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A general theory for the estimation of stock size from search data is developed. In the theory, it is assumed
that discrete aggregations (schools of fish, beds of clams) are encountered. The search model is an
extension of the Poisson process to include depletion. The theory provides a way of estimating stock size
and confidence intervals around the estimate, as well as the ability to predict future catches for a given
level of effort. Three applications of theory are described: (1) estimating stock size when there is no catch;
(2) determining, in real time, the length of fishing seasons; and (3) an empirical study of stock assessment
of Pacific ocean perch (Sebastes alutus) near Rennell Sound, British Columbia.

Nous avons mis au point une théorie générale sur I'estimation des stocks d’aprés des données de re-
cherche. Cette théorie suppose qu’on rencontre des groupes séparés (bancs de poissons, colonies de
clams). Nous avons élargi le procédé de Poisson pour tenir compte de I'amenuisement. La théorie permet
d’estimer 'importance des stocks, I'intervalle de confiance de I'estimation et la possibilité de prévoir les
prises en fonction d’un effort de péche donné. Nous décrivons trois applications : (1) estimation des
stocks lorsqu’il ny a pas de prises ; (2) détermination, en temps réel, de lalongueur de lasaison de péche ;
et (3) étude empirique de I'évaluation des stocks de sébastes (Sebastes alutus) prés de la baie Rennell en

Colombie-Britannique.
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1. Introduction

One of the thorniest problems in the management of fisheries
is the problem of determining stock abundance. For this reason,
biomass surveys are often run by the managing organizations. In
some fisheries, the cost of the survey is about the same as the
economic value of the fishery (C. Clark, Mathematics Depart-
ment, University of British Columbia, Vancouver, B.C., pers.
comm.).

In those cases without a stock survey, some other procedure -

for estimating stock size is needed. Perhaps the most common is
the model assuming a linear relationship between catch and
population:

H = gEP

where H is harvest, E is fishing effort, P is population size, and
g is a proportionality coefficient (the catchability coefficient).
With this model H/E, catch per unit effort (CPUE) is propor-
tional to population. To use this model, one needs some measure
of fishing effort, a quantity that is notoriously hard to measure in
any real fishery (e.g. see Rothschild 1972; Wilen 1979). Even if
effort could be measured accurately, the CPUE model does not
always produce measures of population size that reflect the
population (e.g. see Clark and Mangel 1979).

One case in which CPUE is expected to break down is when
the fishermen spend considerable amounts of time searching for
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dense schools or aggregates of fish (this is actually the case
considered by Clark and Mangel 1979 for tuna). In this case, the
search effort is as important to the estimate of population size as
is the time spent harvesting, so that one should consider the
relationship between search effort and stock size (Mangel
1982). There is a growing body of literature on the role of search
in fisheries (e.g. see Allen and Punsly 1984; Butterworth 1982;
Cooke 1984; Neyman 1949; Paloheimo 1971; Rothschild 1977).
Allen and Punsly (1984), in particular, advocated the concept of
using catch per hour searching as a way of estimating abun-
dance. They used a very simple search model, followed by
regression techniques.

In this paper, we introduce a new theory for the estimation of
stock size using search data. The model and development of the
theory are presented in section 2. Sections 3, 4, and 5 are
management oriented. Section 3 considers the problem of
estimating the stock size when there is no catch. In section 4, we
show how search theory can be used to provide real time
determination of the length of fishing seasons. Section 5
contains the results of an empirical study on Pacific ocean perch
(Sebastes alutus) off Rennell Sound, British Columbia, for the
estimation of stock size and prediction of harvest as a function of
effort. Throughout the paper, we are concerned with search and
stock depletion in a single fishing season, so we ignore
recruitment. The theory that we develop, however, can be
extended to include recruitment. Section 6 contains comments
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on implementation of this work, as well as a discussion of some
of the extensions currently under investigation.

The innovative aspects of the work presented in this paper
include the following:

(1) A general theory that relates stock abundance to search
rates and includes depletion of the stock due to harvesting (cf.
Allen and Punsly 1984 where depletion is ignored). This theory
involves two parameters: stock size, ¥, and a measure of search
effectiveness, €.

(2) An operational definition of € that is independent of any
data set that one would analyze. The parameter € is related to
operational variables such as vessel speed, detection width, and
size of the region being searched.

(3) A combination of Bayesian and maximum likelihood
methods for estimating the parameter N. In particular, maxi-
mum likelihood methods are used to provide an estimate of N,
N, and Bayesian confidence intervals are then derived. The
Bayesian methods are particularly useful when there is a lack of
data; e.g. how does one estimate stock abundance in the absence
of catch.

2. Search Model and Theory

Perhaps the simplest search model is the Poisson process. In
this model, one assumes that the search process is random and
that

Prob {find another school in the next

At} = NAt
(2.1)  Prob {do not find another school in the next
A} =1 - NAs

Prob {anything else} = 0

where At is a small time interval and A is a parameter. If the
search is random and only one school is present, X can be esti-
mated using classical search theory (Koopman 1980), which
gives

Wov
2.2) A )
where W is the sweep width of the searcher (for purposes of
fisheries, W can be thought of as the area of the net opening or,
the detection width of the echosounder), v is the speed of the
searcher, and A is the area (or volume) of water where the
school might be.

It is worthwhile to examine in detail the assumptions that
lead to (2.1). The most important of these are (i) cohesive and
identifiable schools, (ii) random search, and (iii) no depletion
of the stock. Certainly, not all types of fish move in cohesive
and identifiable schools but there are a sufficient number of
species that do (tuna, some groundfish, whales) to make a theory
concerned with the search for schools sufficiently interesting.
It is not crucial that the fish spend all of the time in schools, only
that the search is for schools. It is also true that fishermen
probably do not execute random searches. This, however, does
not mean that the ultimate search process cannot be modeled as
random. First, the schools being sought may move randomly or
quasi-randomly. Second, on the small scale of tracklines,
ostensibly nonrandom searches take on considerable fluctua-
tions (Koopman 1980). Third, there are experiments to indicate
the generality of exponential models for times between detec-
tions (equivalent to a random search). These experiments
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(Washburn 1981, p. 2—8) involved a computer joystick game in
which an intelligent pursuer sought an intelligent evader. The
experiments indicate that a random search model provides an
excellent description of the overall detection process. Fourth, if
there is considerable set time after a discovery, the information
gained in locating a school may be dissipated so that the search
for the next school is random. Allen and Punsly (1984)
examined the hypothesis of random search and concluded that it
is acceptable. They also pointed out that data often exhibit
“overdispersion,” i.e. too may intervals between detections that
are too long or too short. Mangel and Clark (1983) showed that
such deviations from pure negative exponential distributions
can arise in the following way. Assume that locally, search is
random with parameter A, but that X has a distribution. For
example, if one examines 1° X 1°cells, then in each cell it could
be assumed that, conditioned on A, the number of schools found
in (0, ) is Poisson with parameter Az. If A has a distribution, say
a gamma distribution, then the unconditional distribution of
catch is negative binomial, which exhibits overdispersion, rela-
tive to the Poisson distribution. The underlying search mechan-
ism, however, is still random. The assumption of random search
will be used in this paper. The third assumption leading to (2.1)
is the lack of depletion. This makes no sense if one is trying to
estimate the effects of harvesting on stock abundance. In par-
ticular, if depletion is not taken into account, there is a tendency
to considerably overestimate abundance.

In this paper, a methodology is introduced under the
following assumptions:

(i) The search process involves the search for discrete and
identifiable schools. (This does not imply, however, that the fish
being sought always school — only during the search process.
An example is given in section 5.)

(ii) The times between detections are independent, exponen-
tial random variables (thus corresponding to random search);
the distribution of these variables changes due to search.

(iii) When a detection occurs, the entire school is fished out.
The parameter characterizing the search rate is then decremented.

Further discussion, and ways to modify these assumptions, is
found in section 6. Although it may appear that these assump-
tions are too restrictive to provide any useful results, this is not
the case as the work (including an empirical study) reported in
sections 3—5 demonstrates. Clearly, one would like a more
general theory, but there must always be a starting point.

To modify (2.1) to include depletion, we keep the assumption
of random search but now assume that many schools (or
aggregations) are present and that detections of different schools
are independent events. With these assumptions, a reasonable
modification of (2.1) is as follows:

Prob {find another school in the next
At|i were found thus far} = (A — i€)Ar

Prob {do not find another school in the next
At|i were found thus for} = 1 — (\ — ie)Ar.

There are two parameters in this model: A and €. Since X is
proportional to the initial rate of detections, it is really unknown.
The situation is better with €, however. Suppose that there were
exactly n schools present initially. Then the independence
assumption leads to

Wo

A=n—2,
"a

After the first detection, there are n — 1 schools present, so A

(2.3)
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would be replaced by (n — 1)Wv/A. Consequently

_ W

€= —-
The first contribution of search theory is to provide this expres-
sion for € in terms of operational variables (cf. Goudie and
Goldie 1981). Note that € is a measure of search ability. An
example of the calculation of the sweep width W is given in
section 5. Observe too that €, as defined by (2.4), can be com-
puted outside of the data being analyzed.

When k searchers are present and search independently, (2.3)
is modified by replacing (A — i€) by k(A — ie). With these
assumptions, one finds that the number of schools discovered
has a binomial distribution with parameters N = A/e and p =
1 — e % Thus

2.4)

Pr {k searchers discover n schools in (0, 1)}
= p(k, n, t, €

— <)\/E>(1 _ e—ket)n(e—ket)()\/e—n), n= 0, 1’ e \e
n

(2.5)

=0 otherwise.

Equation (2.5) is derived by standard probabilistic methods
(e.g. Feller 1968). According to (2.5), the expected number of
schools discovered, E,(n), and variance in the number of
schools discovered, V,(n), in the interval (0, t) are

A
E(n)= < (1= ek
(2.6)

>

Vin) = 2 (1 — ekt

m

Note that \/e can be interpreted as the initial number of schools.
Equations (2.5) and (2.6) refer to the search time only. If each
aggregation requires a harvest time 7, the total time spent
fishing and searching is 7 = ¢ + n7,. Since n is a random
variable, then so is 7, and its distribution function is easily
found from (2.5). In most cases, however, the inverse problem
is of more interest, i.e. given T find the estimates of ¢ and n.
This problem is discussed in section 5.

Equations similar to (2.5) and (2.6) were derived by DeLury
((1947, 1951); Seber (1982, p.296)) in his classic work on
stock estimation. The difference is that in the current model, €
is given in terms of operational parameters (area searched,
vessel speed, and sweep width) and can thus be determined
independently of the data being analyzed. Without the opera-
tional interpretation of e, the estimation problems become much
more difficult. For example, the methods of Leslie and DeLury
(see Seber 1982, p. 296, for a good discussion) involve regres-
sions that seek to determine both the initial size of the popula-
tion and the catchability coefficient, which is analogous to €.
These methods can lead to negative estimates of stock abun-
dance, something that never happens with the methods advocated
in this paper. Thus, there is considerable gain made by using
an operational definition of € that is independent of the actual
fishing process.

In general, \ (or A/e) will be unknown. Two different methods
for estimating A, when € is known, are given below. One method
fixes the number of schools detected in a variable time. The
other method fixes the time interval and allows the number of
schools detected to vary. For simplicity, assume that there is
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only one searcher, so that k = 1. Suppose that this searcher dis-
covers n schools and that 7;, i = 1, ..., n was the observed time
between the (i — 1)st and ith detections. The total search time

Tis
n
gl L.

According to the search model (2.3), the random variable T,
which is the time between the (i — 1)st and ith detections, is
exponentially distributed with parameter A — (i — 1)e. The T;,
i =1, ..., n a"e independent but not identically distributed
random variables. The likelihood, &, of the set {T,, ..., T,} is
then

@n 2= 1= G- nogedemon

The maximum likelihood estimator (MLE) for \ is derived from
(2.7). Taking the derivative of the logarithm of & gives

9 d 1
28 S log¥ = 2 {m - T}

Setting the right hand side of (2.8) equal to zero gives the nth-
order algebraic equation

n 1 n
2.9 —_—= T,=T.
29) igl W\ —=(i—1e) i;l
(Note that setting € = 0 gives A = n/T, the MLE for a Poisson
process.)
The second derivative of log &£ is given by
82 nil 1
10) —log¥ = — _ .
(2.10) Fi5log S = (= Doy

Since the second derivative is negative, the solution of (2.9)
is indeed a MLE.

When € is small, the solution of equation (2.9) can be found
approximately as a power series in €. This approach gives

n n—1 (n* = DT 2 3
2.11) X T+( 3 )e« T €’ + 0(e”).

To employ the second estimate for X, fix f and set N = Ne.
In light of equation (2.5), N is the initial number of schools.
Equation (2.5) is then a likelihood equation for N, given that n
schools were discovered. In what follows, we set k = 1. Results
for k > 1 are obtained by replacing ¢ by k¢. Thus, the likelihood is

N
(2.12) L(N;n)=<n)(l—e‘“)"e““N_”’, N=nn+1,..

=0 otherwise.

“The problem is now that of estimating N in the binomial distri-

bution on the basis of a single observation on n. Somewhat
tongue-in-cheek, this problem is aptly described as “capture —
recapture — without recapture.” (Other problems in which the
binomial parameter N must be estimated are discussed by
Blumenthal and Dahiya (1981) and Olkin et al. (1981).)

First consider the MLE for N. It is most easily found through
the likelihood ratio

<N+1
LIN+1;n) _ n
LN, n) (N)

n
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N+1 } _
e ¢,
N+1—-n

(2.13)
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The ratio in (2.13) is 1 if

2.14 (———N+l ) e =1
2.14) N+i-n)°¢ '

Solving for N gives

"

(2.15) N= 1

—_ e—et

From (2.15) it follows immediately that the MLE for N is

(2.16) 1\‘/=[ " ]
1—e ¢

Here, [x] is the integer part of x. From (2.16), it follows that
the estimate for A is A, = Ne. The two estimates (based on (2.9)
and (2.16)) are identical to within order € (Table 1).

Equation (2.16) is similar to the more common estimate,
which reads

Catch
1 — exp {—¢-effort}

where ¢ is the catchability coefficient and effort is measured in
some aggregate form. The main differences are that in (2.16) €
is a completely operational variable and ¢ is search time only.
In this sense, (2.16) is much less aggregated than the standard
catch equation.

One could, in principle, try to “operationalize” g by defining
it in terms of operational parameters (e.g. Rothschild 1972,
1977). There is still the problem of the aggregation and defini-
tion of effort, however. The use of equation (2.16) avoids this
problem. )

Note that N depends upon both the catch and the elapsed
search time ¢. From (2.16), one sees that N tends to increase
with n, if 7 is fixed. If no aggregates are encountered for a long
time, N will eventually equal n. This indicates that the entire
population was caught.

If a Bayesian view is adopted, the posterior distribution of N
(and thus of \) can be calculated if a prior distribution g(N) and
an observation n are given. If g(NV| n) denotes the posterior, then

Biomass =

@.17) gVln) = =8

2 LN mg(N)

where L(N; n) is given by (2.12).
One choice for the prior distribution is the improper prior

1 N=0,1,2,...

(2.18) g(N)E{o otherwise.

The prior distribution defined in (2.18) is improper because its
sum is infinite. The posterior distribution, however, is a true
probability distribution as the following calculation shows. For
the improper prior (2.18), equation (2.17) becomes

L(N;

> L(N;n)
N=n

(2.19) , N=n,n+1,...

The identity

x

Z (N)xN—n = (] —_ x)—n—l
n\n

N=
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TaBLE 1. Comparison of estimates of A based on fixed
n(X;)and fixed r(X,). Search time = 100 h; k = 1 vessel.

Schools found

n € Ay ng® V3 nga*
10 0.01 0.153 5.31 0.150 5
15 0.01 0.232 8.22 0.230 8
20 0.01 0.313 11.1 0.310 11
25 0.01 0.390 14.0 0.390 14
30 0.01 0.470 17.0 0.470 7
10 0.005 0.124 14.9 0.125 15
15 0.005 0.188 22.6 0.190 23
20 0.005 0.252 30.3 0.250 30
25 0.005 0.315 38.1 0.315 38
30 0.005 0.379 45.7 0.379 46

%ng; is the expected number of schools remaining,
using estimator X ;.

x

allows one to write the denominator in (2.19) as
S N
2200 2 LN;m)= 2 ( )(1 — e~ nemeN=n
N=n N=n \n
=(1- e—E!)'l(l — e-er)—n—l
= (1 - e*et)Al'

Consequently, the posterior g(N|n) becomes

N
2.21) g(NIn) = ( )(1 — emeyntlgmaN=n)
n
N=nn+1,..

A second choice is the noninformative prior (Martz and Waller

1982)
_ _aZL(N’ n))l/z
(2.22) g(N)= <—~—£)N2—
AdL(N; n) -0

oN

A prior is called noninformative if the data only change the
location, but not the shape, of the likelihood curve (Box and
Tiao 1973, p. 32). The prior in (2.22) can not be computed
analytically; but it is easy to find its value numerically. When
calculating g(N) in (2.22), the observation n is eliminated by
setting dL(N; n)/doN = 0 and solving for » in terms of N.

Figures 1 A and 1B show the posterior distribution on N using
(2.18) and (2.22). Since the results are so similar, the uniform
prior will be used. If one sets p = 1 — e **and ¢ = e, then
(2.21) becomes

N
(2.23) g(Nin)=( )p"“q’v‘", N=nn+1,..
‘ n

=0 otherwise.

This form of (2.21) will be very useful in the sequel. Equation
(2.23) can be used to construct Bayesian confidence intervals
for N around N by solving for the smallest J* such that

J*
224 gW|m + 2 [gN = jlm) + gV + jlm) = y

where v is the desired confidence level. Equation (2.24) is easily
evaluated on a desk-top microcomputer once a prior g(N) is
given. Table 2 provides an example of such a confidence inter-
val, for the improper prior (2.18).
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FiG. 1. Comparison of uniform (curve a) and noninformative priors (equation 2.22) (curve b)
distributions on N. Parameter values: € = 0.01, ¢t = 30, (A) n =25, (B) n = 15.

Next consider the variable ¥ = N — n, which is the number
of schools that remain. Since Pr{Y = y} = Pr{N = n + y},
equation (2.23) shows that

2.25) Pr{Y=y}=(":y)p"“qy

y+r—1V
paq
y

where r = n + 1. Consequently, the distribution of the remain-
ing number of schools is negative binomial with parameters r
and p.

The noninformative prior (2.18) can be converted to a proper
prior distribution if we fix a maximum value for N. Let N, be
that value plus one. Then a proper noninformative prior g(N)

(2.26) = (
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.Q227) gmN) = {

is given by
1/(N,+1), N=0,1,...,N,
0 otherwise.

Given that n schools were observed, it is easily found from
(2.17) that

N
(2.28) gn(N|n) = c(n)q"’, N=nn+1,.., N,
where the normalization constant is
\ SHEAW
/C a Nz='n ( n) 7
Other choices of the prior distribution g(N) are possible, and
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equation (2.17) can be tailored to the user’s prior intuition about
N (an example of such intuition is discussed in section 3, see
Fig. 5). Given a prior distribution, equation (2.24) can be used
to construct a Bayes confidence interval for N around N. (f k
indepenlfient searchers operate, then 1 — e~ is replaced by
1— e7*)

Finally, consider predictions of future harvest (in the same
season) given that n schools were found in (0, #). That is, if s
more units of search time elapse, what can be said about the
statistics of the predicted catch? Let H denote this catch. In light
of (2.5), the conditional expectation and variance of the remain-
ing harvest are

E{H|N, n, s} = (N — n)(1 — e*)
Var {H|N, n, s} = (N — n)(1 — e kes)ekes

so that the coefficient of variation of the remaining harvest is

(2.29)

(2.30) CV{H|N, n, s} =

1 e kes 12
N [1 - e"‘“] '
Consider a fishery manager operating under an exogenous
constraint on escapement of the following form: the stock level
at the end of the season should be a fraction f (0 < f < 1) of
the stock level at the start of the season. For the stochastic
problem here, one can only calculate the probability that the
stock level at the end of the season is greater than f times the
initial stock level. Suppose that n schools have been caught
after a search time ¢. Let p(f, n, t, s, N) be the probability that
atleast fN schools remain if there are s more time units of search
in the season, conditioned on n and N. This probability is the
same as the probability that the total harvest is less than (1 — f)N,
subject to the same conditioning. To find p(f, n, ¢, s, N), intro-
duce the random variable n; = number of schools caught in the
next s units of search time. The distribution of n; is binomial
with parameters N — nand 1 — e~*¢. Thus

(2.31) p(f, n,t,s,N)=Pr{n+ n,< (1 - fIN}
=Pr{n,<(1 — f)N— n}

A=N=n (a1
( n)(l — e—keS)m(e—ke.S)N—n—m
= m=0 m
if n<(1-f)N
0 otherwise.

The actual harvest statistics must be averaged over the posterior
distribution g(N|n); i.e.

E{H|n, st = 2. g(N|WE{H|N, n, s}
(2.32) CV{H|n, :}=NZ g(N|n) CV {H|N, n, s}

pifon,t,9)= 2 gN|wp(f, n, 1, 5, N).

An example showing how (2.32) is used is presented in the next
section.

3. Estimating Stock Size in the Absence of Catch

Imagine a region in which some effort, measured by search
time, is expended but no fish are caught. What can be said
about the stock level in the region? This is a case in which the
Bayesian approach is essentially the only one possible. One
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TABLE2. Anexample showingcon-
fidence intervals (n = 20, P = 0.05,

N = 400).

Confidence level
) Range of N
0.85 [339, 459]
0.90 [335, 465]
0.95 [331, 467]
0.99 [327, 471}

cannot rule out the presence of fish; instead the quantity that
must be found is the posterior probability distribution for N, the
number of aggregations in the region, when n = 0 schools were
discovered during ¢ hours of search.

Using the noninformative prior (2.18) (which is probably a
good assumption if the region has never been fished before)
gives the posterior density

(3.1)  gWN|0)=pg¥ N=0

wherep=1— e *andg=1- p.
In this case, the MLE for N is N = 0. Thus, the Bayesian
confidence interval (2.24) is of the form [0, J*], where J* is

the smallest integer such that
J‘(
2. g(N|0) = .

N=0

(3.2)

Since g(V|0) is simply a geometric distribution, the sumin (3.2)
is1 — g’"*1. Thus, (3.2) can be explicitly solved for J*, giving

IOg(l—v)]_ : :[IOg(l—V)]_l

3.3 J* =
G- [ log g — ket

where, as before, [x] is the integer part of x.
If the proper noninformative prior (2.27) is used, the posterior
distribution (2.28) turns out to be

(3.4)  gn(N|0) = {ﬁm} g", N=0,1,..,N,

=0 otherwise.

A Bayesian confidence interval for N is now constructed in the
same way. It is of the form [0, J,,*], where J,,* is given by

log (1 — &1 — q”m“))] _
log ¢ '

3.5 J.*= [

Figures 2A and 2B show results of calculations using p =
1 — e~k = 0.1, 0.01 and N,, = 21, 51. Table 3 shows the
values of the Bayesian confidence intervals for p = 0.1. For
p = 0.01, the 80, 90, and 95% confidence intervals are all of the
form [0, N,,]. That s, so little time was expended that essentially
nothing can be said about the stock size.

The theory presented thus far was based on the uniform prior.
This need not be the case; e.g. Fig. 3 shows a “tent-like” distri-
bution in which one can assert that the region is “good” (i.e.
large stock level) with probability a3, “average” (moderate stock
level) with probability a,, and “bad” (low stock level) with
probability a; = 1 — a; — 3. Thus, this theory can incorporate
any intuition that a manager has about the region of interest.

155



10
A
08
06 |
g(N]0)
b
04 |
02+
a
| 1 L | J

0 20 30 40 50
N

08

06 -

g(N|0)

04

10

FiG. 2. Posterior distribution g(N|0) when (A) N,, = 21 and (B) N,, = 51 and the probability of finding a school, given that it is present, is 0.10
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TaBLE 3. Confidence intervals on stock size in
the absence of catch.

Confidence interval for

N vy=10.8 v¥=10.85 vy =0.90
21 [0, 15] [0, 18] [0, 20]
51 [0, 14] [0, 17] [0, 20]

4. Real Time Determination of the Length of Fishing
Seasons

In this section, it is shown how the theory developed in
section 2 could be used to provide a real time, adaptive
determination of the length of fishing seasons. That is, imagine
a situation in which the length of the season is not set in advance,
but is determined as the season progresses. How should one
determine the length of the rest of the season?

The basic idea is that as the stock is depleted, the time
between discoveries of schools will increase. Consequently, by
using the theory of section 2, one can estimate stock size from
search times. The underlying assumptions are then (1) indepen-
dent and random search by fishing vessels and (2) no recruit-
ment during the season.
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The ideas developed in section 2 are best illustrated by a

simulation. The details of the simulation program are discussed
in the Appendix. In summary, this simulated fishery lasts for up
to 10 periods. The manager has the discretion, at the end of each
period, to determine how much longer the fishery remains open.
There are k = 15 vessels participating in the fishery, and € =
0.01. Each of three years simulated shows a pronounced de-
crease in catch (Fig. 4), presumably related to the depletion of
the stock, but fluctuations are considerable. Table 4 shows the
25-yr averages of the catch and the coefficient of variation of the
catch.
_ It is assumed that the manager can estimate accurately the
catch in each period and the total time required to discover the
fish that were set upon. This time, for instance, could be the total
time at sea minus the total set time. (The catch can be estimated
from landings and the search time from trip reports; see the next
section.) It is also assumed that the manager operates under an
exogenous biological constraint that the stock at the end of the
season should be no less than a fraction f, say f = 0.2-0.4, of
the stock at the beginning of the season. The difficult part of the
decision, of course, is that the stock at the start of the season can
only be estimated as data obtained throughout the season.

With this information, the following quantities are computed
using the theory of section 2: (1) the maximum likelihood
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estimation for the number of schools at the start of the season, N,
and (2) the posterior distribution for N, given the data.

For each choice of N, the expectation and variance in the
catch if the season remains open for T more periods are
calculated. Here, T runs between 1 and the maximum number of
periods possibly remaining in the season. For a given T, the
probability that the stock remains above fN if the season lasts T
more periods is calculated. The calculations are then averaged
over N and the results presented in tabular form. The theory for
this procedure is given in equations (2.29)-(2.32).

To illustrate the results, consider the following data for the
first three periods of a new season:

Catch Search time

Period (relative units) (relative units)
1 21 1
2 11 1
3 15 1

When the theory is applied after the first period of fishing, the
maximum likelihood value for the initial number of schools is N
= 150. Results for the rest of the season using the uniform prior
(Table 5) indicate that at least one more period of fishing can be
allowed without any danger to the stock. In the second period,
11 schools are caught. Thus, for the first two periods, the total
catch is 32 schools. This gives N = 123. The corresponding
results for the rest of the season (Table 6) again indicate little
chance of damage to the stock of the season if the fishery is open
one more period. In the third period, 15 schools are caught; this
gives 47 schools for the first three periods and N = 129. The
corresponding results are shown in Table 7. This procedure is

. repeated until either 10 periods of fishing elapse or the
-probability of damage to the stock becomes sufficiently high to
warrant closure.

Figure 5 shows how the expected seasonal catch changes as
information is gathered during the first three periods. Figures
6A and 6B show the probability that the stock level is above fN
at the end of the season. These results appear to be less sensitive
to the additional weekly information than the total catch is.

In a real fishery, it is likely that the data are noisier, but the
methods described here can still be useful as a tool for deciding
about season closures.

Other management schemes can be used with this approach.
For example, many fisheries operate with a targeted escapement
level. Suppose that N, is the escapement level and that N is the
MLE for N, given that n schools were encountered in search
time z. Then there remain N — n schools, and a search etfort
of 7 hours will lead to the estimated expected catch (1\7 - n)

Can. J. Fish. Aquat. Sci., Vol. 42, 1985

N
@
-

CATCH

L 3

2 3 4 5 6 7 8 910
PERIOD

Fig. 4. Catch for three years in the simulated fishery.

TABLE 4. Historical 25-yr catch rate
(relative units) for the simulated 10-

period fishery.
Coefficient of
Period Average variation
1 19.8 0.263
2 17.4 0.275
3 14.4 0.359
4 12.0 0.235
5 10.3 0.299
6 9.64 0.296
7 7.60 0.423
8 6.80 0.311
9 5.92 0.468
10 4.76 0.368

(1 — exp (—ke?)) where k is the number of vessels in the fishery.
The value of # can be determined so that the targeted escapement
is reached. That is, if it exists, 7 is the positive solution of the
following equation:

@.1) N, =N — ne ki

Equation (4.1) will not have a solution if either N = n (see
section 2) or Ny, = N — n. The latter indicates that the
escapement level may not be attainable. In either case, if (4.1)
does not have a positive solution, then the season should be
closed immediately.
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TABLE 5. Results using catch data from the first period (n = 21, TABLE 7. Results using catch data from the first three periods (n =
t=1,N = 150). 47,0=3,N=129).
Predictions Averaged
No. of Expected CVin Prob {stock > fN}
Averaged extra periods seasonal seasonal _
No. of Expected CVin Prob {stock > fN} in season catch catch f=02 =03
extra periods seasonal seasonal
in season catch catch f=02 f=03 1 59 0.038 >0.9999  0.9971
2 69 0.049 0.9998 0.9799
1 39 0.031 >0.9999  0.9994 3 77 0.053 0.9983 0.9108
2 S5 0.039 >0.9999  0.9967 4 84 0.055 0.9886  0.7385
3 68 0.043 0.9997  0.9859 5 91 0.055 0.9481 0.4727
4 80 0.044 0.9982  0.9816 6 96 0.055 0.8372  0.2176
5 90 0.045 0.9921 0.8672 7 101 0.053 0.6356  0.0658
6 98 0.044 0.9716  0.7089
7 106 0.043 0.9175 0.4881
8 112 0.041 0.8059 0.2626 120 ST PERIOD DATA
9 118 0.039 0.6283 0.0993
100 - 15T, 280§ 3R0 PERIOD DATA

TABLE 6 Results using catch data from the first two periods (n = 32,
t=2,N=132).

Predictions
Averaged
No. of Expected CVin Prob {stock > fN}

extra periods seasonal seasonal —_—
in season catch catch f=0.2 =03
1 45 0.037 >0.9999  0.9989

2 56 0.046 0.9999  0.9927

3 66 0.051 0.9992 0.9664

4 73 0.053 0.9951 0.8868

5 80 0.053 09778  0.7198

6 87 0.052 0.9238  0.4792

7 92 0.050 0.8030  0.2426

8 96 0.049 0.6080  0.0860

A more complicated procedure for determining the remaining
length of the season is to find the positive f(N) that solves

(42) N,=(N— ne *
and then define 7 by

@3) i= N:ZM g(N|miN).

Observe, however, that (4.1) and (4.3) give total remaining
search time, and not total fishing time. One needs an algorithm
that relates total fishing time to search time. Such an algorithm s
described, for a particular fishery, in the next section.

5. Empirical Study of Pacific Ocean Perch (POP)
near Rennell Sound, British Columbia

Rennell Sound is located on the west side of Graham Island in
the Queen Charlotte Islands, British Columbia. The data on
POP catch near Rennell Sound are nearly ideal for an empirical
study of the usefulness of the search methods. First, the POP
there is essentially a closed population, apparently the isolated
remains of a once much more predominant stock (R. Stanley,
Pacific Biological Station, Nanaimo, B.C., pers. comm.).
There is little recruitment, so that the fishery is, in this case,
exploiting an exhaustible resource. Second, the data set is
sufficiently large to be broken into a subset for estimation of
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parameters and one for testing the methods. Third, the entire
fishable area of the Sound is known (Leaman and Nagtegaal
1982). Fourth, the area was relatively unknown when first
exploited. This means that the assumption of random search has
considerable validity. Further discussion about the POP stock in
Rennell Sound can be found in Leaman and Nagtegaal (1982),
Nagtegaal et al. (1980), and Stocker (1981).

The nature of search for POP aggregations may not fit all of
the assumptions, particularly that an aggregation is fished out
upon discovery. However, it will be seen that the assumptions
are not violated too strongly, since the predictions based on the
theory turned out to be reasonably accurate.

POP were first exploited near Rennell Sound in 1976. They

“are caught mainly when they form aggregations during the

daylight. The log-book data kept at the Pacific Biological
Station, Nanaimo, B.C., were used as a source of catch and
effort information with the following rules:

(1) Each trip report was assumed to represent the encounter of
one vessel with one aggregation of POP. The validity of this
assumption is unknown. Given the type of log-book data
available, this assumption (made for convenience) seems
reasonable.

(2) The number of hours available for search was computed

according to
(5.1)  Search time = Days fished — set time — dark hours.

Can. J. Fish. Aquat. Sci., Vol. 42, 1985



—
i oL \ 157 PERIOD DATA
N IST & 240 PERIOD DATA
x
IS}

o sf
'_
w
2

. m "
D 4
b
a

3+
2F

| N RV T NS S S— |
8 9 10

| é é 4 5 6 7
SEARCH TIME

)

PROB {STOCK>3 N}
w

L \
‘\ ST PERIOD DATA
IST & 2ND PERIOD DATA

1 1 1 1 - - F —|

4 56 7 8 910
SEARCH TIME

i1
2 3

Fic. 6. Probability that the stock at the end of the season is greater than (A) 0.2 and (B) 0.3 of the initial stock.

Dark hours were computed using sunrise/sunset tables from an
almanac.

By using equation (5.1) to compute search times, one
implicitly assumes that fishing and searching are the only
activities. If skippers logged the actual search time, then
equation (5.1) would not be needed and one could find search
time through dockside interviews.

For the empirical study of POP, the definition of € is

oW

€= —

(5.2

BOTTOM

Fi6. 7. Computation of the sweep width W.
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where v is the speed of the vessel, W is the sweep width of the
echosounder used in the search for fish, and A is the fishable
area. Leaman and Nagtegaal (1982) presented data on the
trawlable area in Rennell Sound as a function of interval depth.
Their results are shown below:

Depth Area
interval (nautical . % of
Code (m) miles?) total area
1 164-218 26.92 40
2 219-272 6.10 9
3 273-327 7.24 11
4 328-382 7.27 11
5 383-437 5.85 9
6 438-491 7.69 12
7 491-547 5.32 8

A different € was calculated for each depth interval.

The sweep width W was calculated as follows (see Fig. 7).
Imagine that the bottom is D metres below the sounder and that
the sounder ensonifies an angle of 20 below it. The ensonified
width on the bottom is then

(5.3) W=2Dtan#.
(A more rigorous calculation, using the lateral range curve
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(Koopman 1980), gives the same result, if it is assumed that the
probability of detection within the triangle is 1.) The value of
6 = 15° was used.

The following objectives were investigated:

(1) To use the data from January to June 1977 to estimate (a)
the initial number of aggregates present, (b) confidence inter-
vals on the initial number of aggregates, (c) biomass per
aggregate, and (d) initial biomass and confidence intervals on
the biomass using total biomass = (number of aggregates) X
(biomass per aggregate).

(2) To predict catch as a function of effort from July 1977
through 1982, using both point estimates and confidence
intervals.

(3) To investigate how the uncertainty in the estimate of bio-
mass per aggregate affects the ultimate estimates of confidence
intervals.

The data from January to June 1977 consist of 13 trip reports.
For lack of any better identification procedure, it was assumed
that each trip report corresponded to an encounter with one
aggregation. The total search time was 181 h. The estimate for
the initial number of aggregates, averaged over the seven depth
intervals, is N = 646 aggregates. That is, observe from (2.16)
that the estimate N depends upon €; one should write N(e). The
ultimate estimate of N is then the average of N(e) over e: N =
E.(N(e)) where E, denotes the expectation over €, using the data
shown below (5.2) (an incorrect method would be to use (2.16)
with € replaced by its average value). The average catch per
encounter (i.e. per trip report) was B, = 32 tons, and the
standard deviation was 22 tons (the resulting coefficient of
variation is 0.69). In what follows (until the final discussion in
this section), the 32 tons per aggregate will be treated as a point
estimate. Finally, the average catch per set for the initial data
was 2.4 tons set (with a 1-h nominal set time). It is assumed here
that when a school is encountered, it is completely fished out —
even if this requires more than one set. Since the theory uses
search time only, there is no problem with multiple sets, as long
as the appropriate corrections for times are used (as in equation
(5.1).

The estimate for the initial biomass is defined by
(5.4) By = NB,
where B, is the 32 tons per aggregate and N is the averaged
initial number of aggregates. Three point estimates were
constructed, using the lowest, midpoint, and greatest depth for
each depth interval. These results are

. 23411 tons (lowest depth)
By = 120731 tons (midpoint)
18 646 tons (greatest depth).

In all other calculations, only the midpoint of the depth interval
was used. Note, however, that just switching the depth used in
the sweep width calculation can lead to differences of 10-13%
in biomass estimates. Stock surveys gave estimates of about
20000 tons (B. Leaman, Pacific Biological Station, Nanaimo,
B.C., pers. comm.).

Bayesian confidence intervals on N were constructed as
described in section 2, using an improper uniform prior.

The 90% confidence intervals are

Number of aggregations: 516776
Biomass: 16512 — 24 832 tons.

The 95% confidence intervals are

Number of aggregations: 508—786
Biomass: 16256 — 25 152 tons.

It should be stressed that these confidence intervals treat the
biomass per aggregate as fixed. It will be seen that if one
includes the uncertainty in the biomass per aggregate, then the
width of the confidence interval increases considerably. It is
worth noting that if the depths were aggregated, so that only one
value of € (averaged over the seven depth intervals) was used,
the resulting estimates are 451-677 aggregates and 14 832 —
21664 tons for the 90% interval and 443—685 aggregates and
14176 — 21920 tons for the 95% interval. These are about 13%
too low, relative to the proper procedure of estimating N
conditioned on € and then averaging over €.

Next, predictions were made for catches from July 1977 to
1982. The predictions were computed as follows. First, since
the average size of an aggregate is 32 tons and the catch per set is
2.4 tons, there are about 13 sets per aggregate encountered, or
13 h of fishing per aggregate at the nominal value of 1 h per set.
Suppose that Ny aggregates remain and that the total daylight
effort will be Tg. Suppose £, hours will be spent searching. The
expected number of aggregates yet to be found is Ng(1 — e ).
The amount of time spent fishing will be 13 times this. Thus, ,
satisfies

(5.5) t;+ 13Ng(l — e7¢%) = Tg.

Solving this equation for ¢, gives the search time, and from that
the catch. This search time actually depends upon Ng, so that if
Np has a distribution, so does the search time. For simplicity,
the search time was calculated using the maximum likelihood
estimate for Ng only (initially, Ng = N — 13). Bayesian con-
fidence intervals for the predicted catch (around the expected
catch of Ng(1 — e~¢") aggregates X 32 tons aggregate) were
constructed using a modification of the method described in
section 2. Table 8 shows the point estimate for catch, the 90%
confidence interval, and the actual catch observed from July
1977 onward. With the exception of 1978, the predicted and
observed catches agree in the sense that the actual catch was
either in the confidence interval (July—December 1977, 1980,
and 1981) or very close to it (1981). The anomalous year 1978
was at least partially explained by a further investigation of the
data (Mangel 1983) which shows that a number of vessels
entered the Rennell Sound fishery briefly, exerted effort,
obtained little or no catch, and exited. In such a situation, one
expects that the predicted catch will be larger than the actual
catch, which was indeed the case.

The confidence intervals in Table 8 are too small, for two
reasons. First, the distribution in the number of aggregates
should be reflected in a distribution on the search times. This

"TaBLE 8. Predicted and observed POP catches, 1977-82.
Effort T¢ Point Catch 90%
(daylight estimate confidence
Year® hours) (tons) interval Actual
July-Dec. 1977 280 325 [179, 468] 430
1978 240 279 [154, 403] 119
1980 47 41 19, 77] 51
1981 48 45 (13, 77] 43
1982 48 45 [13, 77] 79

aThere were no substantial POP sets in 1979.
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calculation was not done, and only average predicted search
times were used, because it is not clear that the quality of the
data warrants such a calculation (this is an ex post facto
prediction). In a real problem, i.e. if one were actually trying to
predict future catches, the distribution on search times would
need to be considered. Second, the uncertainty in the biomass
per aggregate was not taken into account. In principle, the
uncertainty in biomass per aggregate can be accounted for as
follows. Let f(b) be the probability density of B,, the biomass
per aggregate. Experience suggests that the distribution should
be skewed so that the peak of the density occurs at a biomass b
that is less than the mean biomass. One choice is the gamma
density:

ave—abbv—l
f(b) o)
with mean v/a and coefficient of variation 1/Vv. Matching
these to 32 tons and 0.69, respectively, gives
6.7 v=21, o = 0.067.

For ease of calculation, v = 2 and a = 0.063 will be used in the
calculations that follow. Figure 8 shows the density f(b).
Observe how the curve is skewed to the left. Differentiation of
(5.6) shows that the maximum value of f(b) occurs at

(5.6)

v—1

(5.8) b¥=

which is 16.4 tons (exactly) or 15.9 tons (in the approximation
used for calculation) per aggregate, rather than the point
estimate of 32 tons.

Now the total biomass, B, is given by

N
B= _Zl B,

where B, is the biomass of the ith aggregate. To compute the
probability density of B, an assumption must be made about the
mechanism of aggregation. The two bracketing assumptions are
the following ones:

(1) The biomasses of the aggregates are independent random
variables with probability density given by (5.6).
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(2) All aggregates are identical and have the same biomass,
which is unknown. The frequency density of the unknown
biomass is assumed to be given by (5.6).

If assumption (1) is correct, then the total biomass is given by
the sum of N independent random variables, each of which has a
gamma distribution with parameters v and a. It is easily shown
(by use of the moment generating function, which is

(1) = (ai t)v

for a gamma distribution with parameters v and o) that
conditioned on N, the total biomass B has a gamma density with
parameters Nv and . Consequently,

(5.9) fag(m)dm =Pr{m < B < m+ dm}
ane—amva*l
- N;, T(Nv) g(N|n)dm

where g(N|n,) is the posterior probability that N aggregates
were initially present, given that n, aggregates were found in
time ¢, (here n, = 13 and ¢, = 181h). Since the coefficient of
variation of the gamma density is 1/Vv, the density (5.5)
becomes more and more sharply peaked around the mean as v
increases. This means that confidence intervals based on (5.9)
will be similar to those already presented. (We plan to provide a
more complete discussion of confidence intervals based on (5.9)

in a subsequent paper.)
If assumption (2) is correct, the density for the total biomass

is given by
(5.10) fg(m)dm = Pr{m < B < m + dm}
=Pr{m < NB, < m+ dm}

where N is the number of aggregates initially present. This
equation is rewritten as

(5.11) Pr{m < NB, < m + dm}

m+ dm
N

> Pr{%sB,,s }g(Nlng

N=n,

m dm
27 (5) scim 57
Using the density (5.6) with parameters (5.8) in (5.11) gives

(5.12) Pr{m<B<m+ dm}

=7

- 2 dm
N;3(0.063) cxp[ N N) g(N|13)T.

In this equation, g(N|13) is given by the “negative binomial”
posterior distribution (2.23) for the initial number of schools,
given that n = 13 aggregations were found in ¢ = 181 h. The
distribution in (5.12) is easily computed on a desktop micro-
computer. Figure 9 shows the biomass estimate computed from
equation (5.12). (Actually, the calculation is somewhat more
complex, since g(N|13) must first be conditioned on the depth
level, the biomass computed, and then averaged over all the
depths.) The biomass was truncated at 52 000 tons.

The peak of the curve occurs at 9000 tons and the numerically
computed mean is 19 909 tons (this mean is less than the point
estimate 20731 tons because of truncation of the density at
52 000 tons). The confidence intervals around the mean and the

161



05

Peak (90001)
0ar Point Estimate (20 7311)
> 03}
E
o 02
Q
Ol H
" 1 P | ) 1 P i 1 i 1 P | PR | ) | I 1 " 1 1 1 P |
4000 12 000 20000 28 000 36000 44 000 52 000
Biomass (t)

FiG. 9. Estimated biomass density function for POP under assumption (2) about aggregation.

maximum are shown below:

Around
Confidence
level Mean Maximum
85% (3000, 36 000] tons [0, 29 500] tons
90% [1000, 38 000] tons [0, 36 500] tons

These confidence intervals are much larger than those obtained
when a point estimate of the biomass per aggregate is used. The
great width of the confidence interval is caused, in large part, by
the choice of the gamma distribution. That is, the long, slowly
decaying tails of the gamma density lead to the long tails in the
biomass distribution and thus the large confidence intervals.

One implication is clear, however, and it is that knowledge of
distribution of the biomass per aggregate and the mechanism of
aggregation are important if one wants meaningful confidence
intervals. This point cannot be stressed too greatly. There is
need for biological research to estimate the distribution of
biomass per aggregate. With such large confidence intervals, a
cautious management program is probably justified.

In conclusion, it is worthwhile to consider the “design of
experiment” question. That is, what are the ideal data for an
analysis such as this one? What data would be needed to make
the analysis described here extremely accurate and as bias free
as possible?

Some of the data that could be collected, but currently are not,
are the following:

(1) The actual cycle of search—fish—search. If the fisherman
recorded the actual search times, followed by fishing time,
followed by search time, etc., then the search time would be
known precisely.

(2) Fishing the same aggregation. Often the fishermen will
encounter an aggregation, fish it for a while, follow it, and then
fish it again. If the fishermen made a notation of such instances,
it would be possible to eliminate another bias in the analyses. In
another instance, schools may be partially fished by one vessel,
and at some later point set upon by a different vessel. If one can
estimate the probability of this occurrence and the fraction of a
school taken on a set, then the theory could be easily modified
accordingly (e.g. see Mangel and Clark 1983).

(3) Distribution of biomass per aggregate. If the actual
distribution of biomass per aggregate were known (either from
separate biomass surveys or from substantial analyses of catch
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data), then a calculation similar to equation (5.11) could be
performed, with more confidence in the results.

6. Concluding Comments

All calculations reported in this paper were done on a desktop
microcomputer. This means that the techniques are feasible for
fishery managers and fishermen, who are becoming accustomed
to the use of small computers in planning fishery operations.
Software for the theory in section 2 is easily developed. A
number of extensions of the theory presented here are currently
under investigation. The first is that recruitment is not taken into
account in the current theory. This is not a problem if one is
interested in only a single season which is short enough so that
recruitment is not significant, or the stock of interest has
essentially independent generations (e.g. shrimp). However,
the theory developed here can be extended to include recruit-
ment. The second limitation is that schools of fish are typically
clumped and that the theory developed here does not take
clumping explicitly into account. One can do this by putting
additional distributions on N or € in the basic search model. This
adds no additional conceptual, and very little computational,
difficulty, however. A third limitation is that learning by
fishermen is not taken into account. This learning has two major
components. The first is local, nonrandom search. That is, after
discovering a school, a vessel may execute a local, exhaustive
(nonrandom) search about its find. (Tuna vessels seem to
operate this way (T. Smith, NMFS-Southwest Fisheries Center,
La Jolla, CA, pers. comm.).) Thus, one has two kinds of
searches: random searches for “patches” (the first school found)
followed by nonrandom searches within patches. The second
component of learning involves learning how to fish the ground.

- That is, the value of A in (2.4) pertains to the entire fishing

ground. As the fishermen search, they learn unprofitable areas
of the ground. Thus A decreases, but the rate at which it
decreases is unknown. For example, one could replace (2.4) by

6.1) e=¢€(n)= Wo
A
where
6.2) A@)= Ao
1+ 6:

and Ay is the initial size of the ground (physical size) and 8 is the
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learning rate. If such a procedure is followed, the basic result
(2.5) is replaced by

(6.3)  Pr{k searchers discover n schools in (0, 0}

_ (N)[l e (_ kiWwo BkIZWU)]"
n P\" & 4

kWo  0ke*Wo\ V7"
X texp| — A ——Ao— .

The problem now is to estimate N and 8, which is equivalent to
simultaneously estimating N and p in the binomial formula

N
( )pn(l - p)N*n'
n

It is easily shown that maximum likelihood estimates give the
result N = n, p = 1. One can however, use Bayesian methods
to update a joint density for N and p. Such methods are currently
being developed.
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Appendix: Description of the Simulation Program
for Catch Data

The program used to generate data for the analysis in the text
picks the initial number of schools, Ny, at the start of a season as
follows. A random number, m, that is uniformly distributed on
[100, 200] is drawn. Then Ny is picked to be the integer part of
m.
Given Ny, the catch in period / is assumed to be binomial with
parameters

-1
No — ‘Zl Y; and 1 — e

Here Y, is the observed catch in the ith period, k is the number of
vessels, € is search parameter defined in section 2, and ¢ is the
search time in the ith period. For simplicity, ¢ is set equal to 1
(although ¢ itself can be treated as a random variable (Mangel
(1983)). In the simulation, the value € = 0.01 is used. To find
the catch in period /, a random number, X, that is uniformly
distributed on [0, 1] is drawn. The catch in period [, Y}, is the
integer that satisfies

(l _ e—ket)j

An 2
0
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In the event that one of the inequalities is replaced by an
equality, then Y, is modified accordingly.
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