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Abstract. Many preblems ir animal behavior can be viewed
as dynamic controf problems. In this paper, the dynamic
viewpoint is used to analyze certain behavioral decisions of
insects, in particular oviposition site sefection and clutch size. The
theory is motivated by work on parasitic wasps and fruit parasitic
insects--particularly apple maggot (Rhagoeletis pomonalia) and
medily {(Ceratilis capitata). The theory presented in this paper is
based on Markovian decision processes in either discrete or
continuous time.  In these decision processes, the objective
functional is a measure of fitness oblained through egqg
production. The paper closes with some speculations about how
insects may be able to solve dynamic pregramming problems.

§1. Introduction: Experimental and Theoretical Motivation

The behavioral ecology of insects provides a weaith ot motivation for ecologicat
modelling. The theoretical work which is dascribed in this paper, in particular, is
motivated by a number of different sels of experiments and analyses on different types
ot insects. These will now be briefly described.
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Parasitic Wasps. Charpov and Skinner (1984, 1985} and Skinner {1985) studied
clutch size as a function of host volume in the wasp Nasonia. In their analysis, they
found that most observed field clutch sizes were smaller than the clutch size which
maximized fitness per host; this will be called the "Lack Clutch Size" (or LCS) in
analogy to David Lack's work on clutch size in birds. Charnov and Skinner provide an
explanation for the apparent "non-optimality” of the observed clutches in terms of rates,
in analogy to the marginal value theocrem of Charnov {1976). It will be seen here that
what one means by "optimal,” in fact, drives what is considered non-optimal behavior.

Apple Maggot. R. Prokopy and his collaborators and students, paricularly 8.
Roitberg have conducted an elegant series of experiments on the field behavior of
Rhagoletis pomonelia (Prokopy and Roitberg 1984, Roitberg 1985, Roitberg and
Prokopy 1981,1982,1983,1984, Roitberg et al. 1982,1984).

Roitberg and Prokopy (1983} studied the effect of host deprivation on the response
of A. pomonella 10 its oviposition marking pheromone {OMP). They observed the
following kinds of results:

Time Since Last Percent of Flies Ovipositing
Oviposition {min.) in OMP-Marked Fruit

S 10%

0 45%

20 65%

40 66%

80 85%

These numbers were read off by eye from Figure 1 of Roitberg and Prokopy
(1983), so they might be a tad off; the trend is clear however. They conclude: "Thus,
acceptance of parasitized hosts by short term (< 96 h), host-deprived flies must be
due 10 changes in physiological state associated with host deprivation” (Roitberg and
Prokopy 1983, page 71). The exact nature of these physiclogical changes remain to
be determined, but ) will provide some speculations of my own in §5.

in another paper on the foraging behavior of the apple maggot (Roitberg et al.
1982}, a study is made of the relationship between the number of fruit clusters on a
tree, the residence time of the fly in the tree and the giving up time (GUT), which is
defined here as the time since the last dviposition before emigration from the tree.
The observed data are {read off from Figures 12 and 13 of Roitberg et al. 1982):



Number of Fruit Residence Time GUT

Clusters {min.} {min.)
2 20 12
4 55 13
8 70 7
16 75 4

{Note: these are only approximate values since they are read oft the figures by eye
and correspond 10 mean values.) Naote that the GUT decreases with residence time in
the patch; this is an observation which is difficult to explain in terms of classical
foraging theory,

Medfly. My colleague, J. Carey and his students recently developed an artificial host
for field and laboratory studies of the behavior of another tephritid {ly, the
Mediterranean fruit fly Ceratitis capitata. His student, R, Freeman, studied the
distribution of eggs as a function of host volume (t is difficult tc determine “clutch size"
in this case, but total number of Bggs is easy). They find the kind of results shown in
Figure 1. The key observation here is that the number of eqgs per host levels off with
host volume. Although it is possible, it appears that this effect is more than the
medilies simply running out of eggs.

The theoretical motivation for thig paper is recent work done in conjunction with
Colin Clark on the theory of foraging (Mangel and Clark 1986). This theory is based
on the use of Markovian decision processes for medelling of foraging actions and
decisions. In the next section, this approach is described in more detail. It is applied,
in the third section, to a model for the behavior of parasitic wasps (also see Mangel
1987) and, in the fourth section 1o a model for the rose hips fly Rhagoletis basiola.
The second model is currently under further development and will be used to analyze
field experiments by B. Roitberg. The fifth section contains a discussion and, in the
spirit of a workshop, some speculations. In particutar: how do organisms solve
stochastic dynamic programming problems?

§2. Markovian Decision Models

In this section, an approach to modelling behavioral decisions based on
Markovian decision processes is described. Mangel and Clark (1986) call this
approach "unified foraging theory” since it allows one to treat the three main aspects
of behavior--finding food, avoiding predation, and reproducing--in a unified manner.



Eggs per Host

Host Yolume

Figure 1. Results of Carey and Freeman on Medlly response to host volume.



Thé basic eb;ectwe ol these demsuon models lS 10 be able lo treat trade-oﬁs ina’
consistent manner. One is thus able fo deal with a wide variety of - etho!ogucal
- problems (see, e.g., Huntmgford 1984) There are three Mmain components to th:s
theory: S e e '
1) A state Vanable (vanables) X(t} whlch prowdes a means of s
assessing the current state of the orgamsrn. For example for
insects which produce a fixed number of eggs, X{t} could represent
the number of eggs remaining at time 1. The state variable changes
over lime, subject to physioclogical constraints (it will be seen that
these are very imporant for insect decisions), decisions by the -
organism, and (usually random) environmenta! effects. The siale

variable provides a means for connecting the physiclogical state of
the organism with its behavior.

2} An objective functional, which depends upon the curren! value of
the state variable and provides a measure of "value™ for the current
state variable when assessed at a later point in time. This objective
provides a way for connecting long term and short term behaviors.
For example, for insects the objective functional might be litetime
filness obtained through egg production, given that the initial
number of eggs is X{0) =

3) A methodology for optimizing the objective functional, subject 1o the
stochastic dynamics of X{(f} and any appropriate constrainis. The
method from stochastic control used in this paper is stochastic
dynamic programming (Acki 1967, Bertsekas 19786, Mange! 1985).
This method is actually fittle more than a bookkeeping technique
{with probability 1 something will happen! } and clever use of
computers,

The theory presented here, and in Clark {1987), Manget (1387) and Mange! and
Clark {1986), is easy to use. K involves parameters which should be easily measured
in the field or laboratory; the mathematical formuiation is straightforward and the -
required computations can be implemented on a desk top microcompuzler.

§3. Clutch Size in Parasitic Insects

The results presented in this seclion were mofivated by the work of Charnov and
Skinner (1984,1985) and Skinner (1985). There is a considerable overlap belweens
this section (summarized trom Mange! 1987) and their papers, as well as with those of _
Iwasa et al. (1984) and Parker and Courtney (1983). The objective of this section i5 10



show by means of the srmpiest poss:ble model how the state variable approach can
be applsed and used to understand clulch size decrsrons

‘lmaglne -an insect whnch starls m; life wnh a reserve X{O} X g of mature eggs and

attacks one of H different: Iunds of hosts. ¥ it encounters a host of type § and Iays a
clutch of size ¢in this host, then assume that its lifetime fitness increases by W; ( ¢). The

computation of the incrernent in fi tness. Wig)is a very nontrivial matter and Charnov

and Skinner (1 984) and Skinner { 985) did a great 1ob of developing Ws for a number
of different insect-host syslgms.

The state variable, X{t), is defined by
{3.1] X{t} = number of eggs remaiﬁing attime t.

The dynamics of the state variable are then quite straightiorward. Consider a smalt
interval of time At and define

[3.2] %; a1 = Probabifity of encountering a host oftypeiin (1, t+4l) .

If a clutch of size ¢; {yet 10 be determined) is laid on a host of lype (. then [3.1] and {3.2}

qgive
[3.31 X(t+at) = X{) - ¢ with probability %; 61 .

The objective functional comes next. In order to define it, let T denote the maximum
possibie lifetime of the insect'and set

{3.4] Fix .1.T) = maximum expected fitness from egy
production between t and T when
the number of eggs remaining at !
is X{t) = x.



Then one certainly has
[3.5] Fix, T,T)=0

since there is no value to having any eggs at death. In order to develop the dynamic
programming equation {DPE}) that F{x, t, T} satisfies, first define p(l) by

{3.6] 1- p(t)at = Probability of surviving to time t+At, given
that the insect is alive at time t ;

this quantity can be computed from the usual survivership curves of demography (see,
e.g. Mangel 1987).

Now reason as follows: If the insect encounters a host of type /it can lay a clutch of
any size between 0 and the current number of remaining eggs. If the clutch size is ¢,
then the increment in fitness is Wi¢} and the number of remaining eggs is decreased

by ¢. In symbols, one has

H
(3.7) Fix,t,T) = Z A At max { W.(0) + (1-pat) Fix-o, t+At . 1) }

t=1 HEx

H
s (1= D A8 (1-pAt) Flx, teat, T) .
f=1

Equation {3.7] is the basic DPE associated with this problem. Note how the constraint
on the number of eggs arises in a most natural way. There are two ways 10 analyze
equation [3.7]. The firstis to set At = 1. In that case, time is measured in discrete units
(although the specific unit of time is not given, so that it could be quite small). Equation
[3.7] becomes



H
[3.8] Fix,t,T) = Zx. max{Wi(q:) + (1-p) Flx-¢, 141, T) }

im1 [ B4

+(1- 27‘».) (1-p) Flx.1+1,T) .

This equation is easily iterated backwards, starting at t = T-7, on a desk-top
microcomputer. Its solution leads to a number of predictions which will be discussed
shortly.

The alternative to At = 1is the continuous time limit in which At approaches 8. To
deal with this case, Taylor expand [3.7] in powers of At to obtain

_ H
[3.9] Fix.t,T) = 21i At max{wi(q:) + Fix-0,1,T) +0O(al) }

=l -39 {

H
+ F(x,t,T) + -%—TA: - (p+Zli)m F{x.t,T) + o{at)
=1

where O(at) and o(At) represent quantities such that

tim 28U constant
Al At
(3.10) H’o(m)
im —— =0
atso At

Dividing by At and letting At approach 0 gives the equation

H H
3.11] . a_a|1= = DA max {Wo) + Fixo. 1.1} - (p + 2 AIFx,0,T) .
im1 QX i=1



This is a nonlinear, partial differential-difference equation. 1t is much harder to solve
than the discrete time version [3.8]. Some techniques for solving such equations are
discussed by Ahmed and Teo (1981) and Teo and Wu (1984),

Returning to the discrete time version [3.8), one finds the following predictions
arising frem the solution (see Mangel 1987 for more details).

Py: Older insects should be less choosy about where they lay their

eggs. For example, there should be more superparasitism near
death.

Py: A cohort of identical insects which start life together will, at later

times, have a distribution on the values of the number of eggs
remaining {caused by weather, food, host encounters, etc.). This
will lead to a distribution in clutch sizes,

P3: As the chance of finding hosts for which the optimal clutch size ¢*

is larger increases, the observed distribution of clutches should
change so that smaller clutches are more frequent.

P4: As the conditional probability of survival decreases, the frequency
of large clutches shou!d increase.

Ps5: As the time horizon T - t decreases, for example by host
deprivation, the frequency of larger clutches should increase.

Some of these predictions (e.g. Py, Pz, P4) can be seen by qualitative
examination of the dynamic pregramming equation [3.8]. Others {e.g. P3, Ps) are less
obvious--it helps to solve [3.8] to see them--but are easily understood when one starts
thinking in the paradigm that UFT provides. It is the paradigm of constrained,
Markovian dynamics which guides the prediction.

§4. A model for Rhagoletis basiola

A model for Rhagoletis basiola is described in this section. 1t differs in many ways
from the model of the previous section. The differences are based on a number of
biological details. The most important are these: upon encountering a host fruit, the fly
either lays one egg or no eggs. The fitness accrued 10 the mother from this egg
depends upon whether or not the host was previously parasitized and if so, when. For

e
=



10

example, one could develop the following kind of data (B. Roitberg, personal
communication}:

i Host Type Relative Fitness, W;
1 Unparasitized 2.00

Previously parasitized

2 1 day before 1.50
3 2 days before 1.00
4 3 days before 0.75
5 4 days before 0.50
6 Larva present {host 0.20

parasitized 5 or
more days previously)

The lifetime of the fly is about 15 days; each day is divided into 20 hours in which
the fly does activities other than search for oviposition sites and 4 hours in which it
searches for oviposition sites. A "timeline” for each day can be developed as follows:

Other Activities Qviposit
1 l l

4 hours
Sunrise Sunset

Finally, in this model there are two state vanables defined as follows:

X({t , D) = number of mature £9gs being held at the
start of period ton day D '

(4.1]
Y{t , D) = number of oocytes (potential eggs),
remaining at the start of period 1 on day
D.
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The variable X{t, D) has a capacity constraint such that

[42]  Xt.D)<C

where Cis the maximum number of mature eggs that the fly can hold at any time. The
variable Y(t, D) satisfies the constraint that

[43]  Y{t,D) < Yy

where Yy, is the maximum number of potential eggs.

Now define a fitness function Fpix, y, t, T}as Iollows:

[4.4] Fpix,y.t,T) = maximum expected fitness through
€gg producticn when D days
remain, when Xt ,D) = x, Y{t.D)
= y, and T - t is the number of
periods remaining in day D.

That is, T is the time horizon for foraging for oviposition sites within a day. When
analyzing [4.4], it will be understood that D = 1 corresponds 1o the fast day of the fiy's
life. Thus one has the end condition

[4.5]) Fix,y, T, T) = 0

The end condition connecting day D and D - 7 is more complicated. Suppose that a fly
ends day O with x mature eqgs and y potential eggs remaining. During the night, it
can, in principle, mature enough eqggs to reach the capacity C. Thus, it starts the next
day with C mature eggs, as long as y > C - x. Otherwise it starts the next day with x + y

mature eggs. Thus, in addition 1o [4.5), one has
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Fp (C.y-C+x,0.T) if y2C-x
4 Fx.y.T.T) =
i ol ! Fp.(x+y.0,0.T) ity <C-x.

Now consider the dynamic programming equation for behavior within a given day.
The discrete time formulation will be used. Let

{4.7] 1 - pplt) = Probability that the fly is alive at the start

of period t+1 given that it is afive at the
start of period t with D days remaining.

Also assume that the length of a period is sufficiently great that an egg can be

matured in a period, if any potential eggs remain. Finally, introduce the following
notation

(4.8]) A, = Probability of encountering a host of type i in a
period (note: A; could easily be a function of D
and t with no change in the algorithm)

and the "indicator functionsg”

Finally, set
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lo=1'27‘1

im1

and Wy = 0. With this notation, the same kind of logic that leads to [3.8] leads to the
following dynamic programming equation

H
(493 FD(x,y,t.T) = le max [(1 - pD(I)){FD(xH -1, t+1 ) '“c IY':-O

=1

+ Fp{x, 0, ts1 ,T)lx,cc(hly.,g) + FplC.y. 31 . TV (1-Ix .} )

Wi+ (1 -po) { Folx . y-1, t41, T Iy, g + Fplx-1.0, 41, T)(1- Iy, ) } ]

Although it looks formidable, equation [4.9] is no harder to solve than [3.8)--it's just
that the indicator functions make it lock more complicated.

Equation [4.9] is somewhat complex, but it is easily solved on a desk-top
microcomputer. More interestingly, one can develop Monte Carlo simulations in
which insects behave “optimally” according to the solution of [4.9] but encounter host
types randomly. By using the simulation, one can perform "computer experiments”
analogous 1o the field and !ab experiments on rea! flies. (Mange! 1987 provides a
further discussion of such computer experiments.) For example, a simulation was
programmed for the following situation: 100 flies start the last day of their lives, which
lasts for 40 periods, with 2 mature eggs and 14 potential eggs. They encounter the six
host types randomly, each with equal probability, and make aviposition decisions
according to equation {4.9]. Using this simulation, one can perform "host deprivation”
experiments by reducing the time horizon. Figure 2 shows the results of such an
experiment in which one sees an increase in the oviposition rate in either marked fruit
(upper panel} or very inferior hosts {lower panel} with increased host deprivation
{which for this problem corresponds to decreased time horizon). This pattern
compares very well with the results of Roitberg and Prokopy (1983) discussed
previously,
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Figure 2. Results of simulation experiments on host deprivation. (a) Fraction of flies

ovipositing in any marked fruit. {b) Fraction of flies ovipositing in any of the three
most interior fruits.
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§5. Discussion and Speculation

The two models presented in this paper provide examples of how Markov decision
theory based on state variable models can be used to analyze insect behavior. Other
models are possible as well. For example, one can take into account the energetic
reserves ot the insect and include a state variable that measures those reserves. In
such a case, the insect must choose between foraging for food and foraging for
oviposition sites (see Mangel 1987 for an example). Markov decision processes thus
provide a method for analyzing a wide variety of behavioral activities.

I will close this paper with speculations {fitting for conference proceedings) about
how insects might solve dynamic programming problems. There are at least two lines
of thought about this question. The first is based on a hypothesis of R. Fox, Schoo} of
Physics at Georgia Institute of Technology:

Fox's Hypothesis: If one can simulate fast
enough then any stochastic
optimization problem can be
solved.

With this in mind, one can leap to the speculation that perhaps one reason for the
evolution of molecular and chemical chaos in organisms is to provide a mechanisrn for
simulation. Most ecclogists are familiar with chaos through nonlinear poputation maps
such as the logistic:

(5.1) N(t+1) = N(t) + IN(@) (1 - N(1)

which goes through a series of bifurcations to chaos as r increases. There are,
however, many chemical systems which involve continuous time reaction kinetics that
also lead to dynamicatl chaos. Perhaps these kinetics provide the underlying "tools" by
which organisms can solve dynamic programming problems.

in addition to a "chaotic simulation” approach, there is extremely exciting work
currently being done by J. Hoplield and his collaborators {e.g. Hopfield 1982, Hopfield
and Tank 1985,1986) on the use of model neuron systems to solve optimization
problems. They find that large, interconnected networks of model neurons can find
good (if not fully optimal) solutions to hard optimization problems such as the
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Travelling Salesman Problem. it is likely that their work can be adapted to deal with
dynami¢ optimization problems such as the ones described in this paper (the
Travelling Salesman Problem can, in fact, be put into a recursive dynamic form as
well). Much exciting work needs to be done!
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