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Abstract.

Ecological processes often depend upon the patterning, as well as the absolute

density, of resources. In this paper, we develop methods for describing pattern from the
perspective of the organism encountering and exploiting the resources, and for recon-
structing pattern from the description. The essence of our description is the “‘structure
function,” which is the probability that a point r units away from the current point contains
resources, conditional on the resource state of the current point. We first show how the
structure function is determined from pattern and then describe an algorithm (the method
of the “Force to be Full”) for constructing pattern in any number of dimensions from a
given structure function. We illustrate our ideas with empirical data from krill surveys and
with simulated but complex three-dimensional patterns.
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THE ROLE OF PATTERN IN DESCRIPTIVE AND
PRrEDICTIVE ECOLOGY

Many ecological processes depend on the spatial pat-
tern of resources or organisms and not just on their
density. Regularly distributed food items might be more
difficult than clumped food items for a forager to find.
Regularly distributed sessile competitors might devel-
op a less exaggerated size hierarchy than random or
clumped competitors. Regularly distributed flowers
might have lower pollination success than flowers in
clusters.

Distinguishing regular patterns from clustered pat-
terns is a nontrivial task. Most commonly, a variety
of spatial statistics are used to distinguish patterns from
arandom pattern, with the hope of deducing something
about the process that produced the pattern (Cressie
1991). In other cases, a set of descriptors or statistics
about pattern may be used to deduce the consequences
of pattern. Here we propose a description of pattern
based on the experience of an organism encountering
that pattern. Because of a focus on the organism in its
ecological setting, this description can be used in a
predictive way (Mangel 1994).

For a description of this sort to be useful, it must be
possible to translate it back into pattern. To this end,
we describe an algorithm for generating patterns
matching a given description. Such a construction al-
lows for design of field and computer experiments that
control spatial pattern in a meaningful way.

The description of space and spatial pattern has fun-
damental consequences for reasoning about and mod-
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eling spatial processes. For example, an essentially con-
tinuous view of space underlies the large class of
diffusion models. With this sort of model, clumpy en-
vironments, usually produced by discrete individuals
or resources, are difficult to describe and tend to be
ignored. Similarly, such models generally have dynam-
ics based upon strictly local interactions, an often in-
appropriate restriction that has fundamental dynamic
consequences (but see Levin and Segel 1985). Cellular
automata, in which the space is discretized and the
state of a particular cell depends upon the states of
neighboring cells, can include nonlocal interactions,
but generally assume a very regular geometry of sites
(such as a regular square or hexagonal lattice) with
unknown implications for dynamics. Such methods
overly restrict the assumptions about the nature of dy-
namics.

On the other hand, many spatial statistics give no
insight into process. Nearest neighbor statistics, for
example, ignore all global aspects of the pattern. Semi-
variograms and related methods, although similar to
the treatment of space introduced in this paper, are
highly phenomenological in their description of pat-
tern, combining the data from different locations with-
out a mechanistic biological underpinning. The ap-
proach that we use in this paper allows one to provide
information about resources at all distances.

Our goal is to avoid the dangers of overly restrictive
assumptions about the structure of space and of overly
general descriptions of space. By beginning from the
perspective of the organism moving in space, we pro-
duce a general description of spatial pattern. This de-
scription is neither so detailed as to be consistent with
only a single pattern, nor so general as to be an insuf-
ficient basis for the construction of patterns.

Our new tool for describing and constructing pattern
is the “structure function,” which is the chance that a



1290

spatial point some distance away from a given point
contains resources, conditioned on the resource state
at the current point. Using the simple first-order Mar-
kov process in one dimension, we illustrate the pro-
cesses of translating from pattern to structure function
and from structure function to pattern. With this basis,
we proceed to the more difficult and interesting mul-
tidimensional cases, showing how to compute the
structure function from different sorts of empirical or
simulated data. We conclude by presenting the method
of the “Force to be Full,” an algorithm to produce
patterns matching a given structure function in mul-
tiple dimensions, and illustrate the technique with both
simulated and empirical data.

THE STRUCTURE FUNCTION:
DESCRIBING PATTERN IN A MEANINGFUL WAY

An organism living in a world with spatially struc-
tured resources can attend to two kinds of information,
global and local. Global information consists of the
overall density of resources and ignores spatial pattern.
Local information includes some description of that
pattern. A complete description is a map of the location
of every item. There are many drawbacks to storing
information in this way, and a less complete descrip-
tion might be preferable. For example, a forager might
want to know, given that the current locale has or does
not have resource, what the likelihood is that there is
resource in the vicinity of a point r units away. This
local information constitutes the structure function,
which is the central feature of our analysis:

p(r| 1) = Prob{resource in the vicinity of a point r units
away, given that there is resource at the
current point}

p(r|0) = Prob{resource in the vicinity of a point r units
away, given that there is no resource at
the current point}.

1)

To start, we note that the two aspects of the structure
function are connected. If p, is the average density of
resource in the environment, then

pap(r|1) + (1 = pp(r|0) = pa. 2

The left-hand side gives the probability of finding re-
sources at a point a distance r from a randomly chosen
point. That is, if the organism starts at a point with
resources (with probability p,) and moves a distance
r, the probability is p(r|1) that the new point has re-
sources. If it starts at a point without resource [with
probability (1 — p,)], the probability that the point r
units away has resource is p(r|0). Together, these must
give the average density p, of resources in the envi-
ronment.
Solving Eq. 2 for p(r|0) gives

pdll — p(rll)]'

p(r|0) =

3)
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Thus, it is sufficient to measure p, and construct p(r| 1),
since p(r|0) can be obtained from it.

The structure function is related to the common de-
scription of pattern by the semivariogram (Mackas et
al. 1985). To see this, let Z(r) = 1 if there is resource
in the vicinity of the point r, let Z(r) = 0 otherwise
and let d measure distance from the randomly picked
point at r. The semivariogram is

S(d) = 0.5E{Z(r) — Z(r + d)}>. 4)

To compute Eq. 4, we condition on Z(r) = 1 (with
probability p,) or Z(r) = 0 (with probability 1 — p,).
Then

S(d) = 0.5{p.[1 — p(d| D] + (1 = pJp(d|0)}. (5)

The first term on the right-hand side arises as follows:
if Z(r) = 1, then Z(r + d) = 1 with probability p(d|1)
and {Z(r) — Z(r + d)}? = 0; similarly Z(r + d) = 0
with probability 1 — p(d|1) and {Z(r) — Z(r + d)}> =
1. The second term is derived by a similar argument.
The advantage of the structure function over the se-
mivariogram can be seen by comparing Eq. 5 and Eq.
1. Both provide information about how rapidly the
environmental average is approached from a local point.
The structure function retains local information (about
the resource state of the current point), whereas the
semivariogram loses this information through the av-
eraging.

GENERATING THE STRUCTURE FUNCTION FROM
PATTERN AND VICE VERSA

In this section, we show how to translate from the
structure function to the pattern and from the pattern
to the structure function. We focus on clustered pat-
terns of resource (rather than regular patterns), but the
general method of the structure function can be used
to study regular patterns as well. We begin with a sim-
ple and instructive one-dimensional case to clarify ideas,
although our main focus is two or three dimensions.
When one-dimensional pattern is generated by a first-
order Markov process, it is possible both to compute
the structure function analytically and to produce
matching patterns. In all other cases, this simplicity is
lost. We then discuss how to determine structure func-
tions from empirical data either directly (when data
are given completely) or computationally using an ap-
proximate method (when only nearest neighbor dis-
tances are available). Finally, we provide an algorithm
(the method of the “Force to be Full”) for creating
spatial pattern in two or three dimensions, given a
structure function.

One-dimensional, first-order Markov patterns
and the associated structure functions

When pattern is generated by a first-order Markov
process, the probability that a particular location has
resource depends only on the status of a single neigh-
bor. That is, one can think of the environment as a
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Fic. 1. Examples of structure functions generated by a

one-dimensional Markov process. (a) Parameters p, = 0.75,
Do = 0.075 so that p, = 0.231; (b) parameters p, = 0.25, p, =
0.2 so that p, = 0.211. Variables defined at Egs. 1 and 2.

series, with the probability of resource at a given point
depending only on the state of its left neighbor. This
makes construction of such patterns simple. If the spa-
tial structure is generated in this way, it is also simple
to calculate the structure function.

The first-order Markov process is fully specified by
transition probabilities p, and p, representing, respec-
tively, the probabilities of finding resource at a site
immediately adjacent to a full and to an empty site.
Setting Z(r) to be 1 in the presence of resource and 0
in its absence as before, we have

py=Pr{Z(r + 1)=1|Z(r) = 1}
Do = Pr{Z(r + 1) = 1|Z(r) = 0}. (6)

Note that p, and p, are related by a condition similar
to Eq. 2

ppy + (1 = p)po = P, @)

and thus that two of p,,, p,, and p, determine the third.

Generating such a patterrr is straightforward. Begin-
ning from a point with resources at location 0, establish
the status of subsequent points consecutively based on
the status of adjacent points and the probabilities p,
and p,. For example, to set the state of point i + 1,
choose a uniform random number between 0 and 1. If
there is resource at site i, place resource in site i + 1
if the number is less than p,, using p, in a parallel way
if there is no resource at site /.

Computing the structure function in this case is pos-
sible analytically. Suppose we are at a point with re-
source, so that Z(0) = 1, and wish to compute the
probability p(r|1) that a point r units away contains
resource. This can happen in two ways. If Z(r — 1) =
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1 [with probability p(r — 1| 1)] then point r has resource
with probability p,. If Z(r — 1) = 0 [with probability
1 — p(r — 1|1)] then point r has resource with prob-
ability p,. Putting these together, we have

p(r|1) = p\p(r — 1]1) + po{l — p(r — 1]1)}

=po + [Py = polp(r — 1]1). ®

Subtracting p, from both sides, and using Eq. 7, we
find that

p(r|1) — p, = [p, — pollp(r — 1|1) — p,l.

With initial condition p(1]|1) = p,, the solution of this
recursive equation is

p(r|) =p, + (1 = p)lp, — pol"- 9

The structure function thus depends geometrically on
the transition probabilities p, and p, (Fig. 1).
Structure functions associated with the Markov pro-
cess with different parameters give a hint of how pat-
tern may affect behavior. An organism moving in the
world described by Fig. 1a, where resources tend to be
tightly clustered, will most likely behave quite differ-
ently from an organism moving in the world charac-
terized by Fig. 1b, where resources are more or less
randomly distributed. We might predict long distance
moves from a point devoid of resources to search for
resource clusters in the first case, but not in the second
one. The structure function thus illustrates the logic
underlying area-restricted search (Bell 1991).

Constructing structure functions from
empirical and computer-generated data

It is common that we do not know the stochastic
process that generates a particular pattern. We here
show how to estimate the structure function from em-
pirical data. First, we convert nearest neighbor dis-
tances to resources in one dimension into a structure
function and recommend a related procedure for col-
lecting data to make possible estimation of the struc-
ture function in multiple dimensions. We conclude by
showing how to convert a complete map of the resource
distribution into a structure function in any dimension.

When space is measured discretely, the nearest
neighbor distribution takes the form

g(r) = Prob{nearest neighbor to a given resource is r
units away}.
(10)

©

Since this is a discrete distribution, 2 g(r) = 1.
r=1

In one dimension, we can use the nearest neighbor
distance to recreate the structure function, if we make
the additional assumption that the process generating
the pattern is similar to the first-order Markov case.
Imagine creating a distribution of resources sequen-
tially, by picking an initial resource point, moving a
distance r with probability g(r) to the next resource
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point, and then repeating the process from the new
point. The additional assumption encoded in this al-
gorithm is the independent choice of r in each step.
(The alternative is that the nearest neighbor distances
of consecutive resources are correlated.)

This construction allows for computation of the
structure function in a way analogous to the first-order
Markov case. As before, suppose we are at a point with
resource and wish to compute the probability p(r|1)
that a point r units away contains resource. There are
once again twq cases. If the nearest neighbor distance
d from the first point is greater than r, then point r
definitely has no resource. If the nearest neighbor dis-
tance dis less than or equal to 7, then point r is occupied
with probability p(r — d|1). Note that the case d = r
is covered, because p(0|1) = 1. Adding these terms
together gives

,

p(rl1) = 2 gdp(r — d|1),

d=1

a1

which can be solved iteratively for p(r| 1) given {g(d),
d=1,2,...}. In Appendix 1 we show how this case
generalizes the first-order Markov case.

A form of nearest neighbor distance can be used to
estimate structure functions in the field. To be specific,
suppose that we want to characterize spatial distribu-
tion of fruit, say rose hips, in bushes. To estimate the
structure function without mapping all the fruit, one
can go to a number of bushes and randomly pick a
“central fruit” in each. From this central fruit, extend
a number of rays picked with random orientation and
measure the presence or absence of fruit at various
distances along each of these rays. For example, if fruit
were found in the distance range 40-50 cm in 6 out of
20 cases, p(50|1) would be estimated as 6/20, or 0.3.

When a complete map is given (e.g., Casas 1990), it
is easy to measure the structure function. To do this, let
x, and x, denote any two spatial points, let d(x,, x)
denote the distance between them, and let

Thus, I[r, d(x,, x,)] “indicates” whether (/ = 1) or not
(I = 0) the distance between the two points is exactly
r. The structure function can be computed with the
following algorithm. To begin, specify a region X, which
is far away from the boundaries of the map.

Algorithm 1: constructing the structure function from
a pattern. —

1) Cycle over all x, in X.

2) If Z(x,) = 1 (so that there is resource at x,), then
cycle over all x,.

3) Set

Du(r|1)= EZ(x,)Z(xz)I[r, dx ., X))V Z1[r, d(x,, X,)).

4) Average the p,,.

MARC MANGEL AND FREDERICK R. ADLER
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This algorithm computes the structure function for
a given resource distribution in any number of dimen-
sions.

Generating two- and three-dimensional
patterns from the structure function:
the method of the “Force to be Full”

We have shown how to compute structure functions
from pattern in any number of dimensions, but have
only shown how to construct patterns from Markovian
structure functions and nearest neighbor distances, and
that only in one dimension. These methods fail in high-
er dimensions because locations are not ordered, that
is, in two or three spatial dimensions there is no “next”
point to be generated by a Markov process or by a
nearest neighbor distribution. (This is even true in one
spatial dimension, in which case we have to make an
arbitrary decision about whether the nearest neighbor
to the left or the right is the one that determines the
resource state of the current cell.) A more global ap-
proach to generating pattern is thus required.

We now describe an algorithm for the generation of
a two- or three-dimensional spatial pattern to match
a given structure function; it is designed to iteratively
approach an appropriate pattern. At each step, re-
sources are generated at a given point according to
whether or not the point experiences a large ““force to
be full” from the rest of the pattern. Each point in the
pattern, whether empty or full, has an effect on whether
or not the given point should be full, expressed by the
structure function and the distance to the point. An
appropriate combination of these effects is the force to
be full. Points with a large force to be full are filled
with high probability, those with a small force to be
full are filled with low probability. The algorithm then
continues with the new pattern until the measured
structure function (Algorithm 1) closely matches the
target structure function.

We let x denote a particular spatial location in the
range 0 < x =< Xx,.., With x representing either one,
two, or three dimensions. We let n represent the iterate,
and Z,(x) describe the pattern at the n" iterate, being
equal to 1 when there are resources at x, and O oth-
erwise. Set the maximum number of iterates to be
Nmax- This algorithm is sufficiently complex that we fol-
low several steps with interpretation.

Algorithm: the Force to be Full. —

1) Set n =0, and create the ‘““zeroth” spatial pattern
by filling points independently to match the average
density of resource p,. That is, cycle over all x and at
each point choose a number u randomly distributed
on 0 to 1l and set Zy(x) =1 if u < p, and Zy(x) = 0
otherwise.

Interpretation: Lacking a better starting point, we
randomly distribute resources in space, so that the
average probability of a point containing resources
is p,, determined from the structure function.
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2) Let “1” denote all the points x where Z,(x) = 1
and let “0”’ denote all the points where Z,(x) = 0.

3) Cycle over all x. At each spatial point x, cycle
over all spatial points x' and let d(x; x') denote the
distance between x and x'. Set K[d(x; x')] =
exp[—pBd(x; x')], where 8 is a user-provided parameter
(see Examples below) and set

G/(x)= 2 pld(x; x)| 11K[d(x; x)]

e

+ 2 pldex; X)[0IKId(x; X)) (13)
and
Gox)= 2 {1 = pld(x; x') [ 1]}K[d(x; x)]
+ 2 (1= pld(x; x')| 0]} K[d(x; x)).  (14)

x'€Q”

Interpretation: The function K(d) measures the “in-
fluence” of the presence or absence of resources at
one point on the presence or absence of resources at
another point. We choose an exponentially decaying
function for simplicity. Some numerical experimen-
tation is required to determine an appropriate value
of 8. For example, if 8 is “large,” say >1, then es-
sentially only nearest neighbors will influence a point.
On the other hand, if 8 = 0, then all points equally
influence each other. In the computations reported
in the next section, we use 8 = 0.25.

Think of p[d(x; x')|1] as the ‘“‘desire” of a full
point x’ that point x shares its good fortune in having
resources and of p[d(x; x')|0] as the desire of an
empty point x' that point x enjoys resources. Then
G, (x) measures the summed desire of all spatial points
that point x contains resources. Similarly, Gy(x)
measures the summed desire of all spatial points that
point x lacks resources. Alternatively, we can envi-
sion a “flow” of resources from one filled point to-
wards an empty point. Then G,(x) measures the
summed flow from all filled points to point x.

4) The “force to be filled at x is

G,(x)

T Gm G

(15)
Interpretation: This function compares G, and G,.
If G, is much larger than G, the point x has a large
force to be full.

We shall now rescale the force to be filled twice. In the
first rescaling, we expand the values of FF(x) to cover
0to 1. In the second scaling we ensure that the average
value is p,.

5) Torescale FF(x), let F,,;, and F,,, be the smallest
and largest values of FF(x) over all values of x, and
set

FF(X)_Fmin

FF'(x) = .
(X) Fmax - Fmin

(16)
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Next determine the parameter g so that
1
2 [FF (0} = p, (17)
and set
FF"(x) = [FF'(x)] . (18)

Interpretation: Eq. 16 linearly rescales the force to
be full to cover the range from O to 1. Eq. 17 preserves
this range and is solved for g to simultaneously en-
sure that the average doubly rescaled force to be full,
FF” as defined by Eq. 18, is p,. (A nonlinear scaling
is required for the algorithm to work; we don’t know
why this is so. In general, g is substantially different
from 1.)

Eq. 17 is a nonlinear equation for g. It can be
solved effectively by Newton’s method (Press et al.
1986). We have not yet encountered a case in which
the Newton method did not converge in 10 or fewer
iterations.

6) Cycle over all x setting Z,, (x) = 1 if a uniformly
distributed random number u is less than FF”(x) and
setting Z,, ,(x) = O otherwise. Because the average val-
ue of FF" is p,, the expected density of resources is
also p,.

7) Construct the empirical structure function using
Algorithm 1. Set the empirical structure function to be
SF n+1(d)-

8) Construct the goodness of fit between the given
structure function p(r|1) and the empirical structure
function by

Xmax

D,y = 2 |p(r|1) — SF,.,|w(», (19)

where w(r) is the “weighting” assigned to distance r in
measuring the goodness of fit. For example, if w(r) =
1, then all distances are weighted equally whereas if
w(r) decreases as r increases, then small distances “count
more” in the measure of the goodness of fit. If the
value of D, , , so constructed is smaller than that of the
previous best pattern (i.e., with the previous smallest
D,), then store the current pattern as the best pattern
and the current goodness of fit as the best goodness of
fit.

9) Replace the current value of n by n + 1. If the
new value is less than n,,,, then return to step 2. Oth-
erwise, stop and adopt the pattern with the smallest
value of D,. This algorithm does not “converge,” in
the sense that as » increases D, decreases. However, if
enough iterations are considered, an excellent fit be-
tween the empirical and underlying structure functions
can be obtained.

EXAMPLES

We shall now illustrate how some of these ideas can
be used to generate structure function from pattern and
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TABLE 1. Nearest neighbor frequency distribution for krill
swarms, reported by Butterworth et al. (1991), based on the
data of Miller and Hampton (1989).

Distance interval

(km) Frequency of swarms

0-0.2 328
0.2-0.4 277
0.4-0.6 162
0.6-0.8 122
0.8-1.0 86
1.0-1.2 69
1.2-1.4 49
1.4-1.6 42
1.6-1.8 26
1.8-2.0 35
2.0-3.0* 101
3.04.0 54
4.0-5.0 28

>5.0 187

* We assume that swarms in the 2.0-3.0, 3.0—4.0, and 4.0-
5.0 km intervals are uniformly distributed in those intervals
and that swarms in the >5.0 category were uniformly dis-
tributed between 5.0 and an upper limit of 15.0 km.

pattern from structure function. The computations de-
scribed here were run on a Macintosh IIfx, Quadra
700, or Quadra 800 using TRUEBASIC. Because each
iteration of the Force to Be Full algorithm requires
repeated cycling over all spatial points twice, one is
likely to run out of time and patience waiting for the
result before one runs out of computer memory. In
Appendix 4, we discuss the timing of the algorithm in
more detail.

Butterworth et al. (1991) published the nearest
neighbor distances (Table 1) for krill aggregations stud-
ied by Miller and Hampton (1989). In this study, = 1500
krill (Euphausia superba) aggregations were detected
and sized acoustically by cruising linear transects in an
area of the southwest Indian ocean during the First
International Biomass Experiment (FIBEX).

In order to achieve a consistent spatial increment in
the construction of the structure function, we made the
additional assumption (see Table 1) that the swarms
in the 2.0-3.0, 3.0-4.0, and 4.0-5.0 km intervals were
uniformly distributed in those intervals and that the
swarms in the > 5.0 km category were uniformly spread
between 5.0 km and an arbitrary upper limit of 15.0
km (the actual choice had little effect on the structure
function in this case). Thus, the distribution of nearest
neighbor distances has maximum 15 km. Consequent-
ly Eq. 10 is normalized with a maximum value of r =
15. With these modifications, we can recreate a sample
path of the kind measured by Miller and Hampton
(Fig. 2) and the structure function (Fig. 3). This essen-
tially one-dimensional pattern appears to be generated
by something close to a first-order Markov process.

Higher order Markov processes, even in one dimen-
sion, incorporate spatial correlations, in that the state
of a point depends on several of its neighbors to the
left and not just the first. A second-order Markov pro-
cess requires that we define
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FiG. 2. A “‘recreated” linear transect through krill aggre-
gations, using the nearest neighbor distances from Table 1 to
construct the spatial pattern using Algorithm 1.

py=Prob{Z(r) = 1|Z(r — 1) =i, Z(r — 2) =j} (20)

fori=0o0r 1 and j = 0 or 1. For example p,, is the
probability that a site is filled when its immediate
neighbor to the left is empty, but its next neighbor is
full. These values generalize p, and p, in Eq. 6. Sim-
ilarly, description of a third-order Markov process re-
quires values for

P =Prob{Z(r)=1|Z(r— 1)=|,
Z(r—2)=j,Z(r—3)=k} 21)

fori=0o0rl,j=0o0r1,and kK = 0 or 1. Generation
of patterns follows an algorithm similar to that for first-
order Markov processes and is described in Appen-
dix 2.

We challenged the “Force to be Full” algorithm to
produce three-dimensional patterns to match the struc-
ture function from a variety of third-order Markov
processes. The parameters poy, = 0.368, po,o = 0.444,
Door = 0.273, poyy = 0.473, pi1go = 0.21, p,o, = 0.045,

plril)

0.5 1.0 1.5

r (km)

F1G. 3. The structure function for krill aggregations based
on the recreated transect in Fig. 2.
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(a) The structure function generated by the third-order Markov process described in the text. (b) The empirical

structure function generated during the first iteration (i.e., random allocation of resources over space) of the “Force to be
Full” algorithm. (c) The best empirical structure function, taken over 20 iterations of the “Force to be Full” algorithm,
compared with the structure function generating it. (d) A cross section, at z = 4, of this empirical pattern.

Di1o=0.014, p,;, = 0.217 produce a structure function
(Fig. 4a) with many “peaks and valleys.” We applied
the method of the force to be full to a three-dimensional
region of size Xpax = 31, Vimax = 8, Zmax = 6. The first
iteration of the “Force to be Full” algorithm produced
a distribution of resources with essentially no spatial
pattern (Fig. 4b), but by the time the algorithm is fin-
ished, for only a moderate number of iterations (7.,
= 20), the fit between the empirical structure function
and that corresponding to the third-order Markov pro-
cess is excellent (Fig. 4¢). Since the “Force to be Full”
algorithm generates the actual distribution of re-
sources, we can consider that as well or, more inform-
atively, cross sections of that distribution (Fig. 4d).

DiscuUssION

We believe that the structure function, the condi-
tional probability of finding resource at a point as a
function of the distance from a given point, is an in-
tuitive (because of its focus on local conditions), usable
and interpretable means to describe spatial pattern.
Structure functions can be easily estimated in the field
and provide sufficient information to generate patterns
in multiple dimensions with the Force to be Full al-
gorithm. Although we have focussed on structure func-
tions corresponding to presence or absence of resource,

more complicated cases work in the same fashion. For
example, human krill fishers differentiate between
“green”” krill (those that have recently fed and for which
there is little market value) and “pink” krill (those that
have not recently fed and that have high market value).
In that case, we need to introduce three structure func-
tions: one conditioned on absence of krill at a point,
one conditioned on the presence of green krill, and one
conditioned on the presence of pink krill. Similarly,
we can superimpose upon the presence or absence of
resource a distribution of sizes. For example, we might
use the structure function to describe whether clusters
of fruit are present or not in a cell and then a different
probability distribution for the number of fruit in the
cluster.

We believe that the structure function is the appro-
priate tool to describe spatially distributed resources
encountered by foragers. A fly minimizing distance
travelled while ovipositing on rose hips that are clus-
tered within bushes must decide how far to travel from
points with and without fruit. Knowledge of the struc-
ture function and the costs of travel are sufficient in-
formation to compute the fitness of differing behaviors
in this case (Mangel 1994). In dynamic situations, when
fruits or resources are depleted by one or more foragers
or are regenerated, the structure function can be used
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both to describe the spatial consequences of the dy-
namics and to compute changing optimal behavioral
responses. Such precise behavioral predictions can be
tested either with direct observation of individuals or
by careful measurement of the state of resources after
foraging (Levin et al. 1977). For example, the pattern
of parasitized and unparasitized fruits carries a record
of the foraging behavior of tephritid fruit flies (Mangel
1994). Similarly, the nectar level in flowers, or even
the pollination status of seeds, carry a record of the
spatial foraging behavior of pollinators.

Our approach has antecedents in the literature of
pattern recognition (Duda and Hart 1973), simulated
annealing (Aarts and Korst 1989), Gibbs sampling
(Ripley 1988:96), and neural computation (Amit 1989).
Such methods can also be used to recognize and gen-
erate clustered spatial patterns by means of construct-
ing an “‘energy” function related to the current spatial
configuration and attempting to minimize that energy
function. Usually some kind of Gaussian assumption
is made, whereas none is required with our algorithm.
In addition, in principle the method of the Force to be
Full changes the entire pattern on each sweep through
the algorithm, rather than changing the pattern incre-
mentally.

There are several technical issues not addressed by
the “Force to be Full” algorithm. There is no guarantee
that the algorithm will approach an appropriate pat-
tern. In the worst case, there might be no pattern with
a given structure function. Although we avoided this
situation by using structure functions created from a
biological process, such infeasible functions do exist.
For example, in one dimension, if the probability that
a full point has a full neighbor is large [p(1]|1) is near
1], then the probability that a point two steps away
from a full point is full cannot be too small since it
must hold that p(2|1) = p(1|1)> + [l — p(1|1)]2. The
complete conditions for consistency are given in Ap-
pendix 3. Even if patterns matching a given structure
function do exist, we have been unable to demonstrate
mathematically that the algorithm will find them. A
demonstration of the convergence properties of the
algorithm would be very instructive. Because we focus
on a discrete description of space, the computational
requirements (both in memory and time) depend more
upon the size of cell that one considers than anything
else. If the cells are very small, then it will be easy to
exhaust the memory of a desktop microcomputer.
However, the cell size should not be considered as fully
arbitrary: it is determined in large part by the relevant
spatial and temporal characteristics of the organism
being studied.

Another related technical issue concerns the trans-
lation of distributions of nearest neighbor distances
into structure functions. We showed how to do this in
one dimension, but know of no technique to do so in
multiple dimensions, even with additional assump-
tions more restrictive than that made in one dimen-
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sion. If this translation proves impossible, the distri-
bution of nearest neighbor distances probably cannot
be used as anything more than a statistic.

Finally, consider the issue of when two structure
functions differ significantly. Although this question
can be phrased as one involving statistical considera-
tions, it is our opinion that the answer is most relevant
in the biological context. In this view, two habitats
with potentially different structure functions are dif-
ferent if they lead to substantially different fitness con-
sequences for the organism foraging in the two habitats,
taking into account the relevant levels of behavioral
plasticity. Mangel (1994) illustrates how the structure
function can be connected to fitness.
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APPENDIX 1
FIRST-ORDER MARKOV PROCESSES AND NEAREST NEIGHBOR DISTANCE

We here show that the structure function for the first-order
Markov process can be recovered from the nearest neighbor
distances of that process and Eq. 11.

The nearest neighbor distances for the first-order Markov
process are

g(1) = p,

gd) = — p)(1 — po)~2p, ford = 2.

Therefore, for d = 3, g(d) = (1 — py)gd — 1).
For convenience, we denote p(r|1) by p,. Then, we have

’

p.=2 gdp, .

d=1

=g(p, , + gQp, » + 2 gd)p,_,

=g)p,_, + g)p, » + 2 (1 — p)gd — )p,_,

d=3

r—1

=gp,_, + g2)p,_» + X (1 — po)gX)p, .,

=2

=gMp, ., + &2p,_» + (1 — po)lp._, — g(l)p,.,]
= —=py+pIp_+(po— PP, >

=D+ (D, — PPy — D,3)

Therefore, (p, — p,_\) = (P, = PoXP.-, — p,_.), which, along
with the initial condition p, = 1, matches the solution (Eq.
9) of Eq. 8.

APPENDIX 2
SECOND- AND THIRD-ORDER MARKOV PROCESSES AND THEIR STRUCTURE FUNCTIONS

Given the probabilities,
p; = Prob{Z(r) =1|2Z(r — 1) =14, Z(r — 2) = j},
defining a second-order Markov process as in Eq. 20, we can

generate a spatial distribution of resources according to the
following algorithm.

Algorithm: Constructing a Second-Order
Markov Resource Distribution

1) Set Z(0) = 1 and then draw a random number u uni-
formly distributed between 0 and 1. Then if u < p,/

(Doo + Po1), we set Z(1) = 0 and if u = pyo/(Doo + Do), We set
Z(l)=1.Setr.= 1.

2) Set Piest = Pzto), zoe - 1) and draw a random number u
uniformly distributed between O and 1. Then if u < p,, set
Z(r. + 1) = 1; otherwise set Z(r. + 1) = 0.

3) Replace r. by r. + 1 and if the new value is less than
Fmax» TEtUrN to step 2.

Once we have generated the pattern {Z(r)} in this manner,
we can use Algorithm 1 to construct the structure function.
A slight modification of this algorithm allows the construction
of a pattern from a third-order Markov process.

APPENDIX 3
CONSISTENCY CONDITIONS ON STRUCTURE FUNCTIONS

The following condition is modified very slightly from Kar-
lin and Taylor (1975:504). Suppose that {X,; n =0, =1, +2,
...} is a stochastic process on the integers with mean 0 and
variance 1. The covariance function can be defined as

R(d) = E[X, X, 4]

A function R is the covariance function of a covariance sta-
tionary process if and only if it is positive semidefinite, that
is, for all k = 1 and all real numbers «ay, . . ., a,

k

k
> > aaR(E — j) = 0.

=1 j=1

To convert the Z, to have mean 0 and variance 1, set

Then

Rd) = EWZ, = pXZ,.a = VI[Pl — p,)]
=(ElZ,Z,.4] = p)V[pAl — p.)]
= [p.pd|1) = p2VIpAl — p.)]
=[pd|1) = pJ/(1 = p.).

The condition that R(d) be positive semidefinite is then

k

2 D aalpi—jl1)—pl=0

i=1 =1
or
ko k k 2
33 wapti -l = pa(z ) .
=1 j=1 =1

This is the required consistency condition.
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APPENDIX 4
TIMING OF THE “FORCE TO BE FULL” ALGORITHM

The “Force to be Full” (FTBF) algorithm requires that for
each cell containing resources, we cycle over all cells. Thus,
if C is the number of cells, when C is large, the time to
complete the algorithm will grow as C2. To illustrate this
effect, we ran the algorithm on a Macintosh Quadra 800 with
the structure function shown in Fig. 4, cycling over four values
of 8, and for 20 iterations, for C ranging between 50 and 600
cells. We found that the time 7(C), measured in minutes, to
complete the iterations fit the relationship (2 = 1.00):

T(C)="7.1 + 0.0323C + 0.000542C>. (Al)

In addition to cell size, one must consider the rate of im-
provement of the algorithm. That is, we specify the number
of iterates n,,, to be used but each iteration does not lead to
animprovement in the fit of the constructed structure function
and the given structure function. Two analogies are helpful.
First, each time a constructed pattern has a structure function
that fits the given structure function better, we have “broken
the previous record.” The mathematics of record breaking is

filled with nonintuitive results (Glick 1978). Alternatively, we
can conceive of each new pattern representing a ‘“‘mutation”
that completely replaces the previous ‘“best” pattern if the
new structure function is in better agreement with the specified
structure function than the current “best” structure function.
Such mutational systems have the property that initial im-
provements occur rapidly but then subsequent improvements
require increasing amounts of time (Kauffman and Levin 1987,
Gillespie 1991). To illustrate this idea, we ran the FTBF al-
gorithm with 100 cells, the structure function used in Fig. 4,
and measured the number of iterations (a random variable)
required to achieve 11 improvements. We then fit the data
to find the iteration /(k) on which the k" improvement occurs
is given by (r2 = 0.941)

I(k) = 1.071 x 1003256k, (A.2)

This result shows how the number of iterations needed to
achieve a specified number of improvements grows exponen-
tially.



