings and the “unequal”
case of extreme heterogeneity, as in the above example.
For the equal case, sightings of marked animals are set
as close to the mean of the empirical distribution, S,
=Lk

NS
unequal distribution, sightings are split about the em-
pirical mean so that generated sightings fall as close as
possible to the minimum and maximum values for
observed sightings. For comparison of randomly dis-
tributed sightings, binomial sightings are generated by
the binomial distribution function with » = S, and p
= N, L. If S, = 70, then the Poisson approximation is
used with A = S because p is small, and as » becomes
large, the binomial rapidly converges to the Poisson.
To allow the reader to compare the {P,}, we calculate
a standard x? goodness-of-fit test for some paired dis-
tributions. When sample sizes of frequency classes were
less than unity, they were grouped. Because of small
frequencies, goodness-of-fit results and inferences
should be interpreted as indicating trend only.

as integer additivity will allow. To generate the

Badgers in Wyoming

In fall of 1984, North American badgers (Taxidea
taxus) were snowtracked in a 15 km? area on the Na-
tional Elk Refuge, Jackson, Wyoming. The size and
shape of the target area were dictated by topographic
and plant community features that created a relatively
isolated area of high badger density. Fifteen of the bad-
gers were radiotagged and known to be occupying or
overlapping the area. During the 2-mo tracking period
there was no death or emigration of radiotagged in-
dividuals, and radiotagged badgers outside the target
area did not immigrate. One badger emigrated near the
end of the sampling period. During daylight and under
suitable weather conditions, the target area was searched
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TasLE 1. Number of resightings of marked badgers. Iden-
tifiers refer to numbered individuals within age and sex
classes: A = adult, J = juvenile, F = female, M = male.

Badger identifier

AF1 11
JM1
JF1
JF2
AF2
AF3
AF4
AFS
AM1
AM2
AM3
M2
AM4
AF6
AMS

Number of resightings

QO = NWULUUAANAIIO

for badger snowtracks. A total of 107 tracks could be
followed to a terminal hole, where the badger would
be inactive in an underground burrow. All telemetry
frequencies were then scanned to determine whether
the badger was “marked” or ‘“‘unmarked.” Radiote-
lemetry revealed that 68 of the tracks were generated
by marked badgers. The actual distribution of resight-
ings is shown in Table 1.

Why is the single or combined Petersen not adequate
for this data set? Asynchronous and synchronous tem-
poral events occurred throughout autumn, affecting
population and sampling heterogeneity. The whole or
a part of the population exhibited entirely different
movement in early autumn compared to late autumn,
sometimes correlated and other times not (e.g., with
abiotic variables). Spatial and temporal heterogeneity
also occurred in experimental protocols due to prac-
tical circumstances. The area sampled varied from day
to day and week to week because of weather and snow-
pack conditions. In effect, the continuous sampling of
tracks throughout autumn appears arbitrary: any single
sampling occurrence produced few tracks, and badgers
may or may not have moved during the interval be-
tween sampling occurrences. Location and size of sam-
pled areas are variable from sampling occurrence to
sampling occurrence, as are the intervals among sam-
pling occurrences. We strived for systematic sampling
throughout autumn, but a number of samples were
dependent and correlated in space and time. Further-
more, heterogeneities do not necessarily “average out”
in any sense of the word, and population mixing is not
random or uniform either as a population property or
as an outcome of the sampling scheme. Badgers pref-
erentially occupied home ranges within favored habitat
in the census area. Thus, by combining population and
sampling heterogeneities we can see how one badger
may be “seen” disproportionately more often and at
different times than another, sometimes in the same
area, and at other times not.

The {P,} are shown in Table 2. Note the following
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about the {P,;}: (1) If there are no marked animals ob-
served to generate i tracks, then P, = 0. (2) It is im-
plicitly assumed that none of the unmarked animals
generate more than a maximum of N,, tracks. This
limitation is common in data-intensive estimation pro-
cedures (e.g., Efron 1982). The output from 10000
iterations of the Monte Carlo simulation is shown in
Fig. 1 for the empirical distribution (observed sight-
ings). The maximum likelihood estimate (MLE) for N,
is N, = 9 badgers and the =~95% likelihood interval of
the MLE is [6 < N, < 13] badgers.

Table 2 and Fig. 1 contain the {P;} and resulting
simulations for the three sighting distributions with
different levels of homogeneity. As expected, ]\7“ =9
and N =24 for the equal and binomial distributions,
except N, = 8 and N = 23 for the unequal distribution.
The variance of the empirical distribution (¢2 = 10.25)
is double that of the binomial generated distribution
(62 = 4.23) because a few badgers are seen more than
expected and a few others are seen less than expected
(goodness of fit: x2 = 14.00, df = 6, P=.031). Therefore,
the likelihood intervals increase: equal distribution [23
=< N = 25], binomial [22 < N =< 27], and unequal [19
= N = 32].

For purposes of comparison, the uncorrected Peter-
sen estimate of N, is computed as follows. There were
68 resightings generated by 15 badgers, giving ?—i =
4.53 = S, sightings per badger. Therefore, the Petersen

u

estimate for the unmarked population is N,f = 3 =
B
39

4.53
using Bailey’s binomial model, is N* = 23.5 with a 95%
c1 of [20.2 = N =< 26.8]. Compare this to the Monte
Carlo results of N = 9 + 15 = 24 with 95% likelihood
interval of [21 = N =< 28]. For the badger example,

= 8.6. The Petersen estimate for the population,

TABLE 2. P, for marked badgers of Table 1. The mean of all
three distributions of sightings, S, is 4.53 sightings per
marked badger. Distributions are explained in Table 3 foot-
note.

Probability of resighting

Ob- Bi- Un-
served Generated by nomial Equal equal
i P, badgers P, P, P;
0 2/15 AF6, AMS5S .01 0 7/15
1 2/15 AM4, M2 .04 0 2/15
2 1/15 AM3 11 0 0
3 1/15 AM2 .17 0 0
4 0 None .19 7/15 0
5 3/15 AF4, AF5, AM1 .18 8/15 0
6 2/15 AF2, AF3 13 0 0
7 2/15 JF1,JF2 .08 0 0
8 0 None .05 0 0
9 /1§ M1 .02 0 0
10 0 None .01 0 0
11  1/15 AF1 .00 0 6/15
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Fig. 1. Monte Carlo computation of the distribution of unknown badgers in Wyoming during the autumn of 1984, in
10000 iterations. The empirical distribution of field data is referred to as observed sightings. The three other derived data
sources were generated from the parameters of that observed distribution of sightings (see Table 3 footnote).

the estimates are close but the likelihood interval is
slightly asymmetrical about the estimate.

Bison on Santa Catalina Island

In 1976 and 1977, mature bison cows (Bison bison)
were ear-marked or radiocollared and resighted from
vehicles and on foot (Lott and Minta 19834, b). In
1976, there were 2003 resightings during a 26-d period
following the summer breeding; 187 were generated by
16 marked individuals and 1816 were generated by
unmarked individuals. In 1977, there were 2096 re-
sightings in a 27-d period at the same time of year as
in 1976; 139 were generated by 14 marked individuals
and 1957 were generated by unmarked individuals.
The P, are shown in Tables 3 and 4.

Figs. 2 and 3 show the empirical and derived dis-
tributions of NV, in 1976 and 1977, generated by the
Monte Carlo simulation. The bison on this island had
been independently estimated by direct enumeration
and found not to vary from ~175 mature cows in these
two years (D. Lott, personal communication). We will
allow these censuses to represent the true population
parameter of censused cows, N = 175, and therefore
N,= 175 — 16 = 159. Note that an island is an ideal
source for testing this kind of method since if the ob-
servation period is short enough, closure of the pop-
ulation is virtually guaranteed.

The 1976 sighting data gave close estimates of the
known number of censused cows, N = 175. N? = 170.6
with c1 of [147.4 < N =< 193.7]. The Monte Carlo
method produced N = 172 for all choices of the {P,}
with likelihood interval [162 < N < 182] for the ob-
served data, [171 < N =< 174] for equally distributed
sightings, [165 < N < 179] for Poisson distribution,
and [156 = N = 190] for unequal sightings. The vari-
ance of the observed sightings (62 = 23.84) is double
that of the Poisson (62 = 11.69), again indicating het-

erogeneous sightability among marked animals in the
tail of the empirical distribution, but with minor dif-
ference (goodness of fit: x2 = 11.36, df = 8, P=.186).

In 1977, highly clumped sightings (Table 4) led to

TABLE 3. P, for bison on Santa Catalina Island in 1976. AYS
= 11.69 sightings per marked cow.

Probabilty of resighting*

Observed  Poisson Equal Unequal
i i i P, P,
0 0 .000 0 0
1 0 .000 0 0
2 1/16 .001 0 0
3 0 .002 0 7/16
4 0 .007 0 0
5 1/16 .015 0 0
6 1/16 .030 0 1/16
7 1/16 .050 0 0
8 0 .073 0 0
9 2/16 .094 0 0
10 1/16 .110 0 0
11 0 117 5/16 0
12 1/16 .114 11/16 0
13 1/16 .102 0 0
14 1/16 .085 0 0
15 1/16 .067 0 0
16 3/16 .049 0 0
17 1/16 .033 0 0
18 0 .032 0 0
19 0 .013 0 0
20 1/16 .008 0 8/16
21 0 .004 0 0
22 0 .002 0 0
23 0 .001 0 0

* For the equal case, sightings of marked animals are set as
close to the mean of the empirical distribution as integer
additivity will allow. To generate the unequal distribution,
sightings are split about the empirical mean so that generated
sightings fall as close as possible to the minimum and max-
imum values for observed sightings. For comparison of ran-
domly distributed sightings, binomial sightings are generated
by the binomial distribution function. As # becomes large,
the binomial rapidly converges to the Poisson.
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TABLE 4. P, for bison on Santa Catalina Island in 1977. S,
= 9.22 sightings per marked cow. Distributions are ex-
plained in Table 3 footnote.

Probability of resighting

Observed  Poisson Equal Unequal
i P; P, P, P,
0 0 .000 0 0
1 0 .000 0 0
2 1/14 .002 0 0
3 0 .008 0 0
4 1/14 .020 0 0
5 0 .039 0 0
6 0 .065 0 1/14
7 2/14 .092 0 6/14
8 0 .114 0 0
9 0 126 1/14 0
10 1/14 125 13/14 0
11 4/14 113 0 0
12 0 .093 0 0
13 5/14 .071 0 7/14
14 0 .051 0 0
15 0 .033 0 0
16 0 .021 0 0
17 0 .012 0 0
18 0 .007 0 0
19 0 .003 0 0
20 0 .002 0 0
21 0 .001 0 0

overestimation of the cow population (¥, = 161, N =
175): N? = 209.7, [176.3 =< N =< 243.1]; Monte Carlo
N=211, [203 < N =< 221]. The generated distributions
gavean N=212 with the following likelihood intervals:
equal [211 = N = 213], Poisson [204 = N = 221],
unequal [204 < N =< 220]. Comparing Poisson with
observed sightings, heterogeneity does not originate
from a minority of marked animals either being “sight-
happy” or “sight-shy” in the tail of the empirical dis-
tribution. Indeed, the variance of the empirical distri-
bution (62 = 11.92) is hardly inflated relative to the
Poisson (62 = 9.93); consequently, the distributions of
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N, for observed and Poisson-generated sightings are
very close. Because 9 of 14 marked cows were seen
either 11 or 13 times, the sampling regime is highly
suspicious (goodness of fit: x2 = 28.91, df = 8, P =
.0005). Finally, the closeness of the likelihood intervals
for the observed and unequal distributions is a clear
demonstration of the extreme sampling heterogeneity
in 1977.

PORCUPINES ON THE NEGEV DESERT

Indian crested porcupines (Hystrix indica) were cap-
tured and marked near Kibbutz Sede Boger during a
behavioral study of the porcupine (Alkon and Saltz, in
press). Although every animal that was captured in a
trap was radiotagged, we can subdivide the data in
order to apply the Monte Carlo method. A total of .S
= 34 captures were observed during a 225-d sampling
period in which 23 different animals were captured,
tagged, and recaptured. We arbitrarily picked 7 animals
that generated S, = 9 resightings and treated the re-
maining 25 resightings as if they were generated by
unmarked individuals. Table 5 shows the {P,}. Fig. 4
shows the results of the Monte Carlo simulation. The
MLE is N, = 21 for a total of N = 28 porcupines with
95% likelihood interval of [21 = N =< 35].

The Petersen estimate is smaller, N* = 24.5, with
95% c1 of [12.3 = N = 36.7]. Monte Carlo results of
the three derived sighting distributions give an iden-
tical MLE of N = 27 with the following likelihood
intervals: equal [25 < N =< 30], binomial [21 = N =<
35], and unequal [19 = N = 39]. Note the equality of
the observed likelihood intervals with the binomial.
We expect this, even for the small sample size, because
the observed sightings are binomially distributed (Ta-
ble 5, goodness of fit: x2 = 0.22, df = 2) and the
variances are equal (0%, = 1.06, 2, = 1.10). In this
case, both the Petersen and our method overestimate
the number of animals present.

§ 1400 | i i Bison 1976 Data Source |
‘o‘ I =@ Observed Sightings
s 1200 L &+ Poisson Generated L
- b 1A ====== Equal Generated
8 1000 f .‘.4: 4; """""" Unequal Generated
o A
o 800 3
E L
2 600
° 400
@
£2
£ 200
]
=
0¢ *
140 145 150 155 160 165 170 175

Number of Unknown Bison in 1976

Fig. 2. Monte Carlo computation of the distribution of unknown bison on Santa Catalina Island in 1976, in 10000

iterations. The true number of “unknown” bison was 159.
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Fig. 3. Monte Carlo computation of the distribution of unknown bison on Santa Catalina Island in 1977, in 10000

iterations. The true number of “unknown’ bison was 159.

DiscussioN

The results from any estimation procedure should
be accompanied by an appraisal of sampling biases that
may have arisen from violations of assumptions or
from the execution of the experimental protocol (see
Bowen and Sargeant 1983 for an excellent example).
Since biases are unavoidable in population estimation,
the real task is to identify the kinds and then gauge
their severity. For any estimate requiring the marking
of individuals, a suite of biases will most likely occur
because the initial “marked” sample will not be a ran-
dom sample of the target population. We can statis-
tically partition this heterogeneous response to the cap-
ture/marking method into environmental variation,
variation among population subgroups, and variation
among individuals.

Environmental variation, such as unusual weather
events that cannot be anticipated and controlled, might
best be dealt with by post hoc adjustment (standard
Jolly-Seber model or model M, of Otis et al. 1978) or
elimination of anomalous or outlier data. Individual
variation, which may make certain animals more likely
to be captured and marked, is most often explained by
characteristics such as increased aggressiveness, higher
mobility, being more exploratory and naive, dispersal
behavior, etc. These attributes can probably be effec-
tively accounted for by the variation among population
subgroups based on the interaction of age and sex, for
example, curious and naive juveniles or aggressive and
more mobile resident males. Differences in capture
probability associated with some identifiable morpho-
logical characteristic can be dealt with via stratification.
The remaining individual variation not adequately ex-
plained by age and sex is precisely the type of variation
that the Monte Carlo method adjusts for.

When the sample of marked animals is age or sex
biased the investigator will not be accurately estimating
the true population, because those marked animals are

not identical to the remaining “unknown” population
segment. If the biased sample is large enough and there
is already a rough idea of the sex and age ratio of the
population, then the researcher can randomly choose
from the biased marked sample until the expected ra-
tios are approximated. (The unchosen, surplus marked
individuals from this adjustment are then “returned”’
to the unknown population segment.) Of course, if age
and sex are readily identifiable in the unknown seg-
ment, then separate subpopulation estimates can be
calculated as in the bison example (mature cows) and
in Gauthier and Theberge (1985; adults—subadults).
Age and sex capture bias was evident in the badger
data but age and sex of the unknown badger segment
could not be determined from their tracks. Thus, in-
stead of estimating subpopulations we were forced to
lump all individuals for a single estimate. In this pop-
ulation there was an actual preponderance of adult
males that was magnified by their greater susceptibility
to being trapped and the greater trap-shyness of female
adults. The conclusion that adult males were more sus-
ceptible is based partly on analysis of 109 independent
captures of 74 badgers over 3 yr, a portion of which
was implanted for the 1984 estimate. The adult sex
ratio of all captured badgers was 1.75:1 males to fe-
males (n = 77) for adults and 0.85:1 (n = 24) for ju-
veniles (young of the year). Juveniles comprised only

TABLE 5. P, for Indian crested porcupines in the Negev Des-
ert. Sp = 1.29 sightings per marked porcupine.

Observed Binomial Equal Unequal
i P, P, P, P,
0 2/7 .250 0 4/7
1 2/7 375 5/7 0
2 2/7 250 2/7 0
3 1/7 .097 0 3/7
4 0 .024 0 0
5 0 .004 0 0
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Fig. 4. Monte Carlo computation of the distribution of Indian crested porcupines in the Negev Desert, in 10 000 iterations.

24% (n = 101) of the population age structure. Of the
15 radiotagged animals in 1984, the sex ratio was 0.83:1
for adults and 1.00:1 for juveniles, which were 27% of
that “known” segment. We expected the adult sex ra-
tios to differ: the best time of the year to trap badgers
for research purposes was when males of this popu-
lation were most likely to enter traps and when females
were least likely to do so. The severity of this bias is
difficult to determine but other data points to a more
realistic adult sex ratio of 1.5:1. A counterbalancing
bias is that there were probably additional radiotagged
adult male badgers present but not detectable with the
telemetry because they were in prolonged bouts of tor-

por deep underground (radio signals are rapidly atten-

uated by frozen wet earth and snow). The differential

activity levels due to age and sex can readily be seen

in Table 1. During the sampling period juveniles and

adult females were most active (and moved farthest)

while adult males spent more time belowground and

moved shorter distances when aboveground. Given the

opposing directions of these biases, we made no ad-
justment of the data but consider the discussion worth

while to illustrate the importance of understanding how

the experimental layout and biases influence estimates

(after Begon 1983, Hurlbert 1984).

Lack of adherence to the sampling design for the
bison data helps explain the disparity between popu-
lation estimates for 1976 and 1977. Sampling effort
and coverage were consistent from year to year, how-
ever: (1) Some areas were not sampled as frequently
as others. (2) The pattern of environmental heteroge-
neity was not the same each year, thus the attraction
to bison of areas is different among years. And (3),
bison movements and activity varied year to year on
an individual basis (Lott and Minta 1983¢, b). Since
the data were not intended for the purposes of a pop-
ulation estimate, the sampling design was not entirely
systematic and as a result sampling biases occurred.
This is evident from the distribution of P;’s in Table

4, which is indicative of nonrandom sampling that
resulted in many cows being resighted far more than
others.

The porcupine example is particularly interesting for
two reasons. First, the simulation MLE, Nu = 21, is
consistent with the direct enumeration by Alkon and
Saltz (in press) and with the depletion method (Mangel
and Beder 1985) used by P. U. Alkon and M. Mangel
(unpublished manuscript). Second, the porcupine es-
timate is based on a relatively small sample yet leads
to a moderately tight distribution for the number of
porcupines. We are thus hopeful about the application
of this method for use with other small data sets.

The method we have described is compatible with
any capture-recapture design for which there are initial
captures followed by an independent set of multiple
recaptures in a closed population (see Arnason and
Baniuk 1978 for open populations). Capture-resight,
particularly when used with telemetry, offers promise
for cost-effective population estimation. To date, the
co-development of these techniques has emphasized
estimating visibility biases for aerial surveys (e.g., Bart-
mann et al. 1986, Pollock and Kendall 1987, Samuel
et al. 1987), mostly of big-game ungulate species. Re-
searchers who have derived estimates of ungulates di-
rectly from telemetry and resight data have had to
contend with a high initial tagging rate, large samples,
high costs, and combining independent Petersen-type
estimators (e.g., Rice and Harder 1977, Mackie et al.
1981, Bartmann et al. 1987, Kufeld et al. 1987).

We expect to see more capture-resight and teleme-
try/capture-resight applications to diverse species and
circumstances. The use of telemetry is widespread, and
even when telemetry is not part of an experimental
design, the cost of maintaining radiotagged animals in
a study area can be offset by the valuable additional
data collected on movement, home range, habitat use, -
migration, mortality, etc. The Monte Carlo method
requires a relatively small proportion of the population
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to be marked. Furthermore, the flexibility of the meth-
od can accommodate continuous monitoring and ac-
cumulation of sightings over larger windows of time
" using various means of sighting (both from the air and
ground) while collecting data for other objectives than
population estimation. Sampling heterogeneity is ac-
counted for in the magnitude and asymmetry of the
likelihood intervals. Of particular interest is the ability
to obtain a second independent estimate with slight
additional effort. For example, one estimate can be
derived through aerial surveys of marked animals (e.g.,
Mackie et al. 1981, Samuel et al. 1987) and another
from Monte Carlo estimation based on resightings.

Many other “recapture” techniques can be used since
recapture can be of any form as long as individual
identification is possible: retrapping, resighting, telem-
etry, or sign (e.g., tracks). The badger example com-
bined telemetry and sign (tracks and holes), but sign
alone could potentially lead to an estimate; for ex-
ample, K. S. Smallwood and E. L. Fitzhugh (unpub-
lished manuscript) have used discriminant function
analysis to successfully differentiate individual moun-
tain lions (Felis concolor) from quantifiable attributes
of naturally occurring track impressions.

CONCLUSION

Mark-resight methods for population estimation,
particularly involving telemetry, have many advan-
tages. Radiotelemetry allows the collection of infor-
mation previously unavailable, particularly informa-
tion concerning differential catchability (or sightability,
in this case). The new simulation method for evalua-
tion of capture-resight data is easy to use, data inten-
sive (so that one does not ignore information contained
in the capture-resight data), and has as outputs the
maximum likelihood population estimate and likeli-
hood interval information. The method may also be
used on any capture-recapture data that meet the con-
ditions and assumptions. Capture-resight and simu-
lation methods are not meant to replace other esti-
mation procedures. We stress that each can be an
alternative choice that may conveniently fit certain types
of animals, habitats, research objectives, and experi-
mental designs.

We envision three directions for future work on this
methodology: (1) the extension of the methodology to
continuous marking (visual or telemetric) throughout
the sampling period and (2) the explicit consideration
of open vs. closed populations. (3) It may be possible
to compute quantities such as relative biases of the
Petersen and simulatedAvariance estimators and effi-
ciency of the Petersen N relative to the simulation N
(J. Nichols, personal communication). These exten-
sions will make the simulation approach a handy tool
for every ecologist’s tool kit. We appeal to biologists
and statisticians to continue innovating simple meth-
ods and modifying existing ones to accommodate the
wide diversity of organisms and habitats.
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APPENDIX
I. MOTIVATION FOR THE MONTE CARLO SIMULATION

The situation to be considered is the following. A closed
" population of animals is initially sampled and some relatively
small fraction of the animals is tagged so that their presence
can be identified. Following the initial tagging, the population
is observed over a long period of time. The problem is then
to estimate the total population.

For definiteness, consider the badger problem in which the
population is observed directly through telemetry and indi-
rectly through badger snowtracks. The simplest case is one in
which each member of the population makes exactly the same
number of tracks. Let N denote the fixed total number of
badgers in the population and let 7 denote the fixed number
of badgers that are tagged. If each badger (they are all identical
in this first assumption) makes a fixed number of tracks ¢, the
number of tracks made by marked badgers is

Ty = nt (A.1)
and the number of tracks made by unmarked badgers is
Ty= N — n. (A.2)

The analogue of the Petersen estimate for the number of un-
tagged badgers is determined by

(number of unknown tracks)

B= A.3
(number of known tracks per badger) (A-3)
_ Ty, (N-—nx
T)/n nt/n
=N-n. (A.49)
When T, and T, are random variables, then
E(T)) = nt (A.lb)
E(T,) = (N — n)t, (A.2b)
and we can use the large-sample approximation
A T, E(Ty)
EMB)=E R———"—=N—n. A.4b
(B) [TM/n} ET,)/n n (A4D)

There are two types of heterogeneity that will affect this simple
analysis. The first is population heterogeneity: not all indi-
viduals will make exactly the same number of tracks. The
second is sampling heterogeneity when the initial tagging is
performed and within and among the resighting periods.

First consider heterogeneity of the population. To make
things as simple as possible, suppose that there are only two
types of badgers. One type makes ¢, tracks and the other type
makes ¢, tracks. Suppose that there are N, of the first type of
animals and N, of the second type of animals in the popu-
lation, with N, + N, = N, the total population size. Let n;
denote the number of tagged animals of type i. The number
of tracks made by marked animals is now

Ta = mty + nyt, (A.5)
and the number of tracks made by unmarked animals is now
Ty= (N, — n)t, + (N, — ny)t,. (A.6)
The estimate for the number of unmarked animals still follows
the same reasoning as Eq. A.3 and is thus
Ty

Ty/(ny + ny)

[Ny — n)ty + (N2 — my)tlln, + ny)
mt, + not, '

B=
(A.7)

The usual Petersen estimate implicitly assumes that the initial
sampling is perfect. That is, suppose that the probability of
capturing an animal in the initial sampling is p (this may be
small, especially if the initial tagging period is short, as it
typically is). The implicit assumption about sampling heter-
ogeneity in the Petersen estimate is that

n; = pN,. (A.8)
If this assumption is used in Eq. A.7, one obtains
5= VA — p)t, + Ny(1 = p)t,][p(N, + N,)]
PN\t + PNy, (A.9)

=0 =pW, + N,)=(1 - p)N.

Since the initial number of animals tagged is PN, the total
estimate for the population is unbiased. However, this pro-
cedure requires that the assumption of perfect sampling hold.

In most circumstances, Eq. A.8 will not hold. Instead, if
the probability of capturing an animal for the initial sampling
is p, one should think of the #, as random variables. Assuming
random trapping in the initial phase, and that all animals are
equally vulnerable, the random variable 7, will have a bi-
nomial distribution with parameters N, and p. One then needs
to consider the expected value of the estimate B. It is given by

E{B} = 2 EPr{nl = my, n, = my} B(m,, m,), (A.10)

my my

where Pr{n, = m,, n, = m,} is the product of two binomial

expressions and
(N, — m)t, + (N, — m)bLl(m, + m,)

myt, + myt,

B(m,, m,) =
(A.11)

The expression B(m,, m,) is essentially the Petersen estimate,
using the m,. The usual approach would be to follow the so-
called “Seber delta method” (which goes back to the Oper-
ations Evaluation Group in World War II [Tidman 1984])
and compute E{B} in a Taylor series of the nonlinear estimate
B(m,, m,). A second approach, especially appropriate for this
simple problem, is to compute the expectation exactly, using
Eq. A.10. When doing this, one needs to be careful about the
limits of the summation. In particular, the case in which m 1
= m, = 0 must be excluded. Table A1 shows the results for
the computation of the entire population size, which is

E{N} = 2 X Prin, = m,, n, = m,}

my my

[[B(my, my) + m, + m,].

(A.12)

As a check on the computations, one can set t, =t, in Eq.
A.12; the expected value of the population is then N, + N,
in all cases.

What information can be gleaned from Table A1? The es-
timate becomes unbiased for either large values of p (in which
case most of the population is trapped initially!) and large
values of N (in which case the central limit theorem smooths
out fluctuations in the initial sampling process). It is clear,
however, that the usual Petersen estimate may be highly biased
if either the total population is small (and 40 animals may
not be particularly small) or the initial probability of capture
for the tagging is small (p = 0.1 in a population of 100 animals
corresponds to tagging about 10 animals; this is not unrea-
sonable). The apparent positive bias in the estimate is not a
consistent feature of the analysis. For example, if one extends
Eq. A.12 to the case of three classes of animal, the estimated
population may be above or below the true population, as
shown in Table A2.
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TaBLE A2. Population estimates for three variable subpop-
ulations based on constant, heterogeneous tracking by
members of those subpopulations.

Population Probability of capture during initial Probability of capture during
parameters sampling, p Population parameters initial sampling, p
N, N, t, t, .05 .10 .15 .20 .25 .30 .35 Ny, Noy N3) (2, by, t3) 05 .10 .15 20 .25
Population estimate Population estimate
20 20 9 1 79 58 49 45 43 42 42 (5, 10, 15) 0, 5, 10) 38 37 35 34 33
10 30 9 1 77 63 54 49 46 45 43 (15, 10, 5) 0, 5, 10) 22 24 26 28 29
30 10 9 1 63 48 43 42 41 41 41 (15,8,7) 0, 5, 10) 24 26 28 29 30
50 50 9 1 134 109 105 103 102 102 101 (7,8, 15) 0, 5, 10) 37 36 35 34 33
20 80 9 1 146 120 111 108 105 104 103
80 20 9 1 111 102 101 101 101 101 100

What conclusion should be drawn? The easiest way out, to
paraphrase William Feller, is to take the approach of the
statistical formalist: do not try to do anything unless one is
certain that either p or N is sufficiently large for the Petersen
estimate to work. On the other hand, there are many applied
and practical problems in which ‘“not doing anything” is an
inappropriate answer; some kind of population estimate is

needed. It is for those problems, in which sampling hetero-
geneity causes the Petersen estimate to possibly be highly
biased (and one will never know what the true situation is)
that the method developed by us is applicable. Another mo-
tivation for our method is provided by Menkens and Ander-
son (1988).

II. DESCRIPTION OF THE MONTE CARLO SIMULATION

The inputs to the Monte Carlo program are (1) .S, = number
of sightings of unmarked animals, and (2) the frequencies {P;}
derived from the empirical distribution of sightings. In each
draw of the program, a random number of sightings, §, is
picked as follows. First one draws a random number, Y, uni-
formly distributed on [0, 1]. The number of sightings §(Y) is
then such that

k{eg] 3(M+1

XP=Y< ) P

=0 =0

(A.13)

During the simulation

F; = number of times that j unmarked animals generate
the S, sightings

T = number of sightings in the current iteration
T, = specified stopping rule
N, = number of iterations of the Monte Carlo program.

The simulation proceeds as follows (for 10 000 iterations):

1) Initialize: N, =0, {F}} =0,1 < j < §, input S,, {P.}.
2) Initialize each iteration: 7= 0, N, = 0.
3) Draw a random number of sightings § from the empirical
distribution.
4) SetT=T+ 5 N,=N, + 1.
5 IsT > T,?
(a) Yes: Step 6.
(b) No: Step 3.
6) Increase Fy, by 1.
Increase N, by 1.
7) Does N, = 10000?
(a) Yes: Step 8.
(b) No: Step 2.

F,
8) Define f by f; = M forj=1,...S,

10 000
For the examples we have presented, we set the stopping rule,
T,, equal to S,; therefore, the bootstrap distribution generated
is conditional on the observed value of S,. In some situations,
variability associated with .S,, particularly due to small sample
sizes, could change estimators and likelihood intervals. To
allow variation in S,, our program employs two user-specified
stopping rules, a lower and an upper 7. Since Step 5 allows
T to exceed T, we recommend using S, as the upper 7, and
some number greater than S, — N,, (where N,, is maximum

number of resightings for any marked animal) as the lower
T.. To examine sensitivity of the simulation to S, variability,
a good candidate for lower 7, might be S, — N,,., where N,,..,
is the median of the distribution of resightings. We found
little difference between 7, = S, and T, = S, — N,,., for the
text examples. In the extreme case of 7, = S, — N,,, we found
that for the observed and binomial/Poisson distributions in
the text, N, estimates and their likelihood intervals averaged
only 11.3% less (sp = 12.7%) than estimates from 7T, = S,.
The width of the likelihood intervals remained nearly con-
stant, which translates into a slight increase in the interval,
relative to the decreased estimator.

The output of the algorithm is a distribution {f}} where f;
is the fraction of iterations in which j animals generated the
S, tracks. The MLE for N, is the value of j for which f; is the
largest. Probability intervals containing a fraction « of the
total probability are found by solving for 7,

Je+i
2 [z a
J=jr=i
where j* is the MLE for N,.

Values of N, that are a fraction ja as likely as the MLE are

found by solving for the closest j such that

£ = af. (A.15)

Hudson (1971) examined ‘“likelihood intervals” that are de-
rived directly from the likelihood function simply by drawing
a horizontal line across the graph of the likelihood function.
Given the MLE estimate of 6, a “likelihood interval” for
parameter § I (8; 8l ), is defined by

10; 8l J) = {6-181 j) = e-5-1(8l j)}, (A.16)

and leads to an asymptotic 95.4% confidence interval for large
samples when 8 = 2. It is reasonably approximated by 0.954
in small samples. The choice of 3 = 2 depends neither on the
distribution of j, nor the sample size, nor on the stopping rule,
nor whether the sample is complete or censored, and so on,
but only on the asymptotic confidence coefficient (Hudson
1971). For our estimate, the approximate 95% likelihood in-
terval is contained by {j, = j* < j,} where e#-f. = 0.135f.
= fi = f,. Graphically, the horizontal line drawn through the
distribution of j at 0.135f. intersects k; and k,.

For a copy of the Basic program (IBM compatible), send
blank floppy disk to S. Minta.

(A.14)



