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Abstract. We derive a differential-difference equation for the fitness of a predatory insect such
as a mantid. If the gut capacity of the mantid is large compared to individual prey items, the
equation for fitness can be solved by the WIKB method. We also compute the prey attack rate
as a function of prey density.

Holling [1] describes the predatory behavior of the mantid Hierodula crassa. The prey
catching process of the hungry mantid is assumed to be driven by satiation (gut content)
of the mantid and involves four distinct phases. These are searching, pursuing, striking
and eating. Searching is a random process in which prey encounters are a function of prey
density and the width of the search field of the mantid. Thus success in search increases with
the product of prey density and the width of the search field of the mantid. Pursuing occurs
at a constant rate and with a fixed probability of success; both are independent of satiation.
If pursuit fails, i.e. the prey escapes, the the mantid goes back to searching. If pursuit
succeeds then the mantid immediately strikes its prey. Striking has a fixed probability of
success that is independent of satiation. If the mantid is successful in striking its prey then
it immediately eats the prey at a constant rate independent of satiation. Holling found that
satiation decreased exponentially during periods when the mantid was not eating.

Holling developed a deterministic simulation of the satiation process. Metz and van Baten-
burg [2 — 4] developed a full stochastic simulation; they discuss Holling’s model and also lay
the groundwork for treating the process analytically. The most important simplification is
the use of negligible handling time, for which a prey capture results in the instantaneous
increase in satiation equal to the effective prey weight. Further simplifications involve com-
bining searching, pursuing and striking by assuming that prey are captured at a rate zg(S),
where z is the prey density, g(S) is the satiation dependent rate prey capture and S(t) is
the satiation of the mantid at time ¢. These simplifications together are called the ”gobbler
model”. The salient feature of this model is that the state space of the mantid reduces to
one dimension, that of satiation S. The stochastic process S (t) as described by the gobbler
model has the following forward equation for its probability density

90(8,8) _ PO _ ays)p(s,t) +zols = wpls = ws0) (11)
£
In this equation p(s,t)ds = Pr{s < S(t) < s+ ds}, w denotes prey weight, and between
captures .

ds
dt
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Equation (1.1) has the boundary condition p(s,t) = 0 for s > ¢ + w, where c is a satiation
threshold defined by g(s) = 0 for s > ¢, and the initial condition p(s,0) = po(s). Metz
and van Batenburg [3] derive Equation (1.1) and model g(s) as a non-linear function of s.
Heijmans [5] shows that solutions of the adjoint of equation (1.1) converge to a stationary
distribution. The adjoint equation is

on(s,t) n(s,t)
ot YT s

The adjoint equation is called a backward equation. If n(s,0) = 5(s) then the solution of
the forward and backward equations are related by

zg(s)n(s,t) + zg(s)n(s + w,t) (1.3)

ctw etw
f p(s, )n(s)ds = f po(s)n(s,t)ds (1.4)
0 0

Despite formulating and proving the existence of solutions to equation (1.1) and (1.3) neither
Metz and van Batenburg nor Heijmans attempt to solve them. Here we formulate a backward
equation for the fitness of the mantid and solve it approximately by the WKB method [6].

2. FORMULATION

Let S5*(#*) denote the gut content of a mantid at time ¢*. We assume that the prey weight,
w, is small compared to the gut capacity of a mantid which is denoted by ). The dynamics
of S* are written

dS*(t*) = —aS*dt* + wdz” (2.1)

where d7* = 1 with probability A*(S*)dt™ + o(dt) and 0 otherwise. Prey captures are a
Poisson jump process (7).

Let € = v= be a small parameter that measures the relative increase in gut contents due to

prey captures. The satiation dependent rate of prey capture is explicitly assumed to depend
inversely on the small parameter ¢: as the effective weight of a single prey decreases relative
to the demands of metabolism, the rate at which the mantid captures these small prey must
increase. Recall that in the formulation of Metz and van Batenburg the satiation dependent
rate of prey capture was zg(S). Let T, denote a characteristic time such as the lifetime

of a mantid and introduce the scaling t = %, S= SE‘-, A(5*) = Mtﬂ and dr = 1 with
probability -’-‘-‘-—f-‘]—d—-‘- + o(dt) and 0 otherwise. Setting ¢ = aT, equation (2.1) now becomes

dS = —cSdt + edm. (2.2)
Consider an interval of time 0 <t < T and define
w(s,t,T) = Egmy [F(S(T)) | S(t) = s]. (2.3)

The function F(s) is called a terminal fitness function and provides a measure of ”reward”
at time T [8].

The law of total probability implies that
w(s,t,T) = Egs [ES(T) [F(S(T]) | S(t +dt)=s5+ dS]] . (2.4)

We use (2.2) in (2.4), Taylor expand in powers of dt and let dt — 0 to obtain [10]

0= —cswy(s,t,T) +wi(s,t,T) + @ [w(s+e,t,T) —w(s,t,T). (2.5)
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This is a partial differential-difference equation with the end condition w(s, T, T) = F(s).
Notice that up to differences in notation (2.5) is precisely (1.3), the backward equation and
adjoint of equation (1.1).

3. FirnEss CoMPUTED BY THE WIKB-METHOD

We now assume that the terminal fitness function F(s) takes the form

F(s)=1—e % (3.1)
where ¢(s) is a specified function. We then seek a solution in the form
w(s,t,T) ~ 1 = k(s,t, T)e~ 5 (3.2)

where k(s,t,T) = ¥ ki(s,1, T)¢* and the {ki(s,t,T)} and ¥(s,t,T) are to be determined.
Inserting (3.2) into equation (2.5) and dividing by e~ MDY we obtain

+3@ [~k(s + 6,8, Ty *HETEER Lkt ) 33)

Taylor expanding k(s + £,¢,T) and ¥(s + €,t,T) about (s,t,T), collecting terms of like
powers of € and successively setting their coefficients equal to zero gives

U —cl,+Ms)[1-e"¥] =0 (34)

ko, -+ ko' [—C + )i(s)e‘w'] — ko I:A(s)e—ﬁ. '1'2-18] =0 (35)

We solve equation (3.4) by the method of characteristics [10]. Along the characteristics of
Eqn(3.4), we find that Eqn(3.5) may be written

dkg A
—dT -— kg [A(s)e 3 =0 (36)

The solution to (3.6) involves one arbitrary constant. We obtain initial conditions for the
characteristic equations and the arbitrary constant from (3.6) by comparing the ansatz (3.2)
with the final data (3.1).

4. COMPUTATION oF FunNcTioNAL REsPONSE BY WKB

The stationary functional response F'R is defined by
FR= z‘[g{s)v(s)ds (4.1)
where, as before z = prey density, g(s) = Prob{successful strike given that § = s} and v(s)

is the stationary probability density for S; that is v(s)ds + o(ds) = Prob{s < S < s+ ds}.
This stationary density satisfies the differential-difference equation

0= 2 [easu(s)) - 29(s)o(6) + za(s — w)u(s = <w) (42)

We now use the WKB ansatz
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o(s) ~ k(s)e™ 5 (4.3)
and substitute this into Eqn(4.2). To leading order in the small parameter, we obtain
as¥, = zg(s) [ew"" -1] (4.4)

We choose the solution of (4.4) that insures integrability of v(s) and assume that ¥ has a
minimum at s., defined by

5eq = WZ(5eq) (4.5)

This choice of s., corresponds to the rest point of the equation obtained by averaging the
analogue of Eqn(2.1). The next order in ¢ gives the equation

ks _ e¥ry [wgs + %wgg‘yu] —-a
& as — gzwe¥s¥ =ple) (46)
We solve this to obtain
k=celd p(s')as'] (4.7

We now compute the functional response by evaluating the integral in Eqn(4.1) by Laplace’s
method. The result is

v(oe H
FR = 29(se)k(5eq)e™ 22 [‘F_im] (4.8)

5. COMMENTS

1. In part IT of their work, Metz and van Batenburg [4] use diffusion approximations; this
is equivalent to assuming that ¥, is small.

2. Also in [4], Metz and van Batenburg describe a multi-dimensional extension in which
the two state variables are satiation S(t) and accumulated number of encounters N(t). The
density v, (s,t) is defined by

va(s,t)ds = Pr{S(t) € (s,s + ds), N(t) = n} (5.1)
and satisfies the forward equation

9;7” = -aa; [casvn] — 2g(s)vn(s,t) + zg(s — ew)va_1(s — cw, 1) (5.2)

This can be solved by assuming an anstaz of the form

0, i

a(5,1) = Kn(s,1)e™ 5 (5.3)

The equation for ¥ is obtained as a solvability condition for the linear equations character-
izing the k,[10].

3. In the general problem, there are actually two small parameters. The first, used here,
is € = <. The second is = 7ha where 7 is the handling time. We have implicitly assumed

that n'= 0, but considerable work could be done on the asymptotics of the two parameter
problem.
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