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Abstract We study the effects on fisherman decision pro-
cesses of periodic (e.g., weekly) individual quotas. In the
model, the fisherman must choose at the start of each week
which of two grounds to fish on. The catch per week on each
ground is a random variable and the fisherman does not know
with certainty the parameters of the distribution of that vari-
able. He does have estimates on each parameter and can im-
prove these estimates by Bayesian updating. The choice of a
fishing ground takes into account the expected catch on that
ground and the expected improvement in information from
fishing on that ground. Our study is concerned with the effect
of weekly quotas on the joint production of information and
fish. Various policy implications are discussed, and the results
are compared with the policy analysis of Clark (1980) in the
deterministic case. We show that the quota affects the value
of information and that if quotas are transferable, then the
quota may limit its own value.
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Introduction

Most fisheries are characterized by high levels of uncertainty in
stock size and location of fish in a particular year. These un-
certainties, coupled with environmental fluctuations, lead to
catch rates for individual fishermen that are highly erratic. They
also pose difficult management problems that somehow must be
overcome in trying to deal with a particular fishery. Although
management may aid in reducing uncertainty through surveys,
satellite projections, and weather forecasting, a major reduction
in uncertainty comes from the fishermen themselves. In partic-
ular, the process of fishing produces information about the lo-
cation, size, and quality of the stock, as well as producing fish.
This paper is concerned with the effect of quotas on the joint
production of information and fish.

Mangel and Clark (1983) modeled uncertainty in fisheries by
considering the search component of the fishing operation to be
the most important stochastic consideration. This choice rests
on a number of factors. First, the individual fisherman can do
little about the uncertainties in weather or stock size and quality,
whereas he or she can accomplish much in the way of locating
fish. Second, in most cases, the fisherman is still fundamentally
a hunter (e.g., tuna vessels may spend up to 80% of their time
at sea looking for tuna). Mangel and Clark used decision analysis
to determine the optimal allocation of fishing effort over time
and space, assuming that the individual fishermen were profit
maximizers and that the fishery was an open access one.

In the present paper, we study the question of uncertainty and
fishermen’s behavior in a fishery with catch quotas for individual
fishermen. There are many reasons for studying the seasonal
quota and its effect on the fishery. First, in a deterministic set-
ting, the seasonal quota can promote optimal utilization of the
resource (Clark, 1980), so that as a regulation tool quotas appear
to be useful. Second, there is empirical evidence (Swierzbinski
et al., 1981; McKay, 1980) that fishermen may set quotas for
themselves. In some cases (Swierzbinski et al., 1981) the quota
is apparently a seasonal income target level. The informational
problems associated with a seasonal quota are similar to the ones
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studied by Mangel and Clark (1983). Fishing stops, in this case,
either when the quota is reached or the season ends.

There is another kind of quota, however, that is also of in-
terest. This is the periodic (e.g., weekly) quota. For example,
in some fisheries (McKay, 1980) the quota is the result of a co-
operative of fishermen trying to ensure equitable weekly com-
pensations. Quotas may also be set by processors (Fletcher,
1982), who limit the amount of fish that they will buy from an
individual fisherman.

In this paper, we will study the effects of periodic quotas on
the joint production of information and fish. The effects of pe-
riodic quotas will be compared with the effects of seasonal quo-
tas. We are most interested in the effect of the different kinds
of quotas on information processing early in the season. As data
are accumulated through the season, it becomes progressively
easier to make good decisions. The most difficult decisions are
the ones made early in the season, when there is a paucity of
information.

There is an interesting analytical duality between profit max-
imization and quota regulation. In the profit maximizing (PM)
case, the seasonal return (R pas) to the fisherman takes the form

Rpym = pB - C(T) (D

where B is the (uncertain) biomass of the harvest, p is the price
per unit biomass, and C(7) is the cost of operating for a season
of length T. In the case of quotas, the return takes the form

Ry, = pBy — C(Ty) )

Here By, is the biomass of the quota and TQ is the (uncertain)
time to achieve that quota. In Equation (1) the uncertainty affects
the revenue term and the cost, since the operating time is a con-
trol variable chosen by the fisherman, but in Equation (2) the
uncertainty affects mainly the cost term (if the quota is reached).
Although the net revenue functions in Equations (1) and (2) have
considerable symmetry, it turns out that the presence of the
quota leads to considerable differences in results. The case of
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the periodic quota is completely covered here; some aspects of
the seasonal quota are discussed. Clark (1985) also discusses how
a seasonal quota may reduce the expected catch of a fisherman.
For simplicity of exposition, we consider the case in which the
fisherman makes repeated trips of a fixed duration, say one
week, to one of two fishing grounds. Our analysis is primarily
concerned with determining the effects of an imposed weekly
quota on the information used by the fisherman to decide which
ground to visit. In the next section we give a formulation of our
model and discuss some of its aspects. In the third section we
describe the results of simulation studies using the model. The
fourth section contains a discussion of some of the policy im-
plications of our results.

Theoretical Formulations

This section contains two subsections. The first subsection con-
tains a review of the model of Mangel and Clark (1983) as well
as the essential theory of this paper. The second subsection con-
tains a discussion of how the theory developed here can be ex-
tended to many cooperating fishermen. Mangel and Clark (1983)
provide further discussion of the situation in which many fish-
ermen cooperate.

Weekly Quotas, Seasonal Quotas, and a Single Fisherman

This section contains the necessary theory to compare regulation
by weekly quotas with fishing under no imposed limitation or
seasonal quotas. We assume that the fisherman is risk-neutral
and maximizes expected profits. Other utility choices, such as
risk aversion, may be treated in a straightforward way. The
model for fishing under no limits is the simpler of the two cases;
it was formulated by Mangel and Clark (1983). For the study of
the joint production of information and fish, the difference be-
tween the profit maximizing case and the seasonal quota is sim-
ply the length of the season. Clearly, if no kind of limit is imposed
and stock depletion is not important, the fisherman can always
do better when there is no quota than if a limit is imposed. For
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a single fisherman, it is possible to ignore stock depletion. This
allows us to concentrate completely on the effect that the quota
has on information processing. Some aspects of stock depletion
are discussed in the next section.

Assume that the schools of fish are encountered in a way that
may be modeled as a Poisson process with parameter \. There-
fore the probability (Pr{n, A}) of encountering n schools in a
period of length A is given by

QA s
n!

Pr{n, \} = 3)

Using the Poisson model ignores stock depletion effects in sub-
sequent periods. Mangel and Clark (1983) show how to include
depletion; the calculations are possible but more complicated
(also see the following section).

In this model, the expected catch during a period A is equal
to AA. The parameter A\ is assumed to be a random variable
whose value depends on which of the two grounds the fisherman
is on. We assume that X\ has a gamma distribution so that it forms
a conjugate family with the Poisson fishing process (De Groot,
1970). That is, we assume

a

Pr{le(\, X\ + d\)} = e N d\ 4)

where the values of a and v depend on the fishing ground. Given
parameters v and a, the expected value of \ is v/a. Using Baye-
sian estimation (DeGroot, 1970), if the prior distribution on A
has parameters v and a and » fish are caught in a time interval
A, then the posterior distribution has parameters v + n and o
+ A.

Take A = 1 week as the basic time period. If the fisherman
only plans to fish for one more week during the season, he would
simply choose the fishing ground that maximizes his expected
profit. The expected gross income is the expected catch times
the unit price of the fish, which is assumed to be fixed. We
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neglect fixed costs in computing costs (while there certainly are
fixed costs, it is reasonable to assume that they do not signifi-
cantly depend on the choice of fishing ground and therefore do
not influence that decision). We assume that the variable costs
are proportional to the amount of time spent fishing. Let cA
denote the cost for one week’s fishing. The expected profit is
given by p(v/a) — cA where p is the unit price of the catch, so
if J, is the maximum expected profit with one week remaining,
the fisherman will choose the fishing ground according to the
rule

Ji = Hj?’; {p(vila;) — cA} &)

Here v; and «; are the current estimates of v and « on ground i.
At the start of the season these values are presumed to be known
from historical data. They are updated as information is ob-
tained.

If more than one week remains, the fisherman may decide to
visit a ground other than the one specified by the rule in Equation
(5). He will do this if the expected gain of information is more
valuable in the long run than the opportunity cost of not visiting
the most profitable ground right away.

As in Mangel and Clark (1983), we assume the fisherman fol-
lows a ‘“‘myopic Bayes’’ strategy in which he only anticipates
events one week into the future. The myopic Bayes solution for
the dynamic programming problem is chosen for two reasons.
First, it simplifies the computational considerations and avoids
problems associated with the ‘‘curse of dimensionality.”” Sec-
ond, and more important, it allows one to see clearly the joint
production of catch and information and how they are related.
The choice of fishing ground is therefore determined by maxi-
mizing expected profit over a two-week interval, taking into ac-
count the information gained in the first week of the interval.
The use of a myopic Bayes procedure may underestimate the
value of information, since there is only one week in which to
exploit it. (An interesting related question concerns how much
the myopic Bayes procedure underestimates the value of infor-
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mation. That is, how suboptimal is the myopic Bayes proce-
dure? In particular, one would like to know how much the value
of information is underestimated in the case of weekly versus
seasonal quotas. In order to answer this question, one would
have to solve the full dynamic programming equations and com-
pare them with the solutions of the myopic Bayes equations.
Based on heuristic arguments, one would expect that the value
of information is underestimated more in the case of a weekly
quota than in the case of a seasonal quota. In the case of a weekly
quota, the catch is bounded in the week in which the information
has value.)

The value of the maximum expected profit and the corre-
sponding choice of fishing ground may be obtained by solving
the appropriate two-period dynamic programming problem. The
Bellman equation for this problem is

J = max {p(i/a;) — cA + E{J, | i} (6)
i=1,2

where E{J, | i} is the expected second period profit given that
the fisherman’s ground i was visited in the first period. The value
of E{J, | i} is calculated from the formula

EUs i = S P Pring @)

ni=0

where P, is the expected profit conditioned on finding 7 schools
in ground i, given by

A, pl’l—cA} 8)

P,, = max
! {p o + A Qa;

i,J

and Pr{n;} is the probability of finding n schools on ground i,
given by Mangel and Clark (1983) as:

i F(V,' + n,-) (o ¥ Vi 1 i
Prind = = "Ton (a,- n A) (a,— n A> ©)
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It is worth noting that the dynamic programming formulation
does not determine which ground will be visited in the second
period; this depends on the outcome of the events of the first
period. Further details for the profit maximizing case can be
found in the paper of Mangel and Clark (1983), which also dis-
cusses some aspects of the myopic Bayes approach.

In order to derive analogous equations for the case of a weekly
quota of Q schools, it is easiest to separate the decision action—
that is, which ground to visit first—and the value of that action.
Let V; be the value of visiting ground i in the first period. This
term involves the expected net return from the first period and
the updated expected net return from the second period.

When each period has a quota Q, the possible events are find-
ing 0 to Q schools; so that the distribution in Equation (3) must
be renormalized to sum to 1 as n goes between 0 and Q. Let

1
Egl=0 Pr{m9 }\}

Cnv(N, Q) = (10)

be this normalization constant.

Assume that ground i is visited in the first period. From Equa-
tions (3) and (10), the expected net income r, from the first pe-
riod’s visit is

Q
ri(A;) = Cn(N;, Q) E R(n, N\)Pr{n, \;} (11)

n=0

where R (n, \;) is the expected net revenue in the first week if
n schools are caught. If n < Q then we have simply

Ri(n, N;) = pn — cA (12)

That is, under the assumptions of this model, if less than [0
schools are caught then the entire week is spent on the ground.

The situation is different, however, if n = Q—that is, if the
quota can be filled at any time in the week. Thus one must con-
sider the density for the time ¢ at which the quota is filled. The
density for the time at which the Qth event of a Poisson process
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occurs is a gamn'la density with parameters Q and A (Ross, 1980).
Since T is constrained to be in [0, A], the density for ¢ is, for
fixed A\,

tQ—lef)\it

fA tQ—Ie—Ait drt
h(t; Q, \;) = 0 (13)
0 otherwise

Therefore
A
RI(Q, \) = f (PO — ch(t; O, \)) dr (14)

To compute the expected profit in the second period, assume
for definiteness that ground 1 is visited in the first period. If n
< Q schools are found in the first period, then the posterior
distribution of A\, has parameters vi + nand o; + A. If n = Q
schools are found in the first period, then the posterior distri-
bution of \; has parameters v, + Q and a; + ¢, with probability
density h(t,; Q, \1).

The expected revenue in the second week is

Q
ra(A1) = Cn(\y, Q) E Ry(n, N)Pr{n, A} (15)

n=0

where R,(n, \;) is the expected revenue in the second week given
that n fish were caught on ground 1 in week 1. Both R, and R,
depend on the values of v,, v,, a;, and a,, but for clarity this
dependence is suppressed. As in the case of fishing under no
limit, the updated expectation of return on ground 1 is compared
to the expected return from ground 2. Let EY"*(-) denote the
expectation over \ using a gamma density with parameters v and
a. For n < Q schools caught on ground 1 in week 1 the updated
parameters on ground 1 have values v, + n, a; + A. Therefore

Ra(n, Ny) = max{EL; "+ (ri(N); ES? (ri(Z2)} (16)
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For n = Q we must take the expectation over f for 0 < s < A,
as in the first period. This yields

A
R0, \y) = f h(t; Q) Ny) max{EL 24149 . (x,).
EV2? ri(N\,)} dt (17)

In this way we obtain r,(\,) and r,(\,). Both of these quantities
are conditional on v, and «, having particular values. Therefore,
to obtain V,, the expected value of return from fishing on ground
1 during the first period, we must take a final expectation over
A;. Thus

Vi = EQW0 (ri(h) + ra()y) (18)

The value V, is defined analogously. If V; > V;, then ground i
is visited in the first period. The extension of this kind of analysis
from the myopic Bayes strategy to the full dynamic programming
problem is straightforward, although the computations become
burdensome very quickly.

In Appendix 1, we discuss certain other aspects of the for-
mulation and interpretation of the dynamic programming prob-
lems. In particular, observe that while the value function in
Equation (18) involves the true value of \, the dynamic pro-
gramming Equation (6) does not. In Appendix 1, we discuss this
difference in more detail.

Behavior of Many Fishermen with Seasonal Quotas

Mangel and Clark (1983) showed that the advantage to fishermen
of cooperating and sharing information may be considerable for
the case of profit maximizing behavior. In this section, we con-
sider the analogous question for the case of seasonal quotas.

Imagine N fishermen, each with a seasonal quota of Q schools.
Rather than fishing alone, these N fishermen may cooperate by
pooling their quotas together to form an aggregate quota NQ.
They will then fish until the aggregate quota is filled.
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There may be two reasons for cooperation. First, the time to
achieve the total quota NQ may be less than the time needed to
fill a single quota. Second, cooperation may reduce uncertainty
about the time to fill the quota. Assume that A(N) is the rate at
which N individuals find schools of fish and let T be the time
that it takes N individuals to achieve the quota Q per individual.

First, let us ignore depletion of the stock. In Appendix 2, we
show that the mean E{Tno} and variance Var{T o} of Tno are
given by

_ NQ
E{Tno} = A(N) (19)
N
Var{TNQ} = '}T]\g‘)—z

Equation (19) is derived by using the assumption that encounters
with schools of fish are a Poisson process with parameter A(N).
If the fishermen search independently, then A(N) = N\, where
A is the search rate for an individual fisherman. In this case,
Equation (19) becomes

E{Tno} = % )
Var({Tug) = 7

Equation (20) shows that on the average, there is no advantage
to cooperation, since the mean time for N fishermen to achieve
the quota NQ is the same as the mean time for an individual to
achieve the seasonal quota of Q schools. The advantage of co-
operation, on the other hand, comes from a reduction in the
uncertainty about the time to fill the quota. This reduction of
uncertainty was also noted by Clark and Mangel (1983) in a dif-
ferent context.

When many fishermen are present, it seems reasonable to as-
sume that depletion of the stock should be considered when one
is modeling the discovery and search rates. Following Mangel
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Table 1
Value of Information Sharing in an Uncertain Fishery
Regulated by Quota

0 ) N E{T} Var{T}
20 .04 1 38.3 88.8
2 39.3 47.1
3 39.6 32.0
4 39.7 24.3
5 39.8 19.5
20 .01 1 22.23 24.72
2 22.25 12.43
3 22.27 8.30
4 22.28 6.23
h) 22.29 4.99
10 .06 1 14.5 22.5
2 14.9 11.9
3 15.0 8.0
4 15.1 6.1
5 15.1 4.9

and Clark (1983), this can be done by assuming that each en-
counter reduces A(N) by a fixed amount 8. Thus after k£ schools
have been caught, the encounter rate is A(N) — k3. In Appendix
2, we show that for this case

NQ—1 1
E{Tno} = E —_——
0 ;;Ol N(N) — kd 21)
Var{TNQ} = 2 I

i—o (MN) — kd)?

Table 1 shows results of calculations using Equation (21) with
M(N) = NA\,;. Once again, the reduction in uncertainty over the
time to achieve the quota is apparent.

Mangel and Clark (1983) also considered the multiperiod prob-
lem for a number of profit maximizing fishermen. The analysis,
which must include depletion, becomes exceedingly complex.
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Consequently, the case of many periods for fishermen with quo-
tas is not considered here.

Numerical Comparison of Seasonal and
Weekly Quotas for Fishermen

There are essentially three cases of potential interest. They are
(1) the fisherman who maximizes profit, (2) the fisherman with
a seasonal quota, and (3) the fisherman with a periodic—say,
weekly—quota. To compare these we consider the simplest case
of a fisherman who each week must choose between one of two
fishing grounds for a season of M weeks. In light of the theo-
retical development of the previous section, we will actually con-
sider separate two-week intervals in order to assess the value
and impact of information on the fisherman’s behavior.

In the Monte Carlo simulation, a single fisherman fishes for a
single season during each simulation run. The season consists
of 30 weeks, and in both cases (seasonal quota SQ or weekly
quota WQ) there is a maximum allowed catch of 10 schools, so
that fishing ends when 10 schools are caught. In the WQ case
there also is a weekly quota of two schools.

The input data for the simulation are the parameters Q, p, c,
Vi, 01, V2, and a, of Equation (4). At the start of each simulated
season, true values A\f, i = 1, 2, are selected at random from
a gamma distribution with parameters v; and «;. These values
A define the true values of each ground i during the entire sea-
son. On each ground the times between encounters with a school
of fish are exponentially distributed, with parameter AJ.

Consider first the case of a seasonal quota. At the start of the
season the fisherman solves Equation (6) to determine the
ground to fish initially. He fishes on ground i for the entire week.
Suppose the catch is m schools of fish during that week. At the
end of the period the parameters v; and «; are updated to v; +
m and «a; + 1, leaving the values of v; and o; unchanged. This
new set of parameters is then used in Equation (6) to determine
which ground to fish on in the next week. This process updating
after each week continues until 10 schools are caught or 30 weeks
elapse.
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In the case of weekly quotas a similar procedure is used. Equa-
tion (18) replaces Equation (6). In each week the fisherman stays
on the ground until he or she catches Q schools or the week
ends. The updated parameters are either v; + Q and o; + r (if
the quota is caught) or v; + m and «; + 1 (if m < Q schools are
caught).

Before describing the results of the simulation, let us discuss
the properties of the solutions of Equations (6) and (18). For
purposes of comparison, all the parameter values except o, are
fixed. The fixed values are v, = 2, a; = 1, v, =4, 0 =2,p
= 1, and ¢ = 0.5. Figure 1 shows the expected return (E;) for
the two-week period as a function of the expected catch rate on
ground 2, R, = v,/a,. The lines marked 1 or 2 refer to visiting
ground 1 or 2 in the first week. The ground visited in the second
week is determined in the solution of the dynamic programming
equation.

The value of information as a function of R, can be computed
in the following way. The E; values shown in Figure 1 are the
expected return if ground i is visited in the first week; the in-
formation obtained is then used to determine which ground is
visited in the second week by Bayesian updating. For a fixed
value of R,, the fisherman chooses the ground for which E; is
larger.

If the fisherman does not update at all, then he or she will visit
in both weeks the ground that has the higher prior expected
return. The prior expected return on ground i is v;/a; (the mean
of the gamma distribution). Thus the value of information (VOI)
is computed by

VOI = max (E;) — max 2[vi/a; — cA] (22)

Figure 1 can thus be used to calculate the value of information
in either case of seasonal quotas or weekly quotas.

Consider, for example, the SQ case in which R, = 1. In such
a case, ground 1 is a priori better, and the prior expected return
for the two-week period, assuming that ground 1 is visited in
both periods, isJ = 2 X 2 — 2(0.5) = 3. From the curve marked
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FIGURE 1. Comparison of the expected returns for the two-week fishing pe-
riod as a function of the catch rate on the second ground and the choice of
ground visited in the first period. The catch rate on the first ground is two
schools per week. The value of each school is p = 1 and the operating cost
is ¢ = 0.5 per unit time.
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E,, it is seen that the optimal value of the return, using the dy-
namic programming solution, is also about 3. Consequently, the
value of information is small. To understand this, observe that
the coefficient of variation of the catch rate on ground 2
is 1/\/v, = 0.5. Thus when R,, the mean catch rate on ground 2, is
1, the chance that the actual catch rate exceeds 2 is relatively
small (in fact, it is about .04). In this case, there is only a small
chance that information obtained from probing ground 1 will
improve the catch over the deterministic solution. Next, con-
sider the case for SQ in which R, = 2. There the value of in-
formation is larger. The value of E;, when R, = 2 is about 3.4,
so that VOI = 0.4. Observe also that the curves E, and E, do
not cross at R, = 2, but at R, > 2 (about R, = 2.3, in fact). To
understand this, recall that ground 1 is more uncertain than
ground 2, so that the grounds are not identical even if R, = 2
(i.e., there is a larger chance of a high catch rate on ground 1).

Similar calculations of the value of information can be per-
formed for the WQ case, using Figure 1. For each ground, the
expected return in the SQ case is higher than the expected return
in the WQ case. As the value of Q increases, the lower two curves
rise and join the upper ones. The quota appears to have two
effects on the expected return. First, the expected catch in the
WQ case is lower than the SQ case; it is clearly bounded by Q.
Thus when the catch rate R, is high, the expected catch does
not rise accordingly. Second, the quota causes a reduction in
the difference between the expected catch from the two grounds.
Since both the size of the curves E,, E, and the difference E,
— E, are a measure of information, it appears that the weekly
quota affects the quality of information. When interpreting these
results, one should remember that the myopic Bayes procedure
underestimates the value of information. In particular, if the
value of information is underestimated more in the case of
weekly quotas than in the case of seasonal quotas, then the re-
sults presented here can be viewed as an upper bound for the
difference between the two.

It is important to remember that Figure 1 pertains to the value
of information at the start of the first period of fishing. The value
of information at the end of the first period may be quite dif-
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ferent. For example, if the entire seasonal quota is caught in the
first period, then any information from that period is valueless.
For a multiweek season, one would expect that higher catches
in the early part of the season (under a seasonal quota) will mean
that information obtained later in the season has less value.

In addition to the standard value of information, it is helpful
to consider two other measures in studying how the quota affects
the processing of information. The first of these is the function
¢;, defined by

period using updated parameters

— expected return on ground i on the first (23)
period using prior parameters, 0

¢ = m [expected return on ground i in the second

This function ¢; has the property that it is nonzero only when
the posterior expected catch on ground i (i.e., after one week of
fishing) is larger than the prior expected catch on ground i. That
is, ¢; will be positive only if ground i looks better after one week
of fishing than it did before fishing. Figure 2 shows ¢, and ¢-
for both cases. The solid line indicates ¢; when the ground is the
superior of the two grounds (as determined from the solution of
the dynamic programming equation). The dashed line indicates
¢; when the ground is the inferior of the two grounds. Observe
that in the WQ case the value of ¢; is positive only when the
ground is suboptimal. This is somewhat surprising, since it
shows that the posterior expected catch seems to be reduced by
the presence of the quota (cf. Mangel and Clark, 1983). Clark
(1985) also observed this phenomenon.

In order to further understand what is happening here, let us
consider the posterior expectations explicitly. For the WQ case,
if the quota were met in time ¢, then the posterior expectation
is

v+ Q (24)

E =
we a + ¢

For the SQ case, if the seasonal quota is not met in the first
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FIGURE 2. The function ¢;, characterizing the expected posterior and prior
catch rates on each ground, as a function of R,.
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week, then the expected catch in the second week, if n schools
are caught in the first week, is

. v+ n
ESQ = min I:Qs - n,a n 1:| (25)
Here Q; is the seasonal quota.
When considering these equations, observe the following. For
the WQ case, if the fish stock is very large (i.e., if the catch rate
is very high) the quota will be met quickly. From Equation (24),

lim e = 212 (26)

t—0 a

Even if the fisherman found the quota ‘‘instantaneously,’’ the
posterior expectation is bounded by (v + Q)/a. On the other
hand, (v + n)/(a + 1) is unbounded as n — . Consequently,
there is no bound (other than the seasonal quota) to the posterior
expectation. In general, the posterior expected catch, given that
n schools were found in time ¢, is

E = (27)
a

Our results show that n and ¢ in Equation (27) have different and
nonexchangeable roles; there is an asymmetry in the dependence
upon n and ¢. One question that cannot be answered is whether
this difference is a quirk of the model or a general phenomenon.
Clark (1985), using a somewhat different model, observed a sim-
ilar phenomenon.

To highlight the different roles played by n and ¢ in Equation
(27), consider the SQ case in which n schools are caught in the
first week. Then Equation (27) is the same as (25). We now ask,
how quickly would the fisherman have to catch the weekly quota
to have the same posterior expected catch? Although the eco-
nomic return on the second week is not solely determined by
the expected catch, the information obtained from the first
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week’s fishing is succinctly summarized in terms of this expec-
tation. Let t,(n) be the time in which the quota must be met to
have the same posterior expectation as when n schools were
caught in one week. In Appendix 3, we show that 7,(n) is given
by

toln) = (‘; : g) @+ 1) - a (28)

Observe that if n is large enough, t,(n) is negative; this simply
shows that it is impossible for the fisherman to meet the weekly
quota quickly enough to match Equation (25). The second ad-
ditional measure that we introduce is an elasticity in the posterior
expectation. That is, suppose first that to(n) > 0. If n is changed
by an amount An, then ¢,(n) is decreased. In Appendix 3, we
show that the change in 7,(n) that keeps the posterior expec-
tations the same is

Atg(n) = — %—}%ﬁ a + 1An (29)

The changes An and Aty(n) cause corresponding changes in the
posterior returns Ewp and Eso. We shall denote these changes
by AEw, and AEso. We now define elasticities eso and ey by

€ s AESQ
o =
¢ Eso (30)
_AEw
€wo — EWQ

In Appendix 3, we derive explicit formulas for these elasticities.
Table 2 shows these elasticities for a range of parameter val-
ues. Observe that ey is always less than egp; the quota limits
the proportional change in the expected return. This limit can
be considerable. ‘
Having discussed the Bellman equations, we now turn to the
simulation results. Each simulation run proceeds as follows. The
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Table 2
Elasticities in Posterior Expected Catch*

a n tQ(n) €EwQ €so

1 3 .6 .023 .038

4 33 .019 025

5 .14 011 013

4 1 2 1 .025 .050
3 1 024 .042

4 5 022 .033

hJ .33 .019 025

6 2 .014 .017

4 2 2 1 011 .033
3 57 .009 022

4 25 .005 011

* Parameters: Q = 2.

season lasts for 30 weeks, with a seasonal quota of 10 schools.
At the start of each two-week period, in the SQ case the fish-
erman solves the dynamic programming Equation (6). The so-
lution indicates which of the two grounds should be fished in the
current week. An alternate formulation of Equation (6), which
is less myopic, proceeds as follows. If there are 1 weeks left in
the season, the first period in Equation (6) has a length of one
week, and the second period has a length of 72 — 1 weeks. Such
a formulation emphasizes the value of information more than
one in which each period has the same length. Once the seasonal
quota is met (or the season ends, if that happens first), the sim-
ulation run ends.

In the WQ case, each simulation run is essentially the same.
The differences are (1) that Equation (18) replaces Equation (6),
and (2) if the weekly quota is met in any week, then fishing stops.

In all runs, the average catch rate on ground 1 was set equal
to two schools per week with a coefficient of variation of
1/N/2 (71%). The catch rate of the second ground was more cer-
tain, with a coefficient of variation of 50%; three different values
for the average catch rate (four, two, and one schools per week)
on the second ground were used. Price per school p and variable
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Table 3
Results of the Simulation

Case (v2, a2) 1_) Ccv, f2 fs
SQ 4, 1 8.15 .13 91 0
wQ 4,1 7.95 .16 .80 0
SQ 4,2 7.67 13 .58 0
wQ 4, 2) 7.29 .16 .65 0
SQ 4, 4 4.60 1.06 .33 .068
wQ 4, 4) 4.33 1.05 .60 .06

operating cost ¢ were held constant at p = 1 and ¢ = 0.5, re-
spectively.

The following values are computed: the average profit P, coef-
ficient of variation of profit CV,, the fraction of time spent on
ground 2 f,, and the fraction of simulations where the seasonal
quota was not met f,. The results are shown in Table 3.

Note that f,, the fraction of time spent on ground 2, follows
the results of the dynamic programming calculations (Figures 1
and 2). The decrease in f, as R, changes is much more dramatic
in the SO case than in the WQ case, which reflects the fact that
the difference between E, and E; is greater (i.e., the value of ¢;
is greater) in the SQ case.

The results of the simulation indicate that if only variable costs
are considered, the difference between seasonal and weekly quo-
tas is not large. If there is a weekly fixed cost, then the difference
between the seasonal and weekly quota will rise accordingly,
since the fishing season with a seasonal quota will end sooner.
For example, if a weekly fixed cost of 0.5 units is included for
the case of R, = 2, the expected profit is 2.37 in the SQ case
and 1.35 in the WQ case. Part of the reason for the closeness
may be the following. Suppose that the average weekly catch is
the quota Q. The seasonal quota allows the fisherman to ‘“catch
up’’ in later weeks if his catch falls below Q.

Policy Implications

Clark (1980) considered four kinds of regulations in a determin-
istic model of the fishery. They are:
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1. Total catch quotas.

2. Vessel licenses.

3. Taxes on catch/effort.

4. Allocated catch/effort quotas.

Clark found that total catch quotas were not effective instru-
ments for economic control and that vessel licenses could not
serve the purpose of economic optimization. For the determin-
istic case, he found that taxes and allocated quotas were theo-
retically equivalent and that both could serve the role of opti-
mizing exploitation of a common-property fishery. The models
he used were deterministic and without uncertain parameters.

Clark (1980) shows that catch taxes and allocated transferable
vessel quotas are mathematically equivalent in their effect on
effort use. He explains this equivalence by noting that quotas
acquire a scarcity value and that a market for quotas develops.
A fisherman not selling the quota faces an opportunity cost,
which in the deterministic setting is the analytical equivalent of
a tax on his catch. Although Clark’s work pertains to seasonal
quotas, it is worthwhile to consider the case of periodic quotas,
transferrable among fishermen within weeks but not across
weeks. In such a case, the results presented in this paper show
that the quota may limit its own value. Namely, the transferable
quota becomes valuable when the stock size or catch rate is high.
If the only information about stock size is provided by fishing,
then the quota limits the catch and thus the posterior estimation
of catch rate, as in Equation (24). Consequently, the stock size
and catch rate may be underestimated with the weekly quota,
and the quota may then lead to less weekly effort than the case
in which there is only a seasonal quota. If there is a market for
quotas, then weekly quotas may tend to be undervalued. In this
case, the weekly quota will ultimately cause a lower net return
in the fishery than a seasonal quota.

The ultimate optimality of seasonal rather than weekly quotas
when uncertainty is present cannot be fully assessed by using
the approach of this paper, since the effects of depletion were
not taken into account in the dynamic programming equations.

Some preliminary observations about the relationship between
quotas and taxes follow. For the situation analyzed in this paper,
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with uncertainty in the fishery only, the effect of a tax on the
catch is simply to reduce p in the dynamic programming equation
(16). A reduction in the price per school affects each ground
equally and does not affect the information updating at all. In
particular, the tax directly affects the overall economic return,
but has no effect on the fisherman’s posterior estimate of catch
rate or stock size, once he or she decides to go fishing.

The quota affects the overall economic return only by bound-
ing it, but if the quota for the individual fisherman is small enough
a main effect of the weekly quota is in the posterior estimate of
catch rate, once the fisherman decides to go fishing. In this sense,
quotas and taxes should not be interchangeable. That is, even
if taxes and quotas lead to the same level of effort over a season,
the posterior estimates of stock may differ, in the same way that
Equations (24) and (25) differ in the limits 1 — 0 and n — <
respectively. Consequently, it is not clear that taxes and quotas
will have the same effects on effort. Even if a tax were adopted
to produce the same effort pattern as a weekly quota, the in-
formation processing aspects need not be the same. That is, iden-
tical levels of effort may lead to different information updating
whenever the weekly quota is reached, since in one case fishing
stops and in the other case it does not.
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Appendix 1. The True Value of N\ Is Not Needed
in the Dynamic Programming Equation
for Profit Maximization

Although the true value of the parameter \;, reflecting the quality
of ground i, enters into the calculation of the second period profit
in the case of weekly quotas in Equations (16) and (17), it does
not enter into the corresponding Equation (6) for the profit max-
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imization case. This may seem paradoxical. In this appendix we
resolve this apparent paradox by rederiving the results repre-
sented by Equation (6). Since the value of ¢ does not affect the
decision rule, let ¢ = 0. Equation (6) can be restated as follows.
Let V,, V, be the values of visiting grounds 1 and 2 respectively
on the first week. The ground on which V; is largest is visited
first. Explicitly,

< +n v
V, = E(vln,al) {}\ + Pri{n, \ max(v1 s —2>}
1 A 1 2 Prin, M} a; + A, 31

n=0

= + n
V, = Ew2e) + P \ ﬂ, V2
, = EY {)\2 ngo r{n, z}max(a1 P

The true value of the parameter \; can be included in the value
function in the following way.
Let n,* and n,* satisfy

v, + n,* v v, + ny* v
o R 2 2t " _ (32)
(X1+A (0 5) a2+A (6 3]

so that if ground 1 is visited first and fewer than n,* schools are
found, ground 2 appears better in the second week. The values
V: associated with visiting the ith ground are then

V= E‘ﬁ'x?‘""“’“”{hl + S Prin e+ S Pr{n,xl}x,}
n=0

n=n1"+1

n2"* o
Vz = Egvl])\,;xl),(vz,az) {)\2 + 2 Pr{n, )\2})\1 + E Pr{n, )\2})\2}

n=0 n=n2"+1

(33)

Therefore, in this derivation, expectations are taken over both
A1 and \,, as in the case of a weekly quota. Equation (33) is
similar in form to Equation (18). On the surface, it appears that
Equations (33) and (31) represent different functions.
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To see that V; = V,, begin by writing V, as

n”
V1 = E&"l"“') {)\1 + 2 Pr{n, )\1}2
n=0 a2

= vy + n
+ > Pr{n,)\l}a] +A} (34)

n=n1"+1

A comparisgn of Equation (34) and the first Equation (33) shows
that V] = V] if

Egey { > Prin, mm}

n=n1"+1

= E&”,'*“”{ > Pri{n, A} Vi ¥ ”} (35)

n=ni"+1 a; + A
This equality must hold termwise, which means that

vy + n
a]+A

EX0 {Pri{n, NN} = EQV {Pr{n, Mi}} (36)

To demonstrate the validity of Equation (36), note that (v, +
n)/(ey + A) is the posterior expectation of \;, given that n
schools were found. If f(\,) is the prior density on A, then this
posterior expectation is

Mf(Ny) Pri{n, N1} dX,

E{\, | n found} = (37

| £ e, ny v,

Writing the right hand side of Equation (37) in terms of expec-
tations gives

Ey, (Pr{n, Ai}Ny) = E\, (Pr{n, \\DE(\, | n found) (38)

Equation (36) is a special case of (38), therefore V; = V,. This



Regulatory Mechanisms and Information Processing 415

confirms the statement that the values of A; may be eliminated
from the equations for the return in the profit maximization case.

Appendix 2. Results for More Than One Fisherman

In this appendix, we show how to derive the results in the section
on seasonal quotas for many fishermen for the times for N fish-
ermen to achieve a quota of Q schools. The time T is a random
variable given by

o
TNQ = E T,' (39)
i=1

Here T; is the random variable that is the time it takes to find
the ith school. The generating function for Ty is

NQ-1

¢w) = [I Efe“™} (40)
k=0

If the T, are identically distributed exponentially with parameter
M(N), where N is the number of fishermen, Equation (40) be-
comes

B MN) M@
o= ()

The moments of T are found by differentiating ¢(w) and setting
o = 0. This gives

_NO
BTy = A(N) | (42)
Var{T} = 2

A(N)?
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If the fishermen act independently, then A(N) = N\, where \,
is the mean search rate for a single fisherman. Thus

_9
BTy = A (43)
Var{T} = NQ)\

Equations (43) show that on the average, it takes an individual
fisherman in a group of N just as long to fill the quota as it would
take alone, but that the variance of this time decreases with
I/N. By acting cooperatively, the fishermen thus reduce their
risk.

Depletion can be included by assuming that the time to the
kth detection is exponentially distributed with parameter A(N)
— (k — 1)d (Mangel and Clark, 1983; Clark and Mangel, 1984).
Here & measures the decrease in the search rate caused by the
removal of a school. The generating function becomes

N1 \(N) — kb

#(w) = ,E, ANN) — kb — o “44)
so that
NQO-1
log ¢(w) = > log (N — kd)
k=0

NO—1
- 2 log (A(N) — k& — w) (45)
k=0

The first moment of T is
NO—1 1

E{T} = — 46
n= 2 o (46)

and the variance is

NQ—-1 1 ’
Var{T} = > INN) — FoF (47)

k=0
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Setting A(N) = N\, gives

{ } NQZ—] 1
E{T} = -
< Nn, - ko )
NO -1 1
Var{T} = >

= (N\, — k)2

Appendix 3. Posterior Expectations with Weekly and
Seasonal Quotas

In this appendix, we begin by finding #,(n), the time in which
the quota must be caught to match the posterior expectation
obtained by catching of schools in the first week. Namely, #,(n)
satisfies

v+ Q v+n
a + ton) o+ 1 “)
Solving Equation (49) for t,(n) gives
(v +Q _
to(n) = (—v n n) (a+1) —«a (50)
Differentiating Equation (50) gives
. v+9
dto(n) = —(v e (a + 1) dn (51)

which is the differential form of Equation (29).

Consider a situation in which n changes by an amount dn,
given exogenously, and ¢,(n) then changes by an amount dzo(n).
Assume that (v + 1)/(a + 1) < Q, — n. The changes in the
posterior expectations are then

EWQ[t + dtQ(f’l)] = EWQ(I) + dEWQ

ESQ(n + dn) = ESQ(n) + dESQ (52)
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Here Ewo(t) = (v + Q)(a + t) and Esp(n) = (v + n)/(a + 1).
A Taylor expansion of these functions gives

dEWQ _ —dtQ(n)
Ewo [a + to(n)]? (53)
dESQ vdn

ESQ v+ n

Equations (53) are the differential forms of the elasticities defined
by Equation (30).
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