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ABSTRACT The computation of persistence times of pop-
ulations has become a central focus in conservation biology. We
describe a simple, direct method for finding the statistics of
persistence times by assuming that there is a maximum pop-
ulation size. Thus, even though the population dynamics may
be very complex for population sizes below the maximum, it is
possible to write a finite set of equations from which the mean
and second moment of the persistence time can be found by
using simple, algebraic methods. We apply the method to
compute the mean and coefficient of variation of persistence
times of populations that suffer large decrements (catastro-
phes). Our results show that in the presence of catastrophes,
the increase in mean persistence time with large populations is
not nearly as rapid as other theories suggest and that catas-
trophes occurring at even modest rates can considerably in-
crease the risk of extinction.

The computation of the persistence times of populations has
become a central focus in conservation biology (1). In this
note, we describe an exceptionally simple, direct computa-
tional method for finding the statistics of persistence times
once the important biological processes are understood.
For pedagogical ease, we consider a particular model of a
population with both demographic fluctuations and environ-
mental catastrophes (2) and assume that the population can be
described by a single variable X{(z), representing population
numbers at time £ Our results can be extended to population
vectors in a conceptually direct manner (see Discussion).
We assume that this population can change due to single
births and deaths (3, 4). If the current population size is x,
then the probability of a birth in a very small interval of time
At is B(x)At + o(At), where o(Ar) indicates higher order At
terms, and the probability of a single death from demographic
causes in At is D(x)At + o(At). We assume that the chance
that an environmental catastrophe occurs is C(x)At + o(At)
and that when such a catastrophe occurs, the probability that
y of the x individuals present die is Q(y|x), so that £}_,
Q(ylx) = 1. We also assume that there is a critical population
size x. below which the population is functionally extinct.
Our method rests on the following simple observation.
Regardless of the complexity of the density dependence in
birth, death, and catastrophes, there is without a doubt a
maximum value that the population can attain. This value
Xmax i then a population ceiling in the spirit of MacArthur and
Wilson (3) but differs in one extremely important respect. In

virtually all previous work (reviewed in ref. 2), the density
dependence in the models has been trivial, and the ceiling
itself has introduced density dependence. Our situation is
different in that there can be extremely complicated density
dependence for population sizes below xmax. The behavior of
the population below xmax generally will involve stable equi-
libria, one of which can be interpreted as the carrying
capacity. We also expect that if the population size is near
Xmax, then it will decrease and move towards the carrying
capacity. This is in contrast to the MacArthur—Wilson-type
models in which the population ceiling is also interpreted as
the carrying capacity of the population. Thus, we restrict the
population size to the interval x; + 1 to xmax. In the model of
MacArthur and Wilson, B(x) vanishes if x > xyax.

To measure the persistence of the population, we define the
random variable 7(x) as the first time that the population size
reaches or is less than x., given that it starts at x; we shall call
it the ““persistence time”” or “‘extinction time.” Our goal is to
present a simple and straightforward method of computing the
first and second moments of 7(x). We will use the coefficient of
variation (CV) to measure the variability of persistence times.

THE METHOD

The first measure of population performance is the mean
extinction time T(x), where E is expectation:

Tx) = E{r(x)}. 1]

With the assumptions described above, T(x) satisfies the
following equation (2-4):

—1=Bx)Ttx + 1) + D&)Tx — 1) - [Bkx) + Dix) + C()]Tx)

+Ckx) 2 QWTex —y). 2]

y=0
The importance of the population ceiling is that we can write
Eq. 2 as a matrix equation of the form
MT = -1, 3]

where the vector T = {T(x + 1), . . . T(xmax)}7, the matrix M
is defined below, and the vector -1 = {-1, -1, -1, ...,
—1}7. If we set R(x) = B(x) + D(x) + C(x) — C(x)Q(0lx), the
first few rows of the matrix M are

—R(x.+1) Bx.+1) 0 0
D(x. +2)+ Clxe + 2)Q(1x. +2) —R(x.+2) Bx. + 2) 0
Clxc +3)Q2x. + 3) D(x.+3)+ Cx. +3)Q(1|x. +3) —R(x.+3) B(x. + 3)

Clx. + 4)Q@|x. + 4)

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ““advertisement”’
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Clxe +4)0Q2x. + 4)

Dx.+4)+Clx. + )Q(1x. +4) —R(x.+4)

Abbreviation: CV, coefficient of variation.
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Eq. 3 can be solved for T as follows:
T=-M1, [4]

where M~! is the inverse of the matrix M. Computer lan-
guages such as TRUEBASIC, MATLAB, Or MATHEMATICA have
built-in programs for inverting matrices. Thus, once M is
defined (that is, after the underlying biological processes are
understood), finding the mean persistence time for any pop-
ulation level is a simple computational problem and can be
handled easily by most small computers. This is true for even
reasonably large state spaces.

We can study the variability of the persistence time by
computing the second moment S(x) as follows:

S(x) = E{r(x)*}. (51

Similar to the treatment for T(x) in Eq. 2 above, S(x) satisfies
S(x) = 0 for x = x. and for x > x. as follows:

—2T(x) = B(x)S(x + 1) + D(x)S(x — 1)
= [B(x) + D(x) + C(x)]S(x)
+CW 2 0OIVSK — ), 6
y=
so that in matrix form we have
MS = -2T, [71
where the vector S = {§(x)}. The solution of Eq. 7 is
S=-2M7'T, [81

and since we have already computed M1, this requires no
further complicated calculation. The variance of the extinc-
tion time for a population with initial size x, V(x), is then
computed component-wise by using

V(x) = S(x) — TX(x), [91
and the coefficient of variation is

Vix
T(x)

E

CV(x) = [10]

The CV gives a standard measure with which to compare the
variability of extinction times for different population dy-
namics. The variance and CV are important statistics and
often cannot be computed analytically.

EXAMPLES

To illustrate the method, we shall consider two examples.
The first involves a reanalysis of the model of MacArthur and
Wilson. The second involves a model of flour beetle dynam-
ics, which has a more complicated state of dependence.

In the model of MacArthur and Wilson, C(x) = 0 (no
catastrophes), B(x) = Axforx =1,2,... K,and B(x) =0
for x > K, and D(x) = ux. Here xpax has a natural definition
as xmax = K + 1. A serious defect of this model (5) is that
moderate values of K produce exceptionally large persistence
times. For example, when A = 2.5, u = 1.82, and x. = 3 (Fig.
1, curve a), K values of 20, 30, 40, and 50 produce respec-
tively T(K) values of 90.1, 1405, 24,667, and 466,261. That is,
when K increases by a factor of 2.5, T(K) increases by a factor
of more than 5000, or when K increases by a factor of 0.2,
T(K) increases by a factor of more than 20. This kind of
observation has often had important policy implications in
setting the size of ‘‘minimum viable populations’’ (1, 5).
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FiGc. 1. Results for the MacArthur—Wilson model. Curves: a,
mean extinction time T(K) when catastrophes are ignored [note both
the exceptionally large value of T(K) and T(K) continues to increase
as K increases]; b—f, mean extinction time T(K), with K = xghx,
when catastrophes as described in the text are included for various
combinations of catastrophe rate ¢ and probability of death p as
follows: ¢ = 0.02, p = 0.25 (b); ¢ = 0.01, p = 0.5(¢c); ¢ = 0.02,p =
0.5 (d); ¢ = 0.05, p = 0.5 (¢); and ¢ = 0.02, p = 0.75 ().

We can use our method to investigate the effects of
catastrophes on these exceptionally large times. For exam-
ple, suppose that C(x) is a constant C(x) = ¢ and that Q(y|x)
is a binomial distribution with parameter p. The approximate
interpretation of these values is that catastrophes occur about
once every 1/c years, and when a catastrophe occurs,
individuals have independent probabilities of death of p. We
then find (Fig. 1, curves b—f) considerable reduction in the
mean persistence time. Including relatively rare catastrophes
can reduce the mean extinction time considerably. The
logarithmic scale in Fig. 1 somewhat distorts the significance
of the effect of including catastrophes. To more closely study
this effect, we can plot [T(K) — T.(K)]/T(K), where T(K) is
the mean persistence time in the absence of catastrophes and
T.(K) is the mean persistence time when catastrophes are
included, as a function of K (Fig. 2). This ratio is a measure
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Fi1G. 2. The ratio [T(K) — T(K)]/T(K), where T(K) is the mean
persistence time in the absence of catastrophes and T¢(K) is the mean
persistence time when catastrophes are included, is a measure of the
decrease in the mean extinction time due to catastrophes. For curve
a, the catastrophe rate ¢ = 0.01 and death probability p = 0.5; for
curve b, ¢ = 0.02 and p = 0.25.
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of the decrease in the mean extinction time due to catastro-
phes. For modest values of K, ignoring the presence of
environmental catastrophes can overestimate the mean per-
sistence time by 99% or more.

In the model for the population dynamics of the flour beetle
Tribolium (6), B(x) = bo(x + 8)exp(—b1x) and D(x) = dx,
where the parameters can be empirically determined. For
example, when by = 0.13, b; = 0.0165, d; = 0.088, and 6 =
1 and in the absence of catastrophes, the birth rate and death
rate balance at about x = 26, so that we can take xpax = 50
and be fairly confident that the population is never likely to
exceed this value. In fact, if we choose xpax = 50 or 300, there
is virtually no effect on the persistence time (Fig. 3A).
However, this rapid shoulder does not persist when catas-
trophes are included (Fig. 3 B-D). It is likely, of course, that
the mean extinction time does reach a plateau even in the
presence of catastrophes as xpyax increases, but the rise is
clearly much slower. Another way of seeing this is to plot
T(xmax)/ T(xmax = 300) as in Fig. 4. This ratio clearly is 1 when
Xmax = 300, but the figure shows that the rapid rise when
catastrophes are ignored does not occur when they are
included. In general, determining an appropriate choice of
Xmax Te€quires some amount of numerical experimentation to
insure that the predictions for T(x), when x is below xpax, do
not depend upon the choice of xmax. This is easily done with
a simple numerical method. For example, for the combina-
tions of parameters in Fig. 3 B-D, the value of T(10) is
essentially constant as long as xpax = 50.
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FiG. 4. By plotting the ratio T(xmax)/T(Xmax = 300) (curve a) or
Te(xmax)/ Tc(Xmax = 300) (curve b) (for ¢ = 0.05 and p = 0.5) for values
of xmax = 300, we can directly see that the relative rise in mean
extinction time when catastrophes are included is much slower.

We can use Eq. 7-10 to study the coefficient of variation
of the persistence time. In both cases (and for other models),
we find that CV(x) starts at around 2 and approaches 1 as x
— Xmax and xmax increases. This is consistent with the
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Fic. 3. Results for the flour beetle model, in which there is a stable steady state independent of maximum population size and in which the
population ceiling is much larger than the stable steady state. (A) Persistence time T(xmax) is shown as a function of the population ceiling xmax
when catastrophes are ignored. As with the MacArthur-Wilson model, there is a ‘‘shoulder’’ in the persistence time, which (for these parameters)
rises rapidly for values of xmax around 50. (B-D) This shoulder disappears when catastrophes are included, and, although the persistence time
Te(xmax) increases with xmax, it is >1 order of magnitude smaller than the persistence time when catastrophes are ignored. (B) Catastrophe rate
¢ = 0.01 and death probability p = 0.5. (C) ¢ = 0.025, p = 0.5. (D) ¢ = 0.05, p = 0.5.
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theoretical (7) and numerical (8) results that 7(x) is exponen-
tially distributed, so that Pr{r(x) < ¢} = 1 — exp[— ¢/T(x)],
where Pr is probability. It also means that the mean T(x) is
achieved by the averaging of many rapid extinctions and a
few large ones (in fact, the most likely value for the density
Prit = 7(x) =t + dt} = 1/T(x)expl— t/T(x)ldt is t = 0).

DISCUSSION

We have provided a framework for computing the statistics
of extinction times by a direct and simple method. Because
of its direct nature, we are now able to explore more realistic
biological descriptions for the dynamics of the population.
These include factors such as immigration, emigration, mul-
tiple births (clutches), sex or age, true metapopulations, and
more than one species. We can also include different types of
catastrophes that occur at different rates and have different
effects on the population. For example, a population might be
in a physically unstable environment but also might be
susceptible to a certain disease that leads to periodic epi-
demics. This would lead to two different types of jump terms
in Eq. 2. The advantage of our approach is that the com-
plexity of the model does not impact on it, whereas analytic
methods are often strongly model dependent.

The results have a number of implications. Since it is now
possible to numerically compute persistence times for pop-
ulations with extremely complicated dynamics, it is worth-
while to invest resources into the determination of these
dynamics. Our results show that in the presence of catastro-
phes, minimal viable population sizes are almost certainly

Proc. Natl. Acad. Sci. USA 90 (1993)

much larger than those predicted on the basis of some variant
of the MacArthur—Wilson model. The properties of the CV of
the extinction time show that even when conserved popula-
tions are large, we should expect extinctions; they are likely
events, and we should be prepared with contingency plans
when such extinctions occur. In fact, the analysis presented
here calls into question the use of the mean extinction time
in the practice (vs. the theory) of conservation biology and
suggests that alternative measures should be developed.
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