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The future’s uncertain and the end is always near
—J. Morrison (Roadhouse Blues)

INTRODUCTION

In the natural world, populations or individual stocks
can decrease by large amounts in short intervals of
time. We refer to all such changes as “catastrophes”
and include physical factors such as hurricanes, freezes,
and droughts, biological factors such as epidemics or
invasion by a new competitor or predator, or pertur-
bations of the environment caused by humans. Ex-
amples of such catastrophes, across a wide range of
taxa and species, abound. In the Caribbean Sea (Rich-
ards and Bohnsack 1990), several epizootics occurred
in the 1980s, including a massive fish kill in the reefs
(the cause of which is still unknown) and a mass mor-
tality of sea urchin (Diadema spp.) in which up to 98%
of the population was destroyed in many areas (Lessios
1988, Levitan 1988).

Geraci et al. (1982) report that 445 harbor seals out
of a local population of 600 and a metapopulation of
~10000 harbor seals died in New England during an
epizootic and that similar catastrophes occurred in
1931, 1957, and 1964. Harwood and Hall (1990) report
a mass mortality of =18 000 common seals in northern
Europe in 1988, of ~3000 Baikal seals in the former
Soviet Union in 1987, of =2500 (out of a population
of 3000) crabeater seals in the Antartic in 1955, and
thatin 1758 (in a less precise era) “multitudes” of seals
died. Since the 1970s, there appears to have been an
increase in the incidence of such unusual marine mam-
mal mass mortalities throughout the world (Marine
Mammal Commission 1993; some of the most recent
unusual mortality events are described in this report).

The 1982-1983 El Nifio event led to a 60-70% over-
all mortality, mainly due to starvation, of marine igua-
nas (Laurie and Brown 1990). The heath hen was driv-
en extinct by a combination of catastrophes including
a fire, harsh winter, heavy predation by goshawks, and

' For reprints of this Special Feature, see footnote 1, p. 583.

an epizootic (Simberloff 1988:497). Catastrophes, of-
ten interwoven with other kinds of environmental fluc-
tuation, have been associated with the extinction or
severe decrease in population size of the Laysan teal,
the Great Auk, butterflies, reindeer (in which 5500 out
of 6000 individuals were killed), and the Short-tailed
Albatross (Simberloff 1988:499).

Menges (1990), in a population viability analysis of
the endangered plant Furbish’s lousewort, notes the
importance of catastrophic events. For example, in
1983-1984, 3 out of 10 of Menges’s field sites were
destroyed by the abiotic catastrophe of ice scour and
bank slumping. At a fourth field site, only two adult
plants remained. After including catastrophesin a pop-
ulation viability analysis, Menges concludes: “Cata-
strophic mortality dominates estimates of population
viability, causing the majority of extinctions when add-
ed to within-population environmental stochasticity”
(1990:57). Even so, it is remarkable that there are few
other examples of population viability analysis that
include catastrophes (Ginzburget al. 1990, Boyce 1992).

Young (1993) reviews the literature concerning 92
natural die-offs of large mammals and finds that the
severities of the die-offs (caused by natural catastrophes
such as disease or starvation) showed a relative peak
at 70-90% of the population. Herbivore die-offs were
often caused by starvation, carnivore die-offs by dis-
ease. He also provides examples of the numerous but
nonquantitative reports of catastrophic die-offs. Thus,
the results of Geraci et al. (1982) and Menges (1990)
suggest that it is possible to at least approximately
estimate the rate of catastrophes, and those of Young
(1993) suggest that it is possible to estimate the dis-
tribution of the number of individuals killed in a ca-
tastrophe. For example, using the data in Geraci et al.
(1982) leads to a maximum likelihood estimate of the
rates of catastrophes of =~5%, with a 95% confidence
interval of [0, 0.115]. In the case of catastrophic forest
fires, it may be possible to calculate the rates of catas-
trophes more accurately because of the scar rings left
by the fires (e.g., Clark 1989).
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FiG. 1. The “shoulder” in the mean time until extinction

based on a simple birth and death model (MacArthur and
Wilson 1967). This model has a population ceiling with a
constant per capita birth rate below the ceiling and constant
per capita death rate (see text for more details.) The shoulder
and associated extremely large persistence times is often iden-
tified with the “minimum viable population” (Soulé 1987).
Here we assume that the initial value of the population is the
same as the population ceiling.

Because of the mathematical difficulties, catastro-
phes are usually not included in birth and death models
(MacArthur and Wilson 1967), which allow jumps of
single individuals, or diffusion models (Leigh 1981),
which are based on the assumption that the population
is likely to change but only by a small amount. How-
ever, catastrophes are important and, as Menges (1990)
suggests and we shall argue below, may be more im-
portant in determining persistence time than any other
factor usually considered. Furthermore, the intuition
developed using simple birth and death models or dif-
fusion models can be very misleading when catastro-
phes are included. For example, as we show below, the
“shoulder” (Fig. 1) associated with the model of Mac-
Arthur and Wilson (1967), and often used to help iden-
tify a “minimum viable population” (Soulé 1987), dis-
appears when catastrophes are included. Even though
most population viability analyses have gone beyond
this simpler model (Boyce 1992), we believe that an
explicit focus on catastrophes is important because it
forces us to think differently about the evaluation of
conservation measures.

In recent years, new methods have been developed
for the analysis of population models that include ca-
tastrophes (Hanson and Tuckwell 1978, Mangel 1989,
Peters and Mangel 1990, Anderson 1991, Mangel and
Tier 1993a, b). Some of these methods are analytical
and exact, some are analytical and approximate, and
some are numerical (but based on numerical analysis,
rather than Monte Carlo simulation). These new meth-

ods and the great technological advances in computing
over the last 15 yr allow us to change the way that we
think about persistence of populations. Measures of
persistence, such as the mean time to extinction, play
an important role in population viability analysis (Boyce
1992) and other applications of theory to conservation.
In this note, we summarize four important facts from
a theory of persistence that includes catastrophes. The
results are nonintuitive and have clear implications for
management and policy.

THE FAcTs

Fact 1: A population can grow, on average,
exponentially and without bound and
still not persist

Imagine the simplest case of population growth, say
L%V = rN, where N is population size at time ¢ and r is
the intrinsic growth rate. Given initial population size
N,, we know that the population will grow without
bound exponentially, so that N(¢) = N,e". Now suppose
that this population is subject to catastrophes that oc-
cur at some rate ¢, so that the probability of a catas-
trophe in the interval between O and zis 1 — ¢ < and
that when a catastrophe occurs, there is a probability
distribution for the number of individuals who die,
with mean number of deaths m(N) when the popu-
lation size is N. The mean rate of death due to ca-
tastrophe for population of size N is then cm(N)
and, on average, the population dynamics are now
% = rN — cm(N). For example, if individuals die in-
dependently with probability p, then the number of
deaths has a binomial distribution with parameters
N and p and the mean population dynamics are

aN

a = rN — ¢pN. Intuition suggests, and it can be ver-

ified (Peters and Mangel 1990), that in general if the
mean death rate exceeds the birth rate, then the chance
of the population persisting for long times is 0.

On the other hand, even if the birth rate exceeds the
mean death rate for all values of population size, the
population need not persist (Peters and Mangel 1990).
Without going into the details (which can be found in
Peters and Mangel 1990), the basic idea is the follow-
ing. We measure persistence in this case by the prob-
ability P(,) that the population never goes extinct
(with no population ceiling), given that its initial size
is N,. We then derive an equation that characterizes
how P(N,) varies with N, and solve this equation. In
the course of the solution, we see that if ¥N < cm(N),
then the only solution is P(N,) = 0. If rN > cm(N),
then P(N,) > 0, and can almost always be written in
a form like P(N,) = 1 — K exp[—H(N,)], where the
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Fi1G. 2. An example of fact 1, that in the presence of ca-

tastrophes an exponentially growing population need not per-
sist. We focus on the logarithm of population size, which

. . az e
satisfies the growth equation a = r with initial value Z(0).

. az
Between catastrophic events @ = r, catastrophes occur at

rate ¢, and when a catastrophe occurs, the logarithm of pop-
ulation size decreases by an amount Y, following an expo-
nential distribution with mean Y. Parameter values for curve
(@a)are b=0.9,d = 0.329, ¢ = 0.05, and Y = 5 and for curve
(b)are b= 0.4, d = 0.1, ¢ = 0.05, and Y = 5. Note that Z(0)
= 5 corresponds to =150 individuals and Z(0) = 10 corre-
sponds to =22 000 individuals.

constant K and the function H(N) depend upon the
particular form of the rate of catastrophes and the dis-
tribution of deaths when a catastrophe occurs (Peters
and Mangel 1990 give examples). The constant K typ-
ically involves the ratio of the mean rate of death due
to catastrophe and the mean growth rate, and the func-
tion H(N,) depends upon the population dynamics and
the particular form of the catastrophe distribution.

A simple, somewhat stylized example can be con-
structed by noting that if the population grows expo-

. . dN .
nentially according to i = rN, then the logarithm of

population Z(f) = log[N(?)] has a constant growth rate
dz
i = r. We assume that catastrophes occur at rate ¢

and that when a catastrophe occurs, the logarithm of
population size decreases by an amount Y, following
an exponential distribution with mean Y, and define
persistence as the probability that Z(¢) never falls below
0. We can use Eq. 4.12 of Peters and Mangel (1990)
to obtain this probability:

Pr{persistence, given Z(0) = z,}

Sk

The results (Fig. 2) show only moderate persistence for
the exponentially growing population in the presence
of catastrophes, caused by the potentially large and
rapid decrements in population size when a catastrophe
occurs.

If this exponentially growing population actually
represented the average of a pure birth and death pro-
cess, then we would write r = b — d, where b and d
are the birth and death rates (see the Appendix for
elaborations). It is a classical result (see Ludwig 1974
and citations therein) that even though » > d, not all
population trajectories will lead to persistence of the
population. Because of “runs of bad luck™ some tra-
jectories will lead to extinction, even though on average
persistence is predicted. If N,(0) = n,and the individual
trajectories are independent, the probability of persis-

no

tence is 1 — 3 if d < b and is O otherwise. Note

that this will quickly rise to 1 as #n, increases. For the
parameter values shown in both curves of Fig. 2, the
birth and death estimate of the probability of persis-
tence reaches 1 when Z(0) = 3, i.e., for 20 individuals.
We thus see that ignoring catastrophes greatly over-
estimates the persistence of the population.

Fact 2: There is a simple and
direct method for the computation of
persistence times that virtually all
biologists can use

We shall now describe (Mangel and Tier 1993a) a
very simple method that makes computation of per-
sistence times accessible to virtually all biologists. In
order to illustrate this second fact, it is easiest to con-
sider a particular model of a population with both
demographic fluctuations and environmental catastro-
phes (Mangel and Tier 1993a). We assume that the
population can be described by a single variable N(¢),
representing population numbers at time ¢ and that if
the current population size is # then the probability of
a birth in a very small interval of time At is B(n)At and
that the probability of a single death from demographic
causes in Az is D(n)At. In addition, we assume that the
chance that an environmental catastrophe occurs is
C(n)At and that when such a catastrophe occurs,
the probability that v of the n individuals present
die is Q(y | n), so that 22, Q(yv | n) = 1 and
m(n) = 2, nQ(v | n). We also assume that there is
a critical population size n,; below which the popu-
lation is functionally extinct.

The method rests on the following simple observa-
tion. Regardless of the complexity of the density de-
pendence in birth, death, and catastrophes, there is
without a doubt a maximum value that the population
can attain. This value, #,,,,, is then a population ceiling,
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in the spirit of MacArthur and Wilson (1967), but dif-
fers in one extremely important respect: in virtually all
previous work (reviewed in Mangel and Tier 19935)
the density dependence in the models has been trivial
and the ceiling itself has introduced density depen-
dence. Our situation is different in that we separate the
ceiling and the mechanisms producing density depen-
dence, so that there can be extremely complicated den-
sity dependence for population sizes below #,,,,. The
behavior of the population below n,,,, will generally
involve stable equilibria, one of which can be inter-
preted as the carrying capacity. We also expect that if
the population size is near n,,,,, it will move towards
the carrying capacity. This is in contrast to the Mac-
Arthur—-Wilson type models in which the population
ceiling is interpreted as the carrying capacity of the
population.

For example, a birth and death description for
the population dynamics of the adults of the
flour beetle Tribolium has (Peters et al. 1989)
B(n) = by(n + b,) exp(—b,n) and D(n) = d,n, where
by, b\, b,, and d, are parameters (this description ex-
cludes catastrophes). The interpretation of these func-
tions is the following. The death rate simply increases
with population size. The linear birth rate is modified
in two ways. It decreases because of cannibalism on
pre-adult stages. But note that B(0) = b,b, > O; this
represents ‘‘recruitment” into the adult stage from oth-
er stages of life history, even when there are no adults
present (see Peters et al. 1989 for further interpreta-
tion). We could identify the ““carrying capacity” as the
positive steady state n, satisfying B(n,) = D(n,). The
population ceiling #,,,, should then be much greater
than n, and we see that if n > n_, then the birth rate
is exponentially small and the death rate continues to
grow. The net effect will be movement towards n,.

To measure the persistence of the population, we
define the random variable 7(n) as the first time that
the population size reaches or is less than n_,,, given
that it starts at »n. The first measure of population per-
formance is the mean extinction (or persistence) time
T(n), which is the average value of 7(n). The mean
persistence time is often involved in population via-
bility analysis (Boyce 1992) and, as described below
(in fact 4), can be used to estimate the probability of
persistence over a specified interval of time, condi-
tioned on the initial size of the population.

With the assumptions described above, T(n) satisfies
(MacArthur and Wilson 1967, Leigh 1981, Mangel and
Tier 1993a).

—1=Bn)Tn + 1)+ Dn)T(n — 1)
— [B(n) + D(n) + C(m)]T(n)
+ C(n) 2,00 | ;T (n — ). )

The importance of the population ceiling is that we
can write Eq. 2 as a matrix equation of the form

MT = —1, 3)

where the vector T = {T(n;), T(hey + 1), . . ., T(n, )} 7
and the vector —1 = {—1, —1, ..., —1}7. If we set
R(n) = B(n) + D(n) + C(n) — C(n)Q(0 | n), the first
few lines of M are as shown below.2 Eq. 3 can be solved
for T:

T=-M1 @)

where M~ is the inverse of the matrix M. Computer
languages such as TRUEBASIC, MATLAB, or
MATHEMATICA have built-in programs for invert-
ing matrices. This means that once M is defined (that
is, after the underlying biological processes are under-
stood), finding the persistence time for any population
level is essentially a trivial computational problem and
can be handled by most small computers easily. This
is true for even reasonably large state spaces, as will
be seen in the examples below or in Mangel and Tier
(1993a).

We can study the variability of the persistence time
by computing the second moment S(») of 7(n), which
satisfies (Mangel and Tier 1993a)

MS = -2T, %)
where the vector S = {S(n)}. The solution of Eq. 5 is
S=-2M"'T, 6)

and since we have already computed M~!, this re-
quires no further complicated calculation. The vari-
ance of the extinction time for a population with initial
size n, V(n), is then computed component-wise using
V(n) = S(n) — T?(n) and the coeflicient of variation is
——f(V’i—’;). The cv gives a standard measure with
which to compare the variability of extinction times
for different population dynamics. The variance and
Cv are important statistics and often cannot be com-
puted analytically.

In summary, fact 2 shows that (thanks to the de-
velopment of powerful microcomputers and high-level
computer languages) the computation of the mean and
variance of extinction times can now be done in just

cv(n) =

2 The first few lines of M:
- R(nCrll + l)
D(ngi +2) + Clngg, + 2)Q1 | hgyy + 2)
C(ncri\ + 3)Q(2 I ncril + 3)

D(nei+ 3) + Cngi + 3O | ne + 3)

B(nei + 1) 0 0
_R(ncril + 2) B("cm + 2) 0
_R(ncril + 3) B(ncril +3)
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a few lines of computer code (although it does take
some serious, biological work to get the matrix M, as
in the description of the flour beetle dynamics above;
Peters et al. 1989). Thus, although one must still use
a numerical method, it is not a Monte Carlo simula-
tion, which may require thousands of runs to obtain
reasonable estimates of the statistics on persistence time
(cf. Murphy et al. 1990). We now consider the impli-
cations of this fact.

Fact 3: The shoulder of the MacArthur-Wilson
model occurs with other models as well, but
disappears when catastrophes are included

The model used by MacArthur and Wilson (1967)
was based on the following population dynamics: No
catastrophes, so that C(n) = 0, B(n) = Anforn=1, 2,
..., K (the population ceiling), and B(n) = 0O for n >
K, and D(n) = un. Here n,,,, has a natural definition
as N, = K + 1. This model leads to a “‘shoulder” if
one plots 7(K) as a function of K: as K increases, T(K)
first rises, then has a plateau, and then rises very rap-
idly. The value of K corresponding to the onset of this
rapid rise is often used to define the minimum viable
population (Fig. 1).

By using fact 2, it is possible to explore the mean
persistence time for a wide variety of models involving
more complicated population dynamics. Other mod-
els, with complex density dependence occurring for
values of n < n,,,, also lead to shoulders. For example,
Mangel and Tier (1993a) consider a birth-death—im-
migration model in which B(n) = by(n + b,) exp(—b,n)
and D(n) =d, n. A typical result (Fig. 3) is the following;
for a certain set of parameters, if catastrophes are ig-
nored the mean persistence time is the same whether
Rmax = 50 or 300. However, when catastrophes are
included, this is absolutely not the case and the per-
sistence time does not plateau at small values of n,,,,
(or K in the MacArthur-Wilson model). In fact, there
is a slow but steady rise in the mean persistence time
as n,,,, increases.

Fact 4: Extinction times are approximately
exponentially distributed and this means
that extinctions are likely

By using the numerical methods described in fact 2,
Mangel and Tier (1993a) show that cv(n,,) — 1
as n,,, increases. This is consistent with the gen-
eral theoretical result (Keilson 1979) that the persis-
tence time 7(n) is exponentially distributed:
Prir(n) = t} = 1 — exp[—¢/T(n)] and that the proba-
bility density for the persistence time 7(n) is

t

1
+ = — ———\dt. W
Pr{t = 7(n) =t + dt} 1 )exp ) dt. We can

611
500047 a
4000+ / No catastrophes
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£ 10004
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@ 1907 b
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©
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160 T T J
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FiG. 3. Results for a model of flour beetle dynamics (from

Mangel and Tier 1993a) in which if the population size is
currently n, the probability of a birth in the next unit of time
is by(n + b,) exp(—b,n) and the probability of a death is d,n;
these balance at n, = 26 individuals, which can be identified
with the carrying capacity. (a) Comparison of the mean per-
sistence time in the absence of catastrophes with the mean
persistence time when catastrophes occur. The catastrophe
model has rate C(n) = 0.05 for all values of population size
and the distribution of deaths Q(y|#) is binomial with pa-
rameters n and p = 0.5 (see Eq. 2 and discussion leading to
it). Thus, catastrophes occur at a rate of about once every 20
time units and when a catastrophe occurs, each individual
has a 50% probability of death. (b) Further examination of
the mean persistence time in the presence of catastrophes.
Notice that the mean persistence time rises slowly with the
population ceiling and that the shoulder associated with the
model in the absence of catastrophes disappears.

view this density as a likelihood for 7(n) and ask what
is the most likely value? The answer is that the most
likely value of 7(#), regardless of the value of the mean
persistence time, is 0! That is, in an “ensemble average
world view,” the mean 7(n) is achieved by the average
of lots of very rapid extinctions with some very long
persistences.

This idea is best illustrated by considering individual
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0 100

Population Size at Time ¢, N(t)

0 100
Time, t
F1G.4. Examples of population trajectories, in the absence
(panel a) or presence (panel b) of catastrophes. Here we have
simulated the birth and death dynamics used to generate the
mean times shown in Fig. 3, and assumed no population
ceiling. In the absence of catastrophes, all five trajectories
persist for the 100 time units shown; however in the presence
of catastrophes two of the five trajectories lead to extinction
before 1 = 100, two other trajectories lead to values of pop-
ulation size that are low at 1 = 100, and only one of the five
populations is relatively large at ¢ = 100.

trajectories of populations (Fig. 4). Here we have plot-
ted five trajectories for the birth and death dynamics
of flour beetles, used to generate the persistence times
in Fig. 3, with a very large population ceiling. In the
absence of catastrophes (Fig. 4a), we see that all five
trajectories persist for the 100 time units shown, how-
ever in the presence of catastrophes (Fig. 4b) two of
the five trajectories lead to extinction before 1 = 100
(remember that the mean persistence time is ~200),
two other trajectories lead to values of population size
that are low at ¢ = 100, and only one of the five pop-
ulations is relatively large at 1 = 100.

Population viability analysis often has as its goal the
prediction that the population will persist for a spec-
ified amount of time, given the initial size. Our result

shows that this can be estimated through the use of an
exponential distribution with mean 7(n), and for this
reason it is important to compute 7(rn) as accurately
as possible.

THE IMPLICATIONS

We now consider some implications of these results.
When making recommendations to managers, it is im-
perative (so as to avoid the egg on the face phenom-
enon) to provide the most realistic and honest assess-
ments of the situation. The four facts listed above have
many important consequences.

Even under the absolute best circumstances, the long-
term persistence of populations is not guaranteed (fact
1). This suggests, for example in the consideration of
reserve design, that more than one reserve, spaced apart
(so that catastrophes occur independently at different
reserves) is probably more effective. Perhaps we need
to rethink yet again the SLOSS (single large or several
small) debate concerning the structure of reserves. That
is, at a local level, catastrophes are likely to make local
extinctions far more common than short-term studies
of environmental variability would lead us to believe.
Thus, we need to consider catastrophes in the general
discussion of SLOSS. For example, the discussions of
corridors in conservation (Fahrig and Merriam 1985,
Burkey 1989, Hobbs 1992) often ignore corridors as a
means of passing catastrophic epizootics.

It is now possible to numerically compute persis-
tence times for populations with extremely complicat-
ed dynamics, including two sexes, age structure, clutch
births, etc. (fact 2). Thus, a two-pronged attack can be
taken. The method described here and in Mangel and
Tier (1993a) can be used to investigate, from the gen-
eral theoretical perspective, how these factors alter per-
sistence. At the same time, it is worthwhile to invest
resources into the details for the determination of these
processes so that it will be possible to build detailed
and accurate models for particular endangered species.
On the other hand, because it will generally be difficult
to accurately estimate the rates of catastrophes and the
distribution of deaths, this work calls into question the
use of mean extinction times in the practice (vs. the
theory) of conservation biology; we should begin to
consider alternative measures.

Minimum viable population sizes are almost cer-
tainly much larger than those predicted based on some
variant of the MacArthur-Wilson model (fact 3) or any
other population viability analysis that ignores catas-
trophes.

Even when conserved populations are large, we
should expect extinctions; they are likely events (fact
4) and we should be prepared with contingency plans
when events that could lead to extinctions occur.
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APPENDIX

In this Appendix, we elaborate upon the results of the anal-
ysis shown in Fig. 2. In doing so, we use this simple example
to show the logic underlying the more complex calculations
in Peters and Mangel (1990). Recall that we let Z(¢) = log[N(¢)]
denote the logarithm of population size and assume that be-

. dz
tween catastrophic events aZ = r, that catastrophes occur at

rate ¢ and that when a catastrophe occurs, the logarithm of
population size decreases by an amount Y, following an ex-
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0.8+
CAT
0.6+

0.4+

Probability of Persistence, given Z(0)

BDC
CAT

Z(0)

FiG. Al. The persistence of an exponentially growing pop-
ulation in the presence of catastrophes (curve labeled CAT)
and in the birth-and—death process interpretation of the mod-
el. We focus on the logarithm of population size, which sat-

. . dz e
isfies the growth equation @ = r with initial value Z(0). The

curve labeled CAT is constructed using the theory of Peters
and Mangel (1990) in which we assume that between cata-

. dz
strophic events ar = r, that catastrophes occur at rate ¢, and

that when a catastrophe occurs, the logarithm of population
size decreases by an amount Y, following an exponential dis-
tribution with mean Y. The curve labeled BD is constructed
by assuming that Z(¢) is the average of a birth and death
process Z with birth rate b and death rate d, with r = b — d.
The curve labelled BDC is based on the assumption that in
the presence of catastrophes the death rate is increased from
dtod + cY. Parameter values for panel (a) are b = 0.9, d =
0.329, ¢ = 0.05, and Y = 5 and for panel (b) are b = 0.4, d
=0.1,¢=0.05and Y = 5.

ponential distribution with mean Y. Defining persistence to
mean the probability that Z(¢) never falls below O (i.e., that
the population size never falls below 1), we can use Eq. 4.12
of Peters and Mangel:

Pr{persistence, given Z(0) = z,}

c\ 1 c
=1- ;)Y exp| —<)T/ - ;)zo]. (A.1)

Next, suppose that we assume that Z(¢) is actually the average
of a birth and death process Z for which

Pr{change in Z in the next At = 1} = bAt + o(A?)
Pr{change in Z in the next At = —1} = dAr + o(Af) (A.2)
Pr{no change in 7 in the next Az} = 1 — bAt — dAt

+ o(A?),

where o(A?) denotes terms that involve higher powers of At.
Then if P(z,) is the probability that Z(¢) never falls below 0,
given that Z(0) = z,, we have for z, = 1

P(z,) = bP(z, + 1) + (1 — b — d)P(z,) + dP(z, — 1). (A.3)

That is, the probability of persisting from z, is the average of
(a) the probability of persisting from z, + 1, given that in the
next interval of time the value of Z changes by 1, (b) the
probability of persisting from z,, given that in the next interval
of time the value of Z does not change, and (c) the probability
of persisting from z, — 1, given that in the next interval of
time the value of Z changes by —1. For z, = 0 we have

P() = bP(1) + (1 — b — d)P(0). (A.4)

Setting P(z,) = 1 — K exp(—Hz,) in Eq. A.3 we find that H
satisfies the equation

b+d— be ' — det = 0. (A.5)

The solution of Eq. A.5 is H = log(b/d). Using Eq. A.4 we
find that the constant K is given by

4 _d
b

(A.6)

Note that K < 1 because, in general, a population starting at
Z(0) = 0 will have a chance of growing and thus escaping
extinction. We can compare this result with the model that
allows for catastrophes (the curves labeled CAT and BD in
Fig. Al).

How can we include catastrophes in this model? One ap-
proach is to use the techniques of Peters and Mangel (1990)
as described in the text. A simple alternative would be to
increase the death rate d by the deaths associated with catas-
trophes. That is, we replace d by d + cY (curve labeled BDC
in Fig. Al). However, this averaging process leads to either
an over- or underestimation of the probability of persistence.



