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A general theory for information processing by organisms living in uncertain and
changing worlds is developed. The three fundamental properties of the theory are;
(1) the use of a memory parameter that allows the organism to forget the more
distant past, (ii} a succinct representation of encounters and information and (iii}
Aexibility in the estimates of parameters by including the uncertainty in these
estimates in a consistent manner. The theory is developed using Bayesian methods
{but can also be applied to maximum likelihood estimation) and is applied to the
encounter models standardly used in ecology (Poisson, binomial, and negative
binomial), Two applications are discussed: (i) patch selection and the matching
rule and (ii) superparasitism by a parasitoid.

Introduction

Most models in behavioral ecology assume that key environmental parameters are
known to the organism. For example, in the theory of diet choice (Stephens &
Krebs, 1986; Mangel & Clark, 1988}, organisms are assumed to know the encounter
rate, energy value and handling time of each prey item. In the theory of patch
selection, the patch residence time is determined by solving an equation that involves
the energetic return to the organism when it stays in the patch for r units of time
and 7 is the travel time between patches; both the travel time and reward function
are presurmed to be known.

Nearly all organisms, however, live in an uncertain envireanment. The uncertainty
might be caused by natural fluctuations of non-biotic elements or by fluctuations
of biotic elements. In addition, very often the environment will have its own
dynamics. For example, consider a solitary bee visiting a patch containing flowers
of different species. Each species of flower may have its own timing for nectar
production and each individual of each species may have slight variations in this
timing. The precise nature of the timing will depend upon non-biotic factors in the
patch (e.g. rainfall, sunlight) and all these together lead to a considerable level of
uncertainty in the overall nectar reward rate from the patch. Other pollinators may
remove nectar from the patch, causing the already uncertain system to have quite
complicated dynamics. It is unlikely that bees will know all timings of the flower
species or count the number of other pollinators in the patch. Yet, they must
somehow deal with the uncertainty and dynamics of the patch.

The key question is how organisms develop information to deal with the uncertain
and changing environment. Here, “‘symbolic representations”™ are used in which the
organisms summarize physical entities by parameters that are estimated (Lewis,
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1986: Kamil & Roitblat, 1985). The organism replaces encounters with real objects
(e.g. prey items for a predator or unparasitized and previously parasitized hosts for
a parasitoid) by estimates of the occurrences of those items (e.g. encounter rates
with prey items or host types). The general features of an information processing
theory should include: (i) a decay of memory, so that events which happened a
long time ago have less impact on the estimate than more recent events, (i1}
succinctness of the estimate, so that the organism can summarize its encounter
history in an efficient way, and (iii) flexibility of the estimate, through a consistent
treatment of uncertainty. In the body of the paper, Bayesian methods (DeGroot,
1970} are concentrated on and, in the Appendix, the same ideas are applied to
Maximum Likelihood Estimate {MLE) computations.

The theoretical work closest to this paper is McNamara & Houston (1985, 1987)
and Stephens (1987, 1989); they also develop various aspects of models for memory
and information in uncertain, dynamic worlds. This paper represents an extension
of those in a number of ways but particularly by including both memory and
uncenainty {or variance) and by linking them, via state variables, directly to fitness.
McNamara & Houston (1985) model optimal foraging and learning, but choose as
their fitness function the long-run reward rate, as in the marginal value theorem.
Stephens (1987) also uses a long-run reward rate. Their work is extended here by
showing how information can be treated as a state variable in the fitness function.
McNamara & Houston (1987) also use linear operators and Bayesian analysis. The
differences between their paper and this one are the: (i) whereas McNamara &
Houston also derive the linear operator from a Bayesian approach, they only consider
the case of perfect memory, (ii) McNamara & Houston only treat the case of a
normally distributed parameter with a normally distributed prior as the model for
Bayesian analysis, (iii)} McNamara & Houston specify rules for changing the
unknown encounter rate parameter, whereas here the change is not specified, (iv)
McNamara & Houston implicitly deal with constant streams of information whereas
the methods developed here can be used to treat situations in which information is
obtained intermittently, and (v) McNamara & Houston concentrate on the dynamics
of the mean, whereas here the uncertainty in the estimate figures prominently.
Stephens (1989} shows how variance affects the value of information, but does not
provide an explicit way of linking information, variance and fitness. This paper
extends his, by showing how to do this.

In the next section, the fundamental ideas are illustrated by considering an
organism that encounters resources according to a Poisson process. The encounter
rate is estimated using a2 Bayesian method incorporating a way of forgetting past
information; this extends the previous uses of Bayesian methods in behavioral
ecology. (In the Appendix, Maximum Likelihood Estimation with the forgetting is
analyzed.) In sectien 3, the same ideas are applied to other common encounter
models such as the binomial and the negative binomial is shown. Sections 4 and 5
are concerned with applications in behavior and evolution. First, patch choice by
an organism is modeled; and the “matching rule” which is a natural prediction of
the methods developed here, is shown. Second, superparasitism by a parasitoid is
modeled and dependence of decisions and realized fitness upon the memory para-
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meter and upon time is shown. | conclude with a general discussion of the role of
sampling and forgetting.

2. Random Encounters with Resources

Suppose that the organism encounters resources {food, mates, refugees} according
to a Poisson process with parameter A, which is both unknown and changing over
time. Thus, encounters are random and the encounter rate at each spatial point of
the world is identical to the rate every other spatial point. Under the Poisson
assumption

Prob {encounter n items in 1 units of time}=e *(A1}"/n!. 3

Assume that an interval of interest is {0, 5] and is divided into s periods of unit
length. Encounters {data) occur in each period, so that the organism receives a
“constant stream” of data (cf. McNamara & Houston, 1987}, Let 5 denote the
current time and represent the data by {n,, n,, n,,..., n.}, where n; is the number
of encounters in the ith preceding period.

If the world 1s changing, then the information provided by data gathered a number
of periods previously should be less valuable than the information provided by
recent data. Thus, in the hkelihood function { DeGroot, 1970}, the data gathered i
periods ago is weighted by raising (1) to ¥{i}, where 0=< y(i)=1. McNamara &
‘Houston (1985) have done a similar weighting—but using an ad hoc rate function
instead of the likelihood function—and show, in fact, that ¥(i) = y', which corre-
sponds to exponential weighting, may be the optimal weighting. Weighting the
likelihood function in this manner is analogous to a weighted least squares { Miller,
1986: 210-214). By employing this kind of weighting in a Bayesian framework, one
interweaves frequentist and Bayesian approaches and is thus limited in the statistical
foundations. However, the weighted likelihood function provides a relatively firm
basis from which to derive updating rules for estimates of parameters.

The likelihood function for the entire data set thus becomes

F=THe A7/ n, 177, (2)

This form of the likelihood function is determined by the way that the data are
counted: m; is the datum from the sth preceding period and is thus weighted by
y{i}, which approaches 0 as i increases (the past becomes more distant). If n, were
the datum from the ith period, then the weighting would be y(s—i}. The results
that follow would be the same; the convention chosen here is used for simplicity
of the likelihood function.

In the Bayesian approach, the appropriate conjugate prior is the gamma density
(DeGroot, 1970) for which

fo=me ta A VT (), (3}

Here & and » are parameters and I'(v) is the gamma function.
For the gamma prior, the mean and coefficient of variation (CV) of the unknown
parameter A are E{A}=r/a and CV{A}=1/"".
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The posterior density f, is obtained by multiplying the prior (3} by the likelihood
{2) and normalizing. 1t is

f,=kexp[—Ala+X ylipJa'=nrt, (4)

Here k is a constant. Equation (4} shows that the postertor density is another gamma
density, with changed parameters. After s periods of data coltection, the parameters
change from o and » to
a-»a+y y(i)
{3}
v+r+3 nyvii)

Equation (5} is an updating rule, so that all of the data do not need to be tracked;
instead all of the information is summarized in the updated parameters.
Suppose that before any data are collected, the prior values of the parameters are

e (0) = a, (6)
v(0} = y.

These have an evolutionary interpretation as the long term environmentai para-

meters.

In order to further simplify the updating rules, assume that ¥(1} = y". Then applying
the updating rules (5) and simplifying shows that if a(s) and v(s) are the parameter
values after s periods of data collection, then

a(s+1)=ya{s)+1+{1-y)ay
pls+ 1= ye(s)+n, , +{1—y)v,.

(7

These equations are similar to a linear operator (see Kacelnik et al, 1987: 1able 4.1)
and show the interplay of the memory parameter and the data in determining the
parameters of the posterior distribution.

An advantage of using the memory parameter is that it prevents the updated
parameter » from approaching oo as more data are collected. Thus, by forgetting
the more distant past, the organism never “locks itself” into an estimate of the
encounter rate; there will always be uncertainty in this estimate. By using the memory
parameter, one thus eliminates a least desirable feature of Bayesian analysis (the
constant reduction of uncertainty as information is collected). The parameters a,
and », can be viewed as “'long-term” of “environmental’ averages of the parameters.
An advantage of the Bayesian method over the MLE method described in the
Appendix is that because of these long term parameters, the Bayesian method
consistently treats situations in which an organism receives an intermittent stream
of information. For example, suppose that instead of foraging in a period, the
organism hides and thus neither samples nor encounters resources. There is no way
to build this into the MLE, but it is easily done in the Bayesian approach. A specific

example is given below.
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3. Other Common Encounter Models

The analysis of the previous section can be extended for other encounter models.
Two of the most commonly used models are the situations in which at most one
encounter ¢an occur in each period or in which encounters involve an aggregated
distribution.

In the first case, the appropriate encounter model is simply

Prob {encounter an item in a peried} = p, 18)

and the parameter p must be estimated. The data in each period are then either
n, =1 (if an itern is encountered) or n; =0 (il an item is not encountered).

In the second case, an appropriate model is the negative binomial distribution
for which

Prob {n encounters in a period of unit length}
=Tk + m)/Tik)nt)(k/k+m){m/k+m)" (2)

Here k and m are parameters. The mean number of encounters in a period of unit
length is given by m and the variance is m+(m*/k}, where k is the overdispersion
parameter. In this case, presume that m is unknown and to be estimated, but that
k is known. The data for each period are the numbers of items encountered in that
period.

The results of analysis similar to that in the previous section are summarized in
Table 1. For the case of a single encounter per period, further details on the Bayesian
anatysis can be found in DeGroot (1970). For the Bayesian approach with negative
binomial encounters, further details are found in (Mangel, 1987).

TariE |

Results for encounters of one item per period (binomial) or aggregated {negative
binamial) encounters

Encounter model

Yariable One per periad Negative binomial
Estimated parameter r m
Likekihood T p"if1 —p)' ~"ip! MIF(k+n )/ Tk !]

wkik+myimf k4wt

Curvarture at the MLE SV o[PS s —k Yyl [misk + mis)]
{sce Appendix}

Conjugate priar for

Bayesian analysis IS+ wl/ TN p 1 - ! cm Lk + m®
Parameters of prior 8, w a, fAilc s a normalization
constant}

Updating rule for
parameters §=8+Y nyid o+a+Y il
w=w+ " (1-n)yi) A-aB-Yint+kivti)
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4. Role in Behavior and Evolution: Patch Selection and the Matching Rule

A much studied problem in behavioral ecology involves patch choice by an
organism such as a bird or fish presented with two patches that have uncertain
rewards. Examples, with citation to the literature, are found in Kacelmk & Krebs
(1985) and Kacelnik et al. (1987}, Such choice problems have also been studied by
psychologists for many years (see Mackintosh, 1983: 257 for discussion and citation
to the literature:; Barnard, 1983: 150; Stephens & Krebs, 1986: 179 for the animal
behavior context). One commonly observed feature of such choice problems is the
“matching rule”. Suppose that p, is the probability that the ith patch presents the
animal with a reward on a visit and that £ is the long term fraction of visits to the
ith patch.

The matching rule is the observation that very often even though p, > p;, say,

F=pi/(pr+p3), (10}

where « is a parameter. It is clear that for fixed p; an allocation rule such as (10)
cannot maximize long run rate of reward and this has been used to argue that
animals do not optimize. Here, the patch selection problem is reformulated as one
involving Bayesian updating with forgetting and where implications for the maiching
rule are investigated.

Krebs er al (1978} analyze a patch selection problem in which the probability of
reward is fixed but unknown. Mangel & Clark (1983, 1986, 1988) analyze a patch
selection problem in which the encounter rate is fixed but unknown. These cases
correspond to the memory parameter ¥ = 1, The results of those analyses show that
some initial periods of sampling determine which is the best patch and that the
organism settles into that patch for the remainder of the periods. Here, the analyses
are extended to the case in which the memory parameter is less than 1, for use with
temporally changing encounter rates.

Consider a time horizon from f=1 to =T, at which point fitness is assessed
(e.g. reproduction occurs) and assume that fitness is proportional to the total number
of prey captures between 0 and T. Let R, denote the prey capture rate in the fth
patch and assume that the prey capture rate is a Poisson process with parameter
A;. Consider periods of unit length. Since the A, are unknown, each patch has an
associated prior gamma density with initial values of the parameters parameters
given by ay; and v, and, for definiteness, consider two patches. For any intermediate
time ¢, define the fitness function

Flv,a, v, a,t T
=max F {total prey captures between 1 and T{current parameters}. (11)

In this equation, the maximum is taken over behavioral decisions; meaning the

sequence of patches to visit.
Since no prey captures occur after period T, we have the end condition

F[V'[,(I1,p2,ﬂ2,T_ T):l:]‘ (12)
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and this shows that when =T -1 any information collected by the foraging
organism is of no value, so that

Flv,, a,, -, a5, T—1, T)=max, E{A;} =max, {v./a;}. (13

For a general intermediate period, we need to compute the probability that if
patch i is visited R, =r, given the current values of the parameters. This is

Prob {R, = r|parameters are a,, v} =[[{z,+ r)/T(v)r'](a/a; + el /o, +1)". (14}

Note that egn (14) is the negative binomial distnibution {9)
The equation for F{v,,a,, vs,a., 1, T)is

Flu,, ay, va, 0,8, T)=max, {{(#/a,)
+ ¥ Prob{R,=r}F(v), aj, vs,as, t+1, T)L (15)
r

In this equation, »; and «; are updated values of the parameters, depending upon
the patch that is visited (i), the number of encounters in that paich (r) and the
memory parameter. Assuming that the organism forgets past information even if it
does not visit the patch gives the following updates for the parameters in the first
patch:

; {Tvl“‘“r}")l"ln ifi=2
¥ = e
yo t(t—yletr ii=1,

and

T lyat1-plat+l ifi=1

The updates for the parameters in the second patch are defined in a similar way.
Note that when the organism does not visit a patch, it is still possible to “update™
that patch’s parameters vsing the Bayestan formulation.

Two important qualitative features emerge from eqns (15) and (16). First, for
reasonabie values of the patch parameters, the organism will never settle permanently
into one of the two patches. Instead, it will continually revisit and resample each
of the patches, because it forgets the past encounters. In particular, the most
interesting case is one in which »\/a, > ¥,/ a;, so that on average patch 1 is superior
to patch 2, and », > v,, so that patch 1 is also more certain than paich 2. Thus,
although paich 2 is inferior on average, there will be realtzations in which 1t is
superior to patch 1. The behavioral predictions that emerge from (15) and (16} is
that the organism will sample both patches and initially choose one in which to
reside and forage. Over time, however, information about the other patch is forgotten,
and this may lead to resampling of the other patch, especially il v 15 small {so0 that
there is considerable uncertainty). The rate of revisit and resampie will depend upon
the memory parameter v Such behaviar, however, is clearly consistent with the
matching rule (10}. In addition, the use of the memory parameter has an advantage
for numerical solutions in that the curse of dimensionality which arises in the
numerical solution of eqn (15) when y =1 is somewhat mitigated by the memory
parameter, which puts a natural limit on the values of the parameters.
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5. Role in Behavior and Evolution: Superparasitism by a Wasp or Tephritid Fruit Fly

Many solitary parasitoids and fruit parasitic insects mark hosts with a pheromone
after they have laid an egg in the host. Superparasitism refers to the phenomenon
of attacking a previously parasitized and marked host. In recent years, it has been
realized that superparasitism may, in fact, be an adaptive strategy and not simply
an error in detection of the mark (for review see van Alphen & Visser, 1990). Here,
the role of information in the oviposition decision of the parasitoid is investigated.

A foraging parasiteid will encounter two kinds of hosts: those that are unparasit-
ized (subscript u) and those that are previously parasitized and marked with a
pheromone (subscript p). Let A, denote the probability that a host of type i is
encountered in a unit interval of time and assume that A, = Ap and A, =A(1-p),
so that A is the probability that a host of either type will be encountered in 4 single
period and p is the conditional probability that if a host is encountered, then it is
unparasitized. Assume that both A and p are unknown and changing. In this case,
the appropriate prior density is the beta density; let A have a beta density
with parameters 8 and @ and let p have a beta density with parameters » and o.
Thus, for example, the mean and coefficient of vanation of A are 5/(8+ew) and
[w/(8(8+w+1)}]""" respectively. Specifying a mean value of A and associated
coefficient of variation provides a unique determination of the two parameters. In
each period, the parasitoid either encounters no host, encounters an unparasitized
host or encounters a previously parasitized host. If no host is encountered, then the
updating rule for the parameters becomes

B(s+1)=vy8(s)+(1-7v)5
w(s+1y=vyolsi+1+(1 - ylw,

(t7)
pis+1)=yr(s)t(1—¥)w

a(s+1)y=ya(s)+{1-¥ylay.

In this equation, y is the memory parameter (assumed to be the same for updating
the overall encounter rate and the specific encounter rate) and 8;, w,, ¥, and a, are
the long-term, evolutionary values of the encounter parameters. If a host of either
type is encountered in a given period, then the first two equations in {17) are replaced
by

S(s+1)=1vyB(s}+1+(1-7v)d,

(18)
wis+1)=yu(s)+{1 - ylw,,

and if the encountered host is unparasitized then the last two equations in {17) are
replaced by

vis+ 1) =yr(s)+1+{1 -yl
(19}

al(s+1)=vya(s)+(1-y)ay,
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whereas if the encountered host is previously parasitized, then the last two equations
in {17) are replaced by
v{s+1)=yri(s)+{1—v)y,
(20)
als+1)=vya(s)+1+(1—y)a,.

In order to fully model the behavioral problem, consider an interval of iength T
in which the parasitoid forages for hosts. For example, T might be the frutting
interval of a tree, the length of day for a synovigenic parasitoid unable to hold
mature eggs overnight, or the length of existence of a patch of hosts. Oviposition
in an unparasitized host increases lifetime accumulated fitness by an amount f, and
oviposition in a previously parasitized host increases lifetime fitness by an amount
S, with f, > f,. The probability that the parasitoid survives a single perod in which
oviposition does not occur is 1 — u and the probability that the parasitoid survives
a single period in which oviposition does occur is {1 — g W where 0 << ¢ <1 so that
# is a measure of the survival or somatic cost of reproduction {e.g. Carey, 1984;
Roitberg, 1989). It can easily be shown that with these assumptions, oviposition in
an unparasitized host is always optimal. The “'decision’ is then to oviposit or not
in a previously parasitized host.

Let Flw, 8, v, a, 1, T) denote the maximum expected fitness accumulated through
avipositions between period ¢ and period T, given that the current values of the
parameters are o, 5, v, and a. The dynamic programming equation that lifetime
fitness satisfies is

Flo,d r.o t T =[w/(w+8)1-p)Flw', 8, v, a,t+1,T)
+[8/(8+w)][w/(v+a)]
) {fo+{1—p)F(w”, 8" v', a”, i+1, T))
+[&/(8+w))a/{v+al]
x max {f, +(1— p)dFlw”, 8, v", a" 1+1, T),
X (1= w)Flew™, 8 v, a”, t+1, Tk 121)

The three terms on the right hand side of (21) correspond to: (1) not encountering
a host in period 1, in which case the updated parameters w’, ', v', and o' are given
by (17), {ii) encountering an unparasitized host in period 1, in which case the updated
parameters are w”, 8”, »", and a" are given by (18} and (19) or (iii} encountering a
parasitized host in pericd {, in which case the updated parameters are w™, 87, ",
and a" are given by (18) and (20}. The end condition for {21} is that
Flw, 8 v, a, T, TY=0 for all values of the parameters. Because the updating rules
lead to fractional values of the parameters, in order to solve (21) a four-dimensional
interpolation is needed.

As (21} is solved, optimal oviposition decisions are determined. These decisions
are denoted by d*(w, 8, v, a, 1} =1 if it is optimal to oviposit in a parasitized host
encountered in period 1 when the parameters are w, 5, »,and @ or d™(w, 8, ¥, @, 1} =0
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ifit is optimal to reject a parasitized host encountered in period f when the parameters
are w, 6, ¥, and a. Figure 1 shows, as a function of 1 for three values of the memory
parameter ¥, the fraction of {w, 8, ¥, a}-space in which the optimal decision is to
oviposit in a previously parasitized host. If y =0, then no learning occurs and the
decision is to either always (i.e. for all parameter values) oviposit or to always reject.
For values of y >0, the step function corresponding to ¥ =0 is smoothed out by
the wpdating of information.

If the world is changing, however, the sotution of (21) does not give the actual
fitness realized by the organism. That is, suppose that the encounter probabilities
are functions of time, A(r} and pt7}, and let Viw, &, #, a, 1, T} denote the actual
realized value of expected fitness between f and T, given that the current parameters
are w, b, v, and « and that the optimal decisions are foliowed. Then
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Fic. 1. The fraction of {@, 8, », a}-space, as a function ol f for three values of the memory parameter
v, in which the optimal decision is to oviposit in s previously parasitized hast. 1f - = 0, then no learning
occurs and the decision is 10 either afways {i.e. {or all parameter values) oviposit or (0 always Teject.
For values of ¥ >0, the step function correspending to ¥ =0 is smoothed out by the updating af
information, Parameters are: 7=9, 1 =0-005, ¢ =08/, =10, f, =02, wy=18,=1, v, = land a, = 1.
{l), Corresponds to ¥ =0 (no memory); (#),10 y=0.5 and ([1), 16 ¥=1 {perfect memory).
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Viw, 8, v,a, T, T)=0and Vi{w, 8, v, a, t, T) satisfies the following dynamic iteration
equation

Viw, 8, ¥, a,1, T
=[1=-A()](1 =) V(w', &, v, a’, t+1, T)
AL+ (1 —p )V, 87, v, a”, t+1, T}
+A(O[1=p(O[(f+ (1= ) Vie™, 8", v", e, t+1, THd*Xw, &, v, a,1)
+{1-wW) ¥, 8", ", a”, t+1, TH1-d*(w, b, v, a, 1)}], (22)

where the updated parameters are determined as described following (21). The
value Viw, 8, v, a, 1, T) gives the realized fitness of a certain set of decisions, and
thus memory parameter.

By combining the decisions determined by (21) with the realized fitness value
determined by (22}, one can consider the evolutionary consequences of various
values ol the memory parameter y. For example, A(¢) could be fixed at -5 and
p{t) is penodic or p(7) could fixed at and A{r) is periodic. Figure 2 shows a typical
result. The general pattern exhibited by this figure was common in all of the
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FiG. 2. The realized fitness ¥iw, &, w. o, 1. T at #=1 as a function of the memory paramelter ¥ lor a
fluctrating environment. (gl w=8=a =w=235, pit) fixed at 05 and A(¢} periodic with period 2: (b
w=8=a=pr=7 At} fixed at &5 and p{r) penodic with period 2. fn both cases, the long term
environmental paramelers are equal 10 1.
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computations for a wide variety of initial parameters: as a function of v, the realized
fitness was relatively flat, exhibiting a maximum variation of about 20%.

In addition, the maximum occurred at an internal value of the memory parameter
y, i.e. for a value of y bounded away from both 0 and 1. These results suggest that
evolutionary pressure on the memory parameter will be such that neither perfect
memory nor total forgetfulness are selected.

6. Discussion

The ideas developed here suggest two principles of information handling: sample
and forget the distant past. The application of such general principles in biology
requires us to consider the way that information is used by the organism, and not
abstract measures of “informational content”. The examples in sections 4 and 5
show how such information can be used. The use of information should take into
account not only the mean of the estimated parameter, but the uncertainty in this
estimate. If gathering information is costly (in terms of time, energy or both), then
the methods illustrated in sections 4 and 5 show how it is possible to determine
how much information should be collected. A number of authors have examined
the time course of memory of different organisms and have produced results that
are consistent with the theory developed in this paper. Getty & Krebs (1985} studied
the time course of memory of great tits searching for cryptic prey and modeled their
experiments by the theory of signal detection. Plowright (1988) studied the behaviors
of pigeons experiencing a two-armed bandit with changing arms and maodeled her
work by the theory of rate maximizing behavior. Brandes et al. (1988) studied the
time course of memory of honey-bees and the nature of selection for learning and
memory. Good learners and bad learners differ in the rate of accumulation of useful
memory and the rate of forgetting. Shettleworth er al. (1988) and Tamm {1987)
studied environmental tracking by pigeons and hummingbirds respectively. The
theory developed by Stephens (1987) and its extensions was compared with experi-
ments. In both cases, although there was qualitative agreement with the theory, the
quantitative details deviated considerably from the optimality model. Tamm con-
cluded that “‘none of four birds avoided the varying feeder when tow mean amount
and low predictability made it so unprofitable 1o the constani alternative that a rate
maximizer should not have visited it at all” {abstract: 1725}

It is likely that the specific forgetting rule is itself subject to evolutien, in the
sense that an “‘optimal forgetiing rule”™ may exist given the measure of fitness and
a characteristic Auctuation frequency of the environment. If the environmental
fluctuations are very rapid, then there is little use for memory and if they are very
slow, then there is little use for forgetting. In cases for which the environment
fluctuates on the same time scale as important events occur to the organism, memory
and forgetting will be imporiant. Although an “optimal forgetting rule” may exist,
the optimum in fitness is likely to be broad (cf. Mangel & Clark, 1983). In such a
case, it is not crucial to function at the ¢ptimum, but to follow the general procedure
of sampling and forgeiting. Similar conclusions have been drawn by McNamara &
Houston (1985, 1987). An entirely different approach would be to simply assume
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that organisms forage with the “wrong”™ parameter estimates and to then estimate
the fitness costs of such errors, which can sometimes be remarkably small {Roitberg,
personal communication; Bouskila & Blumstein, personal communication).

Even with an arbitrary weighting function (i), the updating rules derived here
will have the general form of a linear operator. Harley {1981) modeled the learning
of the evolutionarily stable strategy {also see Houston, 1983; Harley, 1983} using
linear operators. Kacelnik et al {(1987) showed how linear operators can be used
in changing environments. The contribution of this paper is to show how the
information, via the linear operator, can be incorporated directly into a fitness
function. Ollason (1980} gives the germ of the idea that McNamara & Houston
{1987}, Stephens (1987) and T used. The difficulty with Ollason's work is the
confounding of physiological and informational states and rules for behavior. It is
simply too hard to use his formulation to understand the selection for behavior in
uncertain and changing worlds. Finally, it should be noted that many authors write
on “information in biclogical systems™ meaning entropy or Shannon-Weaver infor-
mation (e.g. Wagensberg et al., 1988 provide a recent example). This approach tries
10 adapt physical science ideas directly to the biological framework, but it is not
clear that Shannon-Weaver information is the correct representation of information
for organisms. Tt is not the bit content of information, but what the organism does
with the information, that is important.

This work was partially funded by grants from NSF (BSR 86-1073}, the John Simon
Guggenheim Memorial Foundation and the Fulbright Foundation. It was motivated by
numerous discussions with Dan Cohen, during my tenure as Scheinbrun Professor of Botany,
Hebrew University of Jerusalem. It was completed while I was Senior Visitor 10 the Centre
for Mathematical Bioclogy and Department of Zoology, University of Oxford. For numerous
other helpful discussions, | thank David Deamer, Alex Kacelnik, John Krebs and Sara
Shettleworth. I thank Colin Clark and Catherine Plowright for reading a previous version of
the manuscript and two referees for thoughtful comments.

REFERENCES

ALPHEN, F. ). M. vaN & VISSER, M. E. {19%)). Superparasitism as an adaptive siraiegy. Ann. Rev
Entomed. in press,

BarRNaRD, O ) (1983). Animal Behaviour New York: Wiley [nterscience.

BARNDORFF-NIELSEN, Q. (1980, Conditionality resolutions. Biomerrika 67, 293-310.

BARNDORFF-NIELSEN, O, { 1983). On a formula lor the distribution of the maximum likelihood estimator.,
Biometrika 10, 43-1635,

BramwDts, C, FrRiscn, B & Menze, R (1988} Time.course of memory formation differs in honey
bee lines selected for good and poor iearning. Anim. Behar. 36, 981-985,

CAREY, ). R_119%4) Hest-specific demographic studies of the Mediterranean fruit Ry Cerariris capiiara.
Feol. Entomal. 9, 261-270.

Epwarps, A, W, F. 11972), Likefihood. Cambridge, U.K.: Cambridge University Press.

DeGooT, M. H. (1970}, Oprimal Sreustice!l Decrstans. New York: McGraw Hill,

Gerty, T. & Krebs, ). R (1985). Lagging partial preferences for eyptic prey: a signal detection analysis
ol great it foraging. Am. Nat 125, 39-80.

Hari ey, C. B, 119814 Learning the gvolutionarily stable strategy. J theor. Biol 8%, 611-633.

HAkLEY, C. B. (1983}, When do animals learn the evolutionarily stable strategy? F. theor. Biol 105,
179-151.

HousTtoN, A. 1 (1983). Comments on “learning the evolutionarily stable strategy™. £ theor. Binl 105,
175-178.



330 M. MANGEL

KacELNIK, A. & KrERs, J. R {1985). Learning to explait patchily distributed food. In: Behavigural
Erology (Sibly, R. M. & Smith, R. H.. eds) pp. 189-206. Oxford U.K.: Blackwell Scientific Publications.

KAcELMIK, A., KREBS, 1. R. & Ex~s, B, (1937). Foraging in a changing environment: an experiment
with starlings { Sturnus vedgaris). In: Quantitarive Analysis of Behavior Foraging (Commons, M. L.,
Kacelnik, A. & Shettleworth, 5. )., eds) pp. 63-87. Chapter 4, Hillsdale, NJ: L. Erlbaum,

KamiL, A. C. & RorrsLar, H. L. (1985}, The ecology of foraging behavior: implications lor animal
learning and memory. Ann. Rew. Psychol 36, 141-169.

Krems, I R, KacELNIK, A, & Tavior, P. (1978). Test of optimal sampling by foraging great tits.
Mature, Lord. 275, 27-31.

LEwIs, A, C. (1986). Memory constraints and flower choice in Pleris rapae. Science 232, 863-564,

MaCKINTDSH, N. 1. 11983), Conditioning and Associative Learning. Oxford: Clarendon Press.

MANGEL, M. {1987). Sampling highly aggregated populations with application to Califernia sardine
management {with commenis). Lecture Notes Biomath, 72, 246-263.

ManGEL, M. & CLARK, C. W, (1983). Uncertainty, search and informalion in fisheries. J Intern. Council
Explor. Seas 41, 93- 103,

ManGEL, M. & Crark, T. W, (1986). Search theory in natural resource modetling. Nat. Resources
Modeling 1, 1-54.

MaNGEL, M. & CLARK, (. W. (1988). Dynamic Modeling in Behavieral Ecofogy. Princeton, NJ: Princeton
University Press.

MoNaMARA, I M. & HousTon, A, 1 (1985}, Optimal foraging and learning. /. theor. Biol 117,231-249.

Mo NAMARA, J. M. & HousTON, A. L {1987). Memory and the efficient use of information. . theor.
Bioi 128, 385-395,

MILLER, R. G. (1986). Beyond ANOVA, Rasicy of Applied Sratistics. New York: Wiley.

OLLasoN, ). G, {1980). Learning to forage—optimally? Theor. pop. Biol 1R, 44-56,

PLowRIGHT {1988} Thesis, Departmemt of Psychology, University of Toronto.

RenTreRc, B . {19891, The cast of repraduction in rosehip flies, Rhagoletis basiola: eggs are time,
Fvol Frol 3, 183-188.

SHETTIEWORTH, 5. L, KreBs, J. R, STEPHENS, [2. W, & Giesox, ). (1988). Tracking a fluctuating
envirgnment: a study of sampling. Anim. Behav 36, 87-105.

STEPHENS, [, W, {1987}. On economically tracking a variable environment. Theor. pop. Biof 32, 15-25.

SIEPHENS, D W, (1989), Vartance and the value ol information. Am. Nar. 134, 12K-140.

STEPHENS, . W. & Kruiss, J. R (1986}, Foraging Theory. Princeton, NJI: Princeton University Press.

Tamm, S. (1987). Tracking varying environmenis: sampling by humminghirds. Anim, Behae 35, 1725-
1734,

WAGENSHERG, ). ¥alls, | & BrrMuUDEZ, ). (1983). Biological adaptation and the mathematical
theory of information. Bull. math. Biol 50, 445_464.

APPENDIX

The Likelihood Approach

In this Appendix, I show how the method of Maximum Likelihoed Estimation
(MLE} can be extended to include the memory parameter. Details and theory of
the MLE can be found in Edwards (1972). The general mathematical theory underly-
ing the methods developed here can be found in Barndorff-Nielsen {1980, 1983).
To begin, reconsider the case of random encounters described in section 2. The
support function is the logarithm of the likelihood (2). For the case of general y(i},
the support function and its first two derivatives are

=y -Ay(i)+nylitlogiAa)]+ot
=Y v+ nyli}/A] {A.1)
Far = —L[myti)/ A7),
The curvature of the support function plays a crucial role in determining the

uncertainty associated with the vatue of the parameter A that maximizes the likeli-
hood (or log-likelihood); see Edwards (1972) for {urther details.
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From eqn (A.1), the Maximum Likelihood Estimate (MLE) for A, denoted by
Als), is

As)=F ny(i}/L y(i). (A2)
For the particular case of exponential weighting, the MLE 1s
Ms)=Y ay/L ¥ ={Znmy0-y/1-¢""), (A.3)
and the curvature of the support function evatuated at the MLE is given by
Far i ==y "/ 1={1/R(5)). (A.4)

Equations {A.3} and (A.4) summarize the current information (the MLE) and the
uncertainty about the current information (the curvature of the supporn function
evaluated at the MLE). Additional information s incorporated by an updating ruie.
That is, suppose that the number of encounters in period s+ 1, n,., = n. Using eqn
{A.3) shows that

AMs+D=(1—y)n/01— ¥ 1+ yhis)(1—y V(1 =9 (A.S)

When s s large, eqn {A.5} is approximately AMs+1)=({l—-yin+ yi(s). Similar
procedures were applied to derive the results shown in Table 1.

These results show how to obtain parameter estimates and measures of uncertainty
of those estimates (the curvature of the support function). The Bayesian methods
give, as part of the computation, an entire probability distribution that can be used
in the equations for fitness. The maximum likelihood methods provide an estimate
of the parameter and a curvature that can be used to assess the likelihood of other
parameter values other than the MLE. For the Poisson case, the curvature goes as
1/A. For the binromial case the curvature goes as 1/p(1 — p}. Forthe negative binomial
case, the curvature goes as 1/mik+ ). For all three, as the MLE approaches 0,
the uncertainty in the MLE—measured 'by the curvature—increases. In addition,
the same increase in uncertainty occurs for the binomial case when the MLE
approaches 1. From the curvature, one can obtain approximate distributions for the
MLE. For example, based on the theory for the normal distribution { Edwards, 1972)
we could assume that the true parameter ¢ is normatly distributed with mean given
by the MLE & and variance 1/|%.0], where the curvature is evaluated at the MLE.
The two main limitations of this approach are (i) for high levels of uncertainty
infeasible values of the parameter may have considerable probability and (1i) the
normal distribution is symmetrical about the mean, whereas the underlying probabil-
ity model (Poisson, binomial or negative binomial) need not be. These deficiencies
can be corrected, to some extent, by truncating the distribution for feasible parameter
values. :

An alternative is to use the likelihood as if it were an unnormalized probability
density (this is essentially a Bayesian approach in which the uniform prior density
J»=1 s chosen}. In this approach, the posterior density is proportional to the
likelihood, so that in terms of the support function we have

_;;(H)=exp{5f'(a|é}}/J‘ expi¥(8|8)} da. (A.6)
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Here (0| 4) is the support function for the true parameter # given the MLE (which
summarizes the data). It is constructed by substituting the MLE for the data in the
original support functions. We can rewrite eqn (A.6) as f,(8) =k exp {F(8 k 5)} where
k is a normalization constant. A fourth order Taylor expansion of the term
exp {#(8|8)} about the MLE value gives

£08) =k exp {F 8|81+ (1/2)(8 = 8) Fop +{1/6K 6 = 6)*Frng
+(1/24)(8 — é}qffane&]« (A7)

Here all of the derivatives of the support function are evaluated at the MLE value
and the normalization constant & is chosen so that f,(8) in (A.7) integrates to |.



