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Abstract.

In the broadest sense, foraging adaptations can include problems of finding food, avoid-

ing predation while looking for food, and reproducing. In this paper, a theory that treats these three
behaviors in a consistent, unified manner, with one common currency, is presented. The theory is
called unified foraging theory, although it actually pertains to a wider class of behavioral problems.
The theory is based on models using Markovian decision processes and leads to quantitatively testable

predictions about behavioral strategies.
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INTRODUCTION

In recent years the theoretical basis of behavioral
ecology has developed in many directions, including
for example: optimal foraging theory (Schoener 1971,
Charnov 1976, Krebs and Davies 1978, 1984, Cowie
and Krebs 1979, Stephens and Charnov 1982, Krebs
et al. 1983, Clark and Mangel 1985); life history the-
ories (Cody 1966, Stearns 1976, Grafen 1984); theories
of territorial behavior (Krebs and Davies 1978, 1984,
Schoener 1983, Stamps and Buechner 1985); theories
of anti-predator and competitive behavior (Krebs and
Davies 1978, 1984, Caraco 1981, Clark and Mangel
1985); and theories of reproductive strategies (Cody
1966, Schaffer 1974, Krebs and Davies 1978, 1984,
Dingle 1984, Grafen 1984) (additional references can
be found in Krebs and Davies 1978, 1984).

The approach of studying one aspect of animal be-
havior at a time has the usual advantages of reduc-
tionist science, which is particularly useful in con-
trolled laboratory situations. That is, the experimenter
is able to isolate the one particular behavioral aspect
that is of interest and apply the appropriate theory. On
the other hand, this reductionist approach is of more
limited value in the analysis of field data, since under
natural conditions animals are continually subject to
multiple decisions concerning which of several activ-
ities to adopt at any time, as well as how best to un-
dertake the chosen activity.

The need for more general, unified behavioral theory
has been recognized by a number of authors in widely
varying contexts (Pianka 1976). For example, Lima et
al. (1985) studied the trade-off between foraging effi-
ciency and risk of predation in grey squirrels. They also
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cite a number of cases in which there is need for a
theory that allows one to assess such trade-offs in an
easily measurable currency. They state: “As we men-
tioned earlier, deriving such predictions concerning
trade-offs of this sort is likely to be an elusive goal in
the study of animal behavior . ... Although the the-
oretical problem may be formidable, the empirical evi-
dence presented here and elsewhere suggests that such
a task may well be worth the effort.” (Lima et al. 1985:
163). Rodman and Cant (1984), in a discussion of for-
aging adaptations of nonhuman primates, describe three
comprehensive adaptations of animals: avoiding pre-
dation, acquiring food, and reproducing. A unified the-
ory of foraging or animal behavior should allow one
to treat these three adaptations in a consistent theo-
retical manner. Roitberg et al. (1982), in a study of the
foraging behavior of a tephritid fruit fly, stress that
data generated from simple laboratory experiments (i.e.,
under reductionist conditions) may be misleading for
interpretations of behavior in nature. Finally, Zach and
Smith (1981) in a review entitled “Optimal Foraging
in Wild Birds?” question the usefulness of the optimal
foraging reductionist paradigm in understanding ad-
aptations in the wild. They argue that most field sit-
uations are too complex to allow meaningful predic-
tions of optimal foraging performance, that optimal
solutions are very difficult to define (and thus to test),
and that there is a need for the ability to apply opti-
mality thinking to problems in the complex situations
that arise in the wild.

Reductionist models of animal behavior have com-
monly employed some simple proxy for fitness (Grafen
1984). In optimal foraging theory, for example, fitness
has often been equated to the average long-term rate
of food or energy intake (the energy maximization hy-
pothesis), or to the reciprocal of the average time re-
quired to obtain a specified amount of food (the time
minimization hypothesis). The restrictive nature of
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these assumptions was demonstrated by recent studies
in which fitness was defined instead in terms of the
probability of survival (Caraco 1981, Houston and
McNamara 1985). A further shift in outlook would
occur if reproductive success were taken into consid-
eration. Similar problems related to the choice of fit-
ness currency are encountered in studying other types
of behavior. Thus, in addition to the need for a class
of models that allows for the simultaneous consider-
ation of alternative behavioral choices, there is a need
to incorporate a unified concept of fitness.

It is clear that an animal’s choice of behavioral ac-
tivity at any time will normally depend on the current
state of the animal, on the current state of its environ-
ment, and possibly also on past and expected future
states (Cheverton et al. 1985). Any unified behavior
theory should incorporate such state variables and their
dynamics, preferably in a stochastic framework. (In
fact, the inclusion of state variables is highly desirable
for isolated behavior theories as well, since the state
variable paradigm provides insights into problems that
might not be gained in other ways. Clark [1986] dis-
cusses the case of group formation, and Mangel [1986]
discusses the case of oviposition decisions in which the
state variable approach provides key new insights.)

In this paper we develop such a class of unified be-
havioral models, which we call unified Foraging The-
ory (UFT). We choose this term rather than Unified
Theory of Animal Behavior or Mathematical Ethology
because foraging behavior must always be taken into
consideration by an animal, unless it is sleeping or
hibernating. UFT is based on three main concepts:

1) a state variable (or set of variables) X that char-
acterizes the current physiological state of the forager
(McFarland and Houston 1981) and that changes in a
stochastic fashion, depending upon the state of the en-
vironment, the state of the forager, and its decisions;

2) a concept of fitness that is directly related to the
long-term contribution to the gene pool;

3) a methodology for determining the behavioral
strategy (as a function of the state variable) that opti-
mizes fitness over a long time interval, using stochastic
dynamic programming (SDP) and Markov decision
processes (Aoki 1967, Ross 1983, Heyman and Sobel
1984, Mangel 1985).

A state variable paradigm has been used by other
authors (e.g., Cane 1959, Katz 1974, McCleery 1977,
Metz 1977, Craig et al. 1979, Putters et al. 1984, Root
and Kareiva 1984) but not as extensively as we do in
this paper. More recently, the techniques of Markovian
modeling were applied by Houston and McNamara
(1985), Iwasa et al. (1984), and Sibly and McCleery
(1985) to cases of isolated foraging theory. It is our
view, however, that the full potential and generality of
Markovian modeling of animal behavior has not yet
been realized.

Our main purpose is to introduce (by way of ex-
amples) the paradigm of UFT and show how simple
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it is to use. For this reason, we present situations that
are, to some extent, caricatures of the real biological
world. It will be clear, however, that various modifi-
cations can easily be made to render our models “more
realistic.” We have recently applied UFT to the study
of group size in social carnivores (Clark 1986) and to
the study of host selection and clutch size in parasitic
insects (Mangel 1986). In both cases, UFT is much
more successful than classical foraging theory at ex-
plaining the observed data; UFT also leads to addi-
tional predictions that are experimentally testable.

The UFT models that we discuss all have a common
framework, namely that of discrete-time Markov de-
cision processes. Such models are easy to formulate,
and the resulting optimization problem is easily ex-
pressed as a dynamic programming problem, which
itself is readily programmable for numerical iteration.
(All of our numerical results were obtained quickly on
IBM PC/AT desktop microcomputers.) These UFT
models have the additional advantage that their pa-
rameters have obvious biological meaning. The param-
eters can be estimated from field or laboratory data,
but in this paper we rely on artificial data for our nu-
merical illustrations. (See Clark 1986 and Mangel 1986
for UFT models based on actual data.) We do not
assume that the reader is familiar with MDP models
or stochastic dynamic programming; the paper is com-
pletely self-contained.

The simplicity of our approach is obtained with some
sacrifice of generality. We ignore, in this paper, learning
and population genetics. UFT can, however, be ex-
tended to cover these as well. Events are constrained
to occur on a suitably specified discrete-time scale.
Continuous-time dynamic programming models can
also be used in behavioral studies (see Iwasa et al. 1984,
for example), but even with many simplifications they
usually involve somewhat complicated solution tech-
niques. We believe that, with appropriate discretiza-
tion, UFT models will prove to be adequate for most
applications.

It is well known that dynamic programming prob-
lems become computationally infeasible as their di-
mension increases. However, this is an inevitable fea-
ture of dynamic optimization problems, not just a
limitation of dynamic programming. Simple UFT
models are already much more “realistic’’ than clas-
sical foraging models, and we have reason to be con-
fident that numerically feasible UFT models will pro-
vide new insights into behavioral phenomena. Faster
algorithms for dynamic programming are continually
being developed (Larsen and Casti 1978), and the ad-
vent of parallel processors should further expand the
range of applicability of UFT models.

THE STATE CONCEPT IN FORAGING THEORY

The key to the unification of foraging theory is the
introduction of a state variable, X(¢), which character-
izes the condition of the forager at time z. (See Table
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1 for definitions of key variables and parameters.) In
general, we will interpret X(¢) as a level of stored energy,
but the specific interpretation of X(¢) depends (to some
extent) upon the particular problem. The state variable
should be measurable and should be connected to the
fitness of the individual. Some other examples of state
variables are gut content or body mass (Katz 1974,
Craig et al. 1979, Mittelbach 1981, DeAngelis et al.
1984, Anderson and Fedak 1985), territory size (Myers
etal. 1979, Kacelnik et al. 1981, Stamps 1984, Harvey
and Corbet 1985), number of eggs that a parasitic insect
hasleft to lay (Roitberg and Prokopy 1983, 1984, Char-
nov and Skinner 1984, Skinner 1985), body length
(McClaren 1963, Lawlor 1976, Stamps and Tanaka
1981), or deficits such as food, water, or oxygen deficits
(McFarland 1977, Krebs and McCleery 1984).

The state variable is assumed to have the following
properties (1) X(¢) decreases due to metabolism and
increases due to the (usually random) results of for-
aging. (2) X(¢) can never exceed some fixed value C
which is the forager’s energy capacity. (3) Death by
starvation corresponds to X(¢) falling below a critical
value, x., which we can usually normalize to be 0.
Death may also result from other causes, particularly
predation on the forager.

The forager’s behavior at time ¢ is assumed to depend
upon the current value of the state variable X(¢) and
on environmental conditions. For example, whenever
X(7) 1s at or near capacity C, it is reasonable to believe
that fitness will be maximized by nonforaging behav-
ior: defending a territory, hiding from predators, etc.
Isolated behavioral models do not allow for such ““feed-
back™ strategies, which follow automatically from UFT.
In addition to allowing for the consideration of alter-
native strategies, UFT also produces feedback decision
rules. In particular the well-known principle of risk-
averse vs. risk-prone foraging (Oster and Wilson 1978,
Caraco 1981, Real et al. 1982) arises also in UFT
models, but in a more realistic setting that allows for
finite capacity, and without the restrictive assumption
of normality.

For computational simplicity, we will henceforth as-
sume that decision periods are discrete time units, e.g.,
days. In order to introduce the simplest case of UFT,
assume that the change in the energy reserves of the
forager from time ¢ to time ¢ + 1 can be expressed by
the equation

X( + 1) = X(t) — energy loss + energy increase
due to food discoveries and consump-
tion, )]

subject to the constraint that
X, <Xt+1)=C )

In the event that the forager is killed by a predator, or
that X(zr + 1) falls to or below x,, the process is ter-
minated (by death).

We intentionally leave the choice of the units of ¢
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TaBLE 1. Definitions of parameters and variables used in
tables and figures.

Symbol Meaning
X current value of the state variable X
p(x, s) maximum probability of surviving to time s

starting with a state variable at value x

* optimal patch choice among patches i

clutch size

maximum probability that a nestling sur-
vives to time 7 given that the value of the
parental state variable at time ¢ is x, and
that the value of the nestling state variable
is X,

optimal fraction of forage for parent to allo-
cate to nestlings when current value of the
parental and nestling state variables are x,
and x,, respectively

forager’s energy cost of activity, per unit time

probability that the forager suffers death by
predation, per unit time

energy value of foraged food items

forager’s probability of finding food, per unit
time

food (energy) capacity of the forager

number of intruders in the forager’s territory

fraction of intruders expelled from the terri-
tory by the forager

intrusion rate into a territory, per unit time

equilibrium number of intruders in a for-
ager’s territory

m
p(xy, X, T, 1)

d*(x), Xx2)

>~ ™R

ST =N

unspecified, since they may change with each problem.
For example, if one is considering the patterns of meals
in small birds, the interval might be 5 min (S. Lima,
personal communication), whereas for large carnivores
the interval might be 1 d (Clark 1986).

Suppose that at any time 7 the forager has a choice
of strategies 5, i = 1, 2, ..., S. The particular strategy
chosen may affect energy loss, the probability of dis-
covering food, and the probability of being killed by a
predator. If strategy s, is used in period ¢, Eq. 1 becomes

Xt +1)=X(0) —a + Z, (3)

(subject to the constraints of inequality 2), where «, is
energy loss and Z; is the energy value of food discov-
ered. Both o, and Z, may be random variables. The
probability of predation corresponding to s, is denoted
by B8,. Examples of situations in which the «, and Z,
have been computed or measured are found in the
papers by Alkon and Saltz (1985) on porcupines,
DeAngelis et al. (1984) on bass, Grahame (1973) on
the intertidal prosobranch Littorina littorea (L.),
McClaren (1963) on marine zooplankton, Pyke (1981)
on honeyeaters and hummingbirds, Pyke (1980) on
bumble bees, Pough and Andrews (1985) on a lizard,
Roitberg and Prokopy (1984) on fruit flies, Sibly and
McCleery (1985) on herring gulls, and Stamps and Ta-
naka (1981) on lizards. The point of giving this list is
to convince the reader that the state variable paradigm
is a biologically reasonable and feasible one.

Both the results of foraging and the possibility of
predation are assumed to be chance variables, so that
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TaABLE 2. Parameters for five hypothetical food patches i
among which a foraging animal can choose (see Examples:
Patch Selection). Parameter definitions are given in Table 1.

i a; B Y, A

1 1 0 0 0

2 1 0.05 2 0.20
3 1 0.15 2 0.35
4 1 0.25 2 0.35
5 1 0.40 2 0.50

even if X(¢) is known with certainty, X(z + 1) will not
be. The probability distribution of X(¢z + 1) will depend
upon the actions of the forager at time ¢. To show how
these probability distributions are computed and used,
we begin by ignoring reproduction and consider a non-
breeding period consisting of 7" days. We then identify
evolutionary fitness over this period with the forager’s
probability of survival (Caraco 1981, McNamara and
Houston 1982). While the conceptual basis of this as-
sumption is clear, it should be noted that at least two
important factors are omitted: (1) possible effects of
strategy on kin, and (2) the need to build up an energy
reserve for subsequent breeding activities (both of these
can be included in a consistent manner, however; see
Examples: Further Developments). The probability of
survival is an example of a fitness function f{x) that
relates the value of the state variable to a level of fitness
(more general functions are discussed in Conclusions
and Discussion).

Define p(x, T) as the maximum probability of sur-
viving for 7 time units, given that X(0) = x. The prob-
lem of determining the foraging strategy s = s(x, T)
that achieves this maximum probability is known as
a Markov decision process (MDP) (Aoki 1967, Ross
1983, Heyman and Sobel 1984, Mangel 1985). The
solution is easily obtained numerically by iteration of
the corresponding dynamic programming equation. The
process of deriving and solving the dynamic program-
ming equation will be illustrated by a number of ex-
amples, pertaining to: foraging behavior (patch selec-
tion), reproductive behavior, allocation of parental effort
to offspring, and territorial defense.

EXAMPLES
Patch selection

Consider a forager that must forage in one of S dis-
tinct patches on each day. The i* patch is characterized
by the parameter values

= energy cost (per period),

probability of death by predation (per period),
energy value of food items,

= probability of discovering one item (per pe-
riod).

>N R
[

For simplicity all food items in the /" patch are as-
sumed to have the same energy content, but this could
easily be relaxed to make Y, a random variable as well
(that is, Y, is the size of the j* food item in patch i/,
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and now A, is the probability of finding it). These pa-
rameters often might be estimable from field obser-
vations, although (8, might be difficult to estimate in
practice. With this formulation, the patch selection
problem is quite general but it should be clear that it
applies to many kinds of foraging situations (cf. Cowie
and Krebs 1979, Magurran and Pitcher 1983, Hoffman
and Turelli 1985). With the general patch selection
formulation, one can use UFT to study the trade-off,
in a common currency (cf. McNamara and Houston
1986a), between the risk of predation and the risk of
starvation. The problem of finding a theoretical frame-
work in which to consider this trade-off has been im-
portant for experimental scientists (e.g., Stein and Mag-
nuson 1976, Milinski and Heller 1978, Heinrich 1979,
Fraser and Cerri 1982, Sih 1982, Magurran and Pitcher
1983, Lima 1985, Lima et al. 1985, Caldwell 1986).
Also see McNamara and Houston (19865) for a the-
oretical discussion of this trade-off.

The dynamic programming algorithm for this ex-
ample proceeds as follow. First we have

1 for x> x.

p(x, 0) = 0 forx = x,

4)
i.e., with no periods left, the forager is alive if and only
if its energy reserves exceed x.. Next, if 7 + 1 periods
remain and strategy (patch) i is selected in the first
period, then we have, for x > x,

Pr(survive T + 1 periods| X(0) = x)
= Pr(survive first period)
X Pr(survive remaining 7 periods)
= = B)Ap(x/, T)
+ (1 = Mp(x — o, T)], (5)

where

X/ =min(x — a, + Y,, ) (6)

unless x,/ < x,, in which case x,’ = x.. Since by defi-
nition p(x, T + 1) is the maximum probability of sur-
vival, we have, for x > x,,

p(x, T + 1) = max(l — 8)

Ap(x/, T)
+ 0 =Mpx —a, )] (7)
and of course p(x, T + 1) = 0 for x < x,.

Eq. 7, the basic dynamic programming equation, and
Condition 4 provide an iterative algorithm for deter-
mining p(x, T), as well as the optimal strategy s(x, 7T),
for all x, T. As a technical point, note that if «,, Y,
and C are restricted to integer values, then we can also
restrict x to integer values O, 1, . . ., C. In this case we
obtain a finite-state MDP, which further simplifies the
computations. As a second technical point, note that
if the time interval is sufficiently small, one can avoid
problems of finding food “late” versus ‘“early,” since
a small time interval corresponds to a basically in-
stantaneous process.
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FiG. 1. Probability of survival for a hypothetical foraging

animal, as a function of food intake. It is assumed that the
only alternative to hiding is to forage in a food patch where
a (=energy cost per unit time) = 1, 8 (=probability of death
by predation, per unit time) = 0.05, and (A) A (=probability
of discovering one food item) = 0.2 or (B) A = 0.3. The capacity
of the forager is C = 10. Variables and parameters are defined
in Table 1.

As an example we consider the following parameter
values: C = 10, x. = 0, and patch parameters given in
Table 2. Patch 1 corresponds to “hiding” (8, = X, = 0
in Table 2), while patches 2-5 involve increasingly
hazardous foraging in increasingly productive patches.
Note that patch 4 is comparable to patch 3 in terms
of probability of finding food, but riskier in terms of
probability of predation. For this reason, one expects
that patch 3 will always be chosen over patch 4. The
resulting maximum survival probabilities p(x, T) and
optimal strategies i* are given in Table 3, for 7 = 10
and 20. Not surprisingly, a low-risk strategy is optimal
when the forager’s metabolic state is at a high level,
while increasingly risky strategies become optimal as
the state decreases. In other words, the more ““desper-
ate” the forager’s food requirements, the more risky
the foraging behavior that should be adopted (Caraco
1981, Stephens and Charnov 1982, Clark and Mangel
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1985). Note, too, that for fixed x, as the time horizon
increases, the forager may adopt a more hazardous
strategy (e.g., compare the optimal strategies for x = 6
in Table 3), but this appears to be a relatively minor
effect.

The probability of survival p(x, T) is also a function
of the parameters C, «,, 8;, A,, and Y,. For example,
the dependence of p(x, T) on expected food intake per
period, A\Y, may be important for the analysis of for-
aging experiments (J. R. Krebs, personal communi-
cation). Fig. 1 shows this dependence for the case of
two patches: s, (hiding), with A, = Y, = 3, =0, and s,
(foraging), with A, = 0.2 or 0.3, Y, variable, 8, = 0.05
(and o, = 1 for i = 1 or 2). Similar calculations are
easily performed on the basis of Eq. 7 for other param-
eter combinations.

Note that the /* shown in Table 3 prescribes the
optimal strategy in the first period only. Subsequent
decisions depend upon the results of the first period,
which involve chance outcomes. Note also that once
the forager has accumulated enough reserves to “make
it to the end,” the optimal strategy is simply to hide.
This strategy comes out of the UFT calculation; an
explicit calculation is found (for a simpler version of
the problem) in Mangel and Clark (1986).

Continuous reproduction

Consider next a forager whose strategic choices in
any period are to hide, forage, or reproduce (for ex-
ample, by laying eggs). Insects such as monarch but-
terflies or milkweed bugs provide an example (Dingle
1984). Note that in this case benefits accrue to the
forager over the entire interval between 0 and T, rather
than just at the end as in the patch-selection survival
model. Recently, Charnov and Skinner (1984, 1985),
Iwasa et al. (1984), Parker and Courtney (1984), and
Skinner (1985) have examined theoretical questions
associated with viewing oviposition site selection and
clutch size as a foraging problem. Mangel (1986) pro-
vides a detailed application of UFT to this problem.
Here, we show how the basic ideas of UFT are applied.

Assume that the forager will die naturally at the end

TABLE 3. Probability of survival for 7 time units (P[x, TJ),
given optimal strategy /* (=the choice of patch i; patch
parameter values are given in Table 2).

Energy
reserve,
X > p(x, 10) > p(x, 20)
1 5 .023 5 .002
2 3 .045 3 .004
3 3 .109 3 .009
4 3 137 3 .013
5 3 257 3 .025
6 2 .286 3 .030
7 2 479 3 .053
8 2 .506 2 .060
9 2 .746 2 .100
10 2 157 2 .107
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of a single season lasting 7 periods. (The case of a
random lifetime also can be treated by UFT by assum-
ing a distribution for 7" and then averaging over that
distribution in each period.) Assume that all eggs have
the same probability of hatching, and do so simulta-
neously. A reasonable formulation of fitness would then
be the total expected number of offspring (eggs) pro-
duced over the forager’s lifetime:

J(x, T) = maximum expected progeny (eggs) over
periods O, ...., 7, given X(0) =x. (8)

(This simple formulation overlooks such questions as
density dependence, dispersal, population growth, etc.;
see, for example, Levin et al. 1984.)

The dynamics of the energy state X(¢) are given by
Condition 2 and Eq. 3; we will now use subscripts 4,
f, and r to designate the mutually exclusive strategies
of hiding, foraging, and reproducing in any given pe-
riod ¢, respectively. If the reproductive strategy is used,
then we assume that a fixed number (R) of progeny
(eggs) are produced, provided that (a) the energy state
X(f) > xg, a critical reproductive level (xz = x.), and
(b) the forager is not killed by a predator in period ¢.
Other formulations of the model are possible, and an
example using actual data is treated in Mangel (1986).

It follows immediately that

_ R = B) ifx > xg

T 1) 0 ifx < xp°

)
The dynamic programming equation that J(x, T) sat-
isfies is easily seen to be (for x > x,)
Jx,t + 1)
= maximum{J(x — a,, 1),
(I = BIINJ(x/, 1)
+ (1 = MJ(x — ap 1)),

(I = BIRH(X) + J(x — «,, D]}, (10)
where
X/ =min(x — o, + Y, C) (11)
as long as x;/ > x,, and
_ )1 ifx > xg
H =10 ifx = xy (12)

The three expressions on the right side of Eq. 10 rep-
resent the expected number of progeny for the respec-
tive strategies 4, f, and r, given X(t + 1) = x.

With no density dependence in egg survival, it is
clear that the hiding strategy will never be used, since
it leads to neither egg production nor an increase in
food. For the choice between foraging and reproducing,
it is clear that reproduction is favored when X(¢) is
large and foraging when X(¢) is small. The role of UFT
here is to provide predictions about the values of x
and ¢ at which the strategy switches, as a function of
the envirionmental parameters «, and Y;. Mangel (1986)
provides a numerical example.
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Feeding of offspring

A parent animal faces the choice of foraging for its
own needs, or for the purpose of feeding its young.
Starlings, for example, must make decisions on the
allocation of food to nestlings during the nesting period
(Kacelnik 1984). UFT provides a natural theoretical
basis for understanding observations of parental be-
havior, and also allows one to investigate the deter-
minants of clutch size (e.g., Cody 1966, Klomp 1970,
Schaffer 1974, Spight and Emlen 1976). Explicitly, con-
sider a parent bird with » identical nestlings (the model
can be modified to allow for dominance effects among
nestlings). The parent’s strategy choices are to hide or
to forage, and, if it forages, to feed some fraction ¢ (0
< ¢ =< 1) of its food discoveries to its offspring. (Another
parental strategy that we will not discuss here is the
choice of abandoning a nestling.) The energy states of
the parent and a typical nestling, X () and X, (?), re-
spectively, satisfy:

X+ 1D)=X,0) —a,+ (1 —¢7Y,

X,(t+ 1) =X, — a,t) + %Y,. (13)
Critical levels of the state variables are denoted by x,,.
and x,., both of which we normalize to be zero, and
capacities are C, and C,(f). Note that we explicitly
allow the metabolic rate and capacity of the nestling
to change over time in order to model the growth of
nestlings. The metabolic rate of the nestling could also
depend upon m, since the nestlings warm each other
when the parent is absent. Such a case can easily be
treated by UFT.

Assume that the parental objective is to maximize
the probability of survival of the » (identically treated)
offspring over a fixed time horizon 7. That is, we con-
sider parental survival only in the sense that it affects
offspring survival. At the end of this section, we con-
sider a combination of parent and offspring survival
as the objective functional.

Let p(x,, x,, T, t) denote the maximum survival
probability for an offpsring from time ¢ up to time 7,
given that X,(f) = x, and X,(¢) = x,. (Since identical
offspring are considered, one only has to deal with a
single function p[x,, x,, 7T, t].) We then have

p(x,,0, T,t)=0 forall x,, T, ¢ (14)
px, x,, T, T)=1 ifx,>0 (15)
T
1 ifx, > D) a,())
PO, x;, T, 1) = -
0 ifx, < X a)). (16)

J=t

Eq. 14 follows from the specification x,.= 0; Eq. 15
says that the nestlings have survived if x, > 0 at the
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end of the nesting period; Eq. 16 asserts that the nest-
lings will survive following the death of their parent if
and only if their current state x, is large enough that
their state remains positive to the end of the nesting
period.

The dynamic programming algorithm is now (for x,,
x, > 0)
p(x, x5, T, 1)

=max|plx, — «a,, X, — a0, T, t + 1],

max(1 — 8,1 — 6,)
Apx,), x)', T, t + 1)

+ (I = Mplx,

T,t+ 11}

+ 8,(1 = B.)p0, x — a,(0), T, ¢ + 1]) a7

where (3, is the probability that the parent dies while

foraging, 8, is the probability that the nestlings are lost
to a predator while the parent is foraging, and

— 0y, X — (D),

'

x,'=min[x, — o, + (1 — ¢)Y, C)]

- an(t) + i Y/'! Cn(t)],
m

'

x," = min[x,

(18)
subject also to x," = x,. and x,' = Xx,,.

The first expression in Eq. 17 is the nestling’s survival
probability when the parent does not forage, and the
second expression is the survival probability if the par-
ent forages and dispenses a fraction ¢ of its food dis-
covery (if any) to the nestlings.

The qualitative predictions of this model are clear:
the parent should forage and feed its nestlings if they
are hungry (x, near zero) and it is not (x, near C,), and
the parent should forage and feed itself if it is hungry
and its nestlings are not. When parent and nestlings
are both hungry the parent faces a trade-off between
feeding itself and feeding its offspring. From Egs. 17
and 18 we see that this trade-off is characterized by
the condition

d ! !
d_¢p(XI ’ x2 ’ T7 t) = 0:
which can be written in the form

19)

(provided this yields an interior solution 0 < ¢ < 1).
The intuitive content of Eq. 19 is obvious; it is an
operational decision rule provided the marginal ben-
efits dp/dx; are known as functions of x,, x,, and ¢.
This model is considerably more complicated than
the previous examples, in that it involves two state
variables, two time variables, and an additional con-
tinuous decision variable ¢. Also, since the decision
variable is continuous, the state variables x, and x, no
longer take only integer values. Thus, computing the
value function p(x,, x,, T, ¢) is a little harder in that

UNIFIED FORAGING THEORY

1133

either some discrete approximation must be used, or
interpolations must be employed; our choice was nu-
merical interpolations.

As an example, consider the following parameter
values: C, = 10,a,=2,0,=3,Y=12,8,=.05,8, =
.025, A = .85 and C,(?), a,(f) growing according to:
at) = 0.1 + a,(1 — e ), C () =0.1 + C,(1 —
e~%31). Table 4 shows p(5, 1, 10, 0), p(5, 2, 10, 0), and
the expected number of surviving offspring as a func-
tion of clutch size. In terms of the expected number of
surviving offspring, the optimal clutch size is m = 5.

The optimal allocation ¢*(x,, x,) is shown in Table
5 for x, = 5, x, = 2. These results are in accordance
with life history theory (cf. Stearns 1976), which in-
dicates that parental allocation should increase as the
future value of the offspring increases (that is, p[x, x,,
T, t] increases as T — ¢ decreases for fixed x,, x,).

Other objective functionals can be treated as well.
For example, consider (cf. Schaffer 1974, Grafen 1984)

F(x,, x,, T, t) = Pr{parent survives to 7| X,(¢) = x,,

X,5(2) = x,}
+ m Pr{nestling survives to T'| X,(f)
= x5, X5(0) = x,}.

This objective, and the resulting optimal decisions, can
be treated in a manner similar to the handling of Eq.
17.

One can envision numerous extensions of the basic
model presented here. One of the most interesting would
be an analysis of the experiments of Townshend and
Wootton (1985) on the adjustment of parental invest-
ment to changing environmental conditions.

Territorial defense

As the last example, consider a territorial animal
that, during any time period, can either forage on its
territory or attempt to expel intruders (Gass et al. 1976,
Gass 1979, Myers et al. 1979, Schoener 1983, Stamps
and Buechner 1985, Ydenberg and Houston 1986). The
relationship between territory size and fitness is a thorny
one (see, e.g., Fretwell and Lucas 1969, Brooke 1981,
Kacelnik et al. 1981, or Stamps and Tollestrup 1984),
so that here we will again use Conditon 2 and Eq. 3 to
model the energetic state of the forager. We introduce
an additional state variable W(¢), the number of in-
truders on the territory at time ¢. The dynamics of W(¢)
are given by

Wit + 1) = S@t) + b[W — S©), (20)

where S(z) denotes the number of intruders left after
any have been expelled in period ¢:

S =0 — kW), 21

with k = the fraction of intruders expelled. If intruders
are never expelled then I/V(t) approaches an equilib-
rium value denoted by W in Eq. 20; we assume that
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TaBLE 4. Results of clutch size computations. Variables and
parameters are defined in Table 1.

Expected Expected
number number
of of
Clutch offspring offspring
size, m  p(5, 1, 10,0) surviving  p(5, 2, 10, 0) surviving
1 .63 0.63 .68 0.68
3 .55 1.65 .60 1.80
5 .34 1.70 42 2.10
7 .05 0.35 .10 0.70
9 .001 0.009 .006 0.054

0 < b < 1, so that this equilibrium is stable. Note that
bW can be considered as the basic intrusion rate. (One
could also treat the size of the territory as a state vari-
able. This presents no difficulty for UFT.)

The intruders reduce the amount of food available
to the territory owner. In particular, we assume that
the rate of finding forage by the owner of the territory
is decreased by the presence of intruders:

Ao
AW ()] =

W) +1° (22)

where A(w) is the probablity that forage is found with
w intruders in the territory, and A, is the value if the
forager is alone. An alternative is that intruders reduce
food quality (consider nectarivores), so that the amount
of forage found with w intruders present is Y(w) = Y,/
(w + 1), where Y, is the size of forage found when
there are no intruders in the territory. Let «, be the
energy cost of expelling intruders and «,the energy cost
of foraging.

Let p(x, w, T) denote the maximum probability of
survival to time 7, given that X(0) = x and W(0) = w.
We have

_J1 ifx>0
and, by the (we hope) now familiar argument,
px,w, T + 1)
= max(p{x - a, (1 — kw +
BIW — (1 = kyw], T},
e, w e+ O — w), T
w+ 1 \
0 _ N
+( W+ l)p[x A,

w+ (W — w), T]). (24)

The first expression on the right side of Eq. 24 is the
survival probability using the expulsion strategy, while
the second expression corresponds to foraging.
Whether it is preferable to forage or to expel intrud-
ers at any given time ¢ depends upon the current state
variables X(¢) = x and W(t) = w (and also on the time
remaining). Foraging is optimal whenever the forager
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is sufficiently hungry and intruders are few, while ex-
pelling intruders is optimal in the reverse circum-
stances. In (x, w)-space there should thus be a curve
separating the region (near the origin) where foraging
is optimal from the region where expelling is optimal.
This curve (which also depends on the time horizon
T) is easily computed from Eqgs. 23 and 24; an example
is shown in Fig. 2. The qualitative implications of Fig.
2 are that more effort should be devoted to expelling
intruders when the forager’s energy reserves x are high,
especially when intruders are easily expelled (k near
1.0). The model also predicts that expulsion effort will
increase relative to foraging effort if the intruder rate
b increases, whereas foraging effort will increase with
increases in foraging efficiency (A or Y,). An extension
of the model here allows k to be a control variable in
which, perhaps, different levels of k are associated with
different energy costs. Such an extension is completely
straightforward.

Further developments

It is clear that these examples can be elaborated in
many ways, and that other aspects of animal behavior
can also be modeled. The model parameters can be
allowed to depend upon the energy state variable—e.g.,
A (the average rate of food discovery) might decrease
at low values of X(¢). Also, the parameters can be made
time-dependent, to reflect seasonal changes in food or
predator abundance; the reproduction and nonbreed-
ing models can be combined sequentially; depletion of
forage can be modeled by including a state variable
representing forage abundance; and so on. Information
and updating of parameters can be included as well.
Such complications would introduce no new concep-
tual difficulties, but it should be reiterated that com-
putation time is likely to increase rapidly as the com-
plexity of the model is increased.

CONCLUSIONS AND DISCUSSION

The introduction of a state variable representing the
energy reserves of a foraging animal leads to a fully
dynamic theory of foraging behavior, and also permits
a comprehensive unification of foraging theory, allow-
ing for the simultaneous consideration of anti-preda-
tory, territorial, reproductive, and other strategies.
Many realistic features, such as constraints on energy
capacity, death by deprivation or predation, time-vary-

TaBLE 5. Optimal parental allocation for x, = 5, x, = 2, and
m = 5. Variables and parameters are defined in Table 1.

Number of periods until

independence 7" — ¢ Allocation, ¢*(5, 2)

1.0

0.85
0.85
0.80
0.55

O W W —
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ing environmental parameters, and so on, can easily
be included in such models. Behavioral strategy can
be assumed to depend on the current state of the for-
ager, and to track or forecast changes in parameters.
Such realistically adaptive behavior can be analyzed
by UFT, but not by the methods of classical foraging
theory.

Our aim in this paper has been to describe the state
variable, or Markovian, approach to behavioral theory
in the simplest possible form. Although the state vari-
able approach has been used previously (e.g., Mc-
Farland 1981, McNamara and Houston 1982, Iwasa
et al. 1984), its full potential does not seem to have
been appreciated. The methodology of Unified For-
aging Theory (by which we mean MDP models) is
extremely simple to learn and to apply to specific sit-
uations. Parameters have clear biological interpreta-
tion, and are subject to estimation from field or lab-
oratory data.

In order to concentrate on the simplicity and gen-
erality of the UFT approach, we have not attempted
a full qualitative analysis of any of our example
models—a dry exercise for models based on artificial
data! However, we present two empirical applications
of UFT elsewhere (Clark 1986, Mangel 1986). In both
of these papers we treat case studies in which classical
foraging theory completely failed to give predictions
that were consistent with the reported observations. In
both cases, consistent predictions were obtained from
UFT models. Moreover, merely thinking about the
biological situation in terms of state variables quickly
revealed why the classical approach failed. UFT is not
merely a mathematically elegant generalization of clas-
sical foraging theory, but represents a completely dif-
ferent way of thinking about animal behavior.

The main disadvantage of UFT as delineated in this
paper is that all predictions must apparently be ob-
tained from computer iteration of the dynamic pro-
gramming equation. For simple models these numer-
ical computations present no difficulty, but more
complex models can rapidly become computationally
unwieldy. However, there is by now a large theoretical
literature on MDP problems, which may prove useful
for calculating long-term equilibrium strategies and
convergence properties (see Ross 1983, Heyman and
Sobel 1984). Parallel processor technology should fur-
ther expand the scope of UFT.

We have concentrated on the probability of survival
as our objective functional. UFT allows one to work
with much more general objectives with virtually no
change in conceptual or computational setting. To do
this, one first must know the fitness function f{x) de-
fined by

flx) = fitness of the level x for

the state variable. (25)

Once fix) is given (perhaps the most difficult part of
the extension), one defines
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FiG. 2. Feedback control for territorial behavior, for three

values of the repulsion factor k. For a given energy reserve,
X, the territory owner should expel intruders if W (the number
of intruders on the territory) lies above the line shown in the
figure. (Other parameter values: C = 10, a = 1,A=0.5, Y =
2, W=10,b=0.2, T = 15.) Variables and parameters are
defined in Table 1.

F(x, t, T) = max E{f[X(T)], given that X(¢) = x}, (26)

where the maximum is taken over the possible behav-
ioral decisions of the forager and E{-} denotes an ex-
pectation over the distribution of X(7). The function
F(x, t, T) solves exactly the same kind of iteration
equation as the probability of survival p(x, T) consid-
ered in our examples. The only difference is the end
condition, which, from Eq. 26, is

F(x, T, T) = fix).

Lest we give the reader the (unrealistic) impression
that all ethological problems treated by UFT involve
the simple iterations shown in our previous examples,
we close by describing some examples in which the
dynamic programming equations are harder to solve.

The first example involves patch depletion. The dif-
ficulty is that the state variable must now include com-
ponents representing the state of the patches. The ma-
jor difficulty is not conceptual but computational, since
much more information must be carried along in each
iteration. Another example in which the major diffi-
culty is computational is the problem of characterizing
learning, in which various parameters are unknown to
the forager and the forager’s actions affect the kind of
information obtained. In such a case, entire probability
distributions are updated as the foraging process pro-
ceeds in time (see, e.g., Mangel and Beder 1985).

We next present two examples in which the difficulty
in solving the dynamic programming equation is more
conceptual than computational (that is, it involves
which kind of algorithm to choose to solve the prob-
lem).

First, reconsider the patch selection problem and
define T(x) by

(27
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T(x) = max EJlifetime of the forager

given that X(0) = x]. (28)

Using the same notation as in the patch selection prob-
lem, one sees that 7(x) must satisfy

Tx)=1+ max(l — )

T = MNTx = a) + AT (29)
where x,' = min(x — a, + Y,, O). Also
T(x)=0 for x =< x. 30)

Eq. 29 constitutes an unconventional system of C non-
linear equations for the unknown values 7(1), . .
T(C) (assuming «,, Y,, C are all integers).

As a second example, consider a forager that must
achieve a certain value of X in order to reproduce. This
might pertain, for example, to a spider that needs to
make an egg sac. Define u(x) by

.

u(x) = max Pr[X(s) crosses x before it crosses x,,
given that X(0) = x]. (31)

Then, using the same notation as in the patch selection
problem, one shows that u(x) satisfies

u(x) = max(l — 8)

= MNulx — a) + Nu(x)],  (32)
with boundary conditions

u(x) =0 X =X

u(x) =1 X = Xpg. (33)

Egs. 29 and 32 cannot be iterated over time as the
equations in Examples were; new kinds of solution
techniques are needed for these equations.
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