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Abstract. Oviposition site selection and clutch size in parasitic insects can be
viewed as problems in foraging theory. In this paper, a number of models
for site selection and clutch size are developed, based on a dynamic state
variable approach to optimal oviposition strategies. The models lead to predic-
tions that are consistent with existing experimental data and suggest future
experiments. Using these models shows the importance of constraints and
state variables in the analysis of behavioral problems.
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Introduction

An ovipositing insect shares many of the same kinds of problems that animals
foraging for food face: oviposition sites are often encountered randomly and
may vary in quality and the future of the insect is inherently uncertain. One can
thus view an insect’s decision about where to lay eggs and how many eggs to lay
as a problem in foraging theory (Charnov and Skinner (1984), (1985), Iwasa
et al. (1984), Parker and Courtney (1984), Roitberg et al. (1982), Roitberg and
Prokopy (1982), (1983), (1984), Skinner (1985)). The purpose of this paper is
the development of a theory concerning oviposition behavior in parasitic insects.
These are broadly defined to include insects that are parasites of other insects
(e.g. parasitic wasps) and insects of economic importance that parasitize fruit
(e.g. the Mediterranean fruit fly Ceratitis capitata Wied. or the apple maggot
Rhagoletis pomonella Walsh). The behavioral theory developed in this paper is
based on state variable models and Markov decision processes (Mangel and
Clark (1986)). This paper is motivated by recent experimental studies on oviposi-
tion site selection and clutch size. These will be briefly reviewed before the
mathematical theory is developed. The third section contains a description of
the state variable approach to behavioral modelling and a family of models,
developed by making differing assumptions about the biology of the parasitic
insect. The fourth section contains the results of computer experiments. It will
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2 M. Mangel

be seen that virtually all of the experimental results described in the next section
can be understood by using state variable models and that new experiments are
suggested by the theory. The fifth section contains a brief comparison with other
theories and the sixth section contains a discussion of results and directions for
future work. There are two appendices. The first shows the connection between
the state variable models developed in this paper and usual life history theory.
The second contains a discussion of oviposition behavior in a completely deter-
ministic environment.

Experimental background

Recent analyses have determined the fitness female insects accrue by laying a
clutch of C eggs in a host (Charnov and Skinner (1984), (1985), Skinner (1985),
Waage and Godfray (1985), Weis et al. (1983)). The results of these analyses are
that fitness is often a concave function of clutch size. Thus, one can determine
that there is an “optimal” clutch that maximizes the fitness obtained from laying
eggs on an individual host. In the rest of this paper, the singlet host optimum
clutch will be called the “Lack Clutch Size” (LCS) or “Single Host Maximum”
(SHM) in analogy to Lack’s theory about clutch size in birds (Lack (1954)). The
experiments also show, however, that insects often laid clutches which were far
smaller than the single host optimum (Charnov and Skinner (1984), Weis et al.
(1983)). For example, Table 1 shows the estimated frequency of clutch sizes for
the parasitic wasp Nasonia vitripennis, based on data in Charnov and Skinner
(1984). The SHM clutch size for single host optimum fitness are also shown in
this table. The wasps laid clutches of virtually any size smaller than the SHM.
Weis et al. (1983) report similar results.

Another series of experiments has focused on the foraging behavior of apple
maggot and the response of the apple maggot to its oviposition marking
pheromone (OMP). Roitberg and Prokopy (1983) found that after host depriva-
tion, apple maggots were much more likely to oviposit in marked fruit than if

Table 1. Frequency of clutch sizes reported by Charnov and Skinner (1984)

Clutch size

Host volume 1-5 6-10 11-15 16-20 21-25
0-10 9 4 0 0 0
10-20 19 8 3 0 0
20-30 24 22 13 4 3
>30 11 18 15 6 6
Totals 63 52 31 10 9

Single host maximum (Lack) clutch sizes
Host volume SHM clutch

18 11
22 ' 15
31 21
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no host deprivation occurred. For example, a 5-min host deprivation period lead
to 10% of the flies ovipositing in marked fruit, a 20-40-min deprivation period
lead to 60% ovipositing, and an 80-min deprivation period lead to 85% oviposit-
ing. Roitberg and Prokopy (1982) also report that flies spent about 25 times
longer in patches of hawthorn fruit than is predicted by a marginal value argument.
Roitberg et al. (1982) measured both the residence time (total time spent in a
patch of fruit) and the giving up time (time since the last oviposition before the
fly left the patch) for fruit patches of various sizes. They found that the residence
time increased with the number of fruit in the patch and that the giving up time
decreased.

Carey and Freeman (to appear) measured the response of medfly to artificial
hosts of differing volumes. They found that the number of eggs laid per host
saturates with host volume, ranging from 2 eggs per clutch for hosts of 1.5 cm
diameter to 3-4 eggs per clutch for hosts larger than 3 cm in diameter. Since the
medfly can easily lay 60 eggs per day, it is unlikely that this saturation is caused
by egg depletion. Medflies also respond to host deprivation by delaying the onset
of senescence (cf. Williams (1957)) and increasing egg production at later ages
(Carey et al. (1986)).

Godfray (1986) studied clutch size in a leaf-mining fly (Pegomya nigritarsis:
Anthomyiidae) and found that the predicted optimal clutch size (3) was indeed
the most frequently observed clutch size. This observation seems at first to be at
odds with the observation of Charnov and Skinner, but it will be seen that through
a proper theoretical development one can understand the differences in these
observations. Jaenike (1978) quotes a study by Wiklund (1977) of the butterfly
Leptidea sinapis that shows the need for simultaneously considering predation
and oviposition in a model of behavior. Jaenike writes: ‘“Perhaps these butterflies
confine their feeding to the wood because of the possibility of predation in the
meadow. If this were the case then forays into the meadow to oviposit on L.
pratensis would incur a potential risk, making L. montanus a more acceptable
host plant”.

Although not concerned with insects, Browne’s (1982) work on the brine
shrimp Artemia is especially noteworthy because it examines the interaction
between nutritional state and reproductive success and shows the need for a
theory that connects physiological state and reproductive behavior. Fritz and
Morse (1985), Loschiavo (1964) and Snell and King (1977) report similar data,
but without reference to theory.

Even though theory for the oviposition behavior of parasitic insects is already
extensive (Carey (1984), Charnov and Skinner (1984), (1985), Houston and
McNamara (1986), Iwasa et al. (1984), Jaenike (1978), Parker and Courtney
(1984), Price (1977), Skinner (1986) and Williams (1957)), the preceding experi-
mental results point out at least five key questions that are not completely resolved:
(1) why is there a distribution in observed clutch sizes and in particular why
should the observed clutch sizes be much smaller than the single host optimum
clutch; (2) what is the explanation of the response to host deprivation; (3) why
does clutch size saturate with host volume; (4) how are nutritional state and
reproductive behavior connected; and (5) how does one assess trade-off between
the risk of mortality and the chance of reproductive success? The behavioral
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theory developed in this paper provides a means for attacking these questions
and for developing future experiments. It is worth noting that the main issue of
this paper, reproductive trade-offs, is much broader than parasitic insects (Pianka
(1976)) so that many of the ideas developed here have the potential for wider
applicability.

State variable models in behavioral theory

In this section, Markovian decision theory (e.g. Aoki (1967), Heyman and Sobel
(1984) or Mangel (1985)) is used to develop a framework in which insect
oviposition behavior can be analyzed. The theory requires three main components:
(1) a state variable or variables (characterizing the current state of the insect)
and its dynamics, (2) a survival function relating current state and behavior to
survival in the future, and (3) a measure of fitness, which represents the quantity
that is being maximized.

For most of the work reported in this paper, a discrete time formulation will
be used and X (t) will denote the value of the state variable at the start of period
t. For the particular problem of host site selection and clutch size, three possible
choices for the state variable are:

— the number of mature eggs held by an insect at the start of period ¢,

— the number of oocytes (“‘potential eggs” or “‘egg seeds” (Fletcher and Comins
(1985))) at the start of period ¢, or

— a measure of energetic reserves at the start of period ¢

In general, one can use various combinations of these three state variables to

model different kinds of insects and different environmental situations. The

particulars of the model depend, to some extent, on the particular problem being

considered. The dynamics of X (¢) also depend upon the choice of state variable.
Survival is defined by a function 4(x, ¢, d) as follows:

#(x, t, d) = Prob{insect is alive at the start of period
t+1]alive at the start of period ¢, X(¢)=x and the
behavioral decision during period ¢ is d}. (1)

Note that X (t) can be interpreted as a vector or scalar in this equation. If one
were to assume that 4(x, t, d) were a function only of time, then 4(¢) could be
calculated from the standard I, schedule of demographic theory (see, e.g. Carey
(1982) for an application of demographic theory to medfly). In particular, since
1, is the probability of surviving to the start of period t, one has

#(t) = Prob{survival to period ¢+ 1|alive a period ¢}
= Prob{survival to t + 1}/ Prob{survival to ¢}
=/l (2)

Alternately, one could measure survival only in terms of the state variable (see,
e.g. Iwasa et al. (1984)) in,which case 4 = £(x) can be interpreted as a survival
function measured in “physiological time”. In general, one needs to assume that
survival depends upon both time and the state variable (and possibly the



Oviposition site selection and clutch size in insects 5

behavioral decision) in order to understand the experimental results that were
described previously.

When an insect encounters a potential host, it must decide (1) whether or
not to oviposit in that host and (2) how many eggs to lay if the decision is to
oviposit. Assume that a clutch of size c laid in a host of type i when the current
value of the state variable is X () = x gives an increment in fitness F proportional
to

SF=Wi(c, x, t) - (3)

in which the function W;(c, x, t) is computed in a manner analogously to the
computations described by Charnov and Skinner (1984), (1985), Skinner ( 1985)
or Weis et al. (1983). In many cases, it is reasonable to assume that

8F = Wi(c)hi(x, t) (4)

where W,(c) is the fitness of a clutch of size ¢ conditioned on perfect survival
and h,(x, t) is the fraction of eggs that hatch on a host of type i when X () = x.
Carey (1984) provides data that can be used to estimate the hatch function. In
some cases, the fitness increment might also be a function of the time remaining
in the current season. That is, if T denotes the time at which the season ends
(e.g. the first frost arrives), then 8F = W,(c, x, t, T). This situation would arise in
a growing population with more than one generation per year, so that offspring
which are produced early in the season have more value than offspring produced
later in the season. For most of this paper, the T dependence of the fitness
increment will be suppressed. One can think either of a univoltine insect or of
a population at equilibrium.

It is reasonable to assume that W;(0) =0 and that there exists a clutch size
¢,,(i) that provides a maximum value of fitness through oviposition on a host of
type i. Two useful conceptual models for the fitness increment are W(c)=
re(1—c¢/K;) (a “logistic” fitness increment) and W;(c)=aic exp(—bc) (a
“Ricker’” fitness increment). The value c,,(i) thus corresponds to the single host
optimum clutch size or the Lack clutch size.

An insect making the decision concerning oviposition and clutch size, given
that a host of a certain type has been encountered, thus faces a trade-off between
an immediate increment in fitness from oviposition on the current host and the
loss of future expected fitness caused by oviposition on the current host and
concomitant changes in state variables and possibly survival functions. This
trade-off can be dealt with in a unified and consistent manner by the method of
stochastic dynamic programming (SDP). In order to show how this is done, a
number of different state variable models will now be developed in detail. All of
the models share the following assumptions:

(1) There are H different host types, labelled by i=1,2, ..., H. The incre-
mental fitness function for a clutch of size ¢ on a host of type i is W;(c). The
probability of encountering a host of type i during period ¢ is denoted by A;(1).

(2) There is a maximum time T after which no more fitness can be accrued
to the insect. This time can be either the time of death or diapause of the insect
or a time at which the hatch percentage is essentially 0.
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Now define an expected lifetime fitness function F(x, t, T) as follows:

F(x, t, T) = maximum expected lifetime fitness through
oviposition between ¢ and T, given that X (¢) = x. (5)

In light of the second assumption, F(x, ¢, T) immediately satisfies the end condi-
tion that

F(x, T, T)=0. (6)

The values of F(x, t, T) for t < T — 1, and the corresponding oviposition decisions,
are obtained by solving the appropriate stochastic dynamic programming
equations (DPEs) that characterize F(x, t, T).

Model 1: Mature eggs only

The simplest model is one in which insects are born with all of their eggs already
mature. This kind of model would apply to Lepidoptera in general, some Diptera,
and some Coleoptera, so that as a starting point it is not totally devoid of realism.
Let X (¢) denote the number of eggs which remain at time t. Then X(0)=R,
where R is the initial reserve of eggs, and X (¢+1) is related to X(¢) by the
simple difference formula

Xit+1)=X(1)—-C(1) (7)

where C(t) is the clutch laid in period . If C(¢) =0, which would occur if the
insect chooses an activity other than ovipositing or doesn’t find a suitable host,
then X (t+1)= X (t). Otherwise X (t+1) < X(t). It is clear too that X (¢)=0 is
a constraint on the state variable (in this model only — see below for variations)
for all values of ¢

The DPE for F(x, t, T) is computed in the following way. If a host of type i
is encountered in period ¢ and a clutch of size c is laid, then two events occur.
The first is that an increment in fitness Wi(c, x, t) is added to the total expected
lifetime fitness of the insect. The second is that if the insect survives to the start
of period t+1, then the value of the state variable at the start of period #+1 is
x —c. The total expected lifetime fitness of an insect starting at period ¢ with
X (1) =x is then the sum of the increment W,(c, x, t) and the expected lifetime
fitness from period t+1 on, conditioned on survival. The maximum expected
lifetime fitness is obtained by maximizing over the clutch size decision. Thus

F(x,t, T)=Y A, Olzlgaji{W,»(c, x, t)+p(x, ¢, t)F(x—c, t+1, T)} (8)
The sum on the right-hand side of (8) goes over all host types; the terms are
respectively the probability of finding a host of type i, the action of maximizing
over clutch size subject to the constraint that the clutch must be smaller than the
number of eggs that remains, the increment to lifetime fitness from the clutch of
size ¢ in period t; and the expected fitness starting at period ¢+ 1. Note that ¢ =0
is a perfectly legitimate decision and means that no eggs are used in period 7 if
a host of type i is encountered.
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In order to analyze the dynamic programming equation (8), begin by setting
t =T —1 so that one is interested in the next to the last period. In this case, Eq.
(8) becomes

F(x, T-1,T)=) )«iomax Wile,x, T—1) (9)

and Eq. (9) immediately leads to two predictions:

P;: Older insects should be less selective about where they lay their eggs. For
example, there should be more superparasitism (in which insects oviposit in
hosts that were already parasitized) as the insects near death.

P,: Imagine a cohort of identical insects that start life together. By period T -1,
random encounters with hosts of different types will lead to a varying number
of eggs remaining per insect and thus to the prediction that there will be a
distribution in clutch sizes, since the constraint ¢ < x has a potentially different
value for each insect. Conversely, in a laboratory situation in which the host
encounters of differing insects can be carefully controlled, one would predict
less variation in clutch size.

Although these predictions appear to be “obvious”, it is in fact the formulation
of the problem in terms of a dynamic state variable that makes them so obvious.
Further understanding of oviposition decision making requires solution of the
dynamic programming equation.

Equation (8) is easily and quickly solved on a desktop microcomputer once
the fitnesses and survival functions are specified. For the results presented here,
the incremental fitnesses W;(c, x, t) were treated as functions only of host type
and clutch size, so that the incremental fitness is denoted by W;(¢). The fitnesses
were modelled using the data shown in Fig. 7 of Charnov and Skinner (1984).
The curves were extended more or less symmetrically and then fit with a cubic
of the form W;(c) = Ay(i)+ A,(i)c+ A(i)c*+ A;(i)c’. Table 2 shows the values
of the coeflicients and the SHM clutch. (Although the cubic form for W;(c) treats
¢ as a continuous variable, only discrete values of ¢ are allowed when solving
the dynamic programming equation). Most of the calculations reported here used
an initial reserve of R =125 eggs and a foraging time horizon T =20 periods.
The host encounter rates are treated as exogenous parameters that are constant
over time and the survival probability is treated as a function of time only, using
one of two I, schedules:

{1 up to period T—1and O in period T (a)
=@/, (b)

When the DPE (8) is solved, the first output is the expected lifetime fitness
function F(x, t, T) from period t onwards. One finds that F(x, ¢, T) is a non-
decreasing function of both the initial egg complement x and the timeto go T —t.
These results are easily understood and intuitive: as either the number of periods
remaining or the initial number of eggs increases, the expected lifetime fitness
should either increase or level off (if there is insufficient foraging time to oviposit
the entire complement of eggs). -

A second and more interesting output of the dynamic programming equation
is the optimal oviposition decision. That is, when solving the DPE one finds the

(10)
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Table 2. Coefficients used in the fitness function W;(c) = Ao+ A;c+ A ¢+ A,c’ (valid for ¢=<30)

Host type Ay A, A, A; SHM clutch
1 —0.2302 2.7021 —0.2044 0.0039 9
2 —0.1444 2.2997 —0.1170 0.0013 12
3 —0.1048 2.2097 —0.0878 0.0004222 14
4 —0.0524 2.0394 —0.0339 —0.0003111 23

optimal clutch c¢*(x, t, T; i) when a host of type i is encountered during period
¢t with X(t)=x and T—t periods remaining. This quantity is more interesting
than the fitness function itself since the optimal oviposition decision corresponds
to the behavioral observations that one will make in experimental work. For
example, Table 3 shows optimal oviposition decisions for a variety of parameter
values. For short time horizons, the optimal clutch decision is the single host
maximum or “Lack” clutch size. As the number of periods available for oviposi-
tion increases, the optimal clutch for a given host type decreases. These results
suggest that clutches smaller than the SHM will be observed in nature; exactly
this kind of result was reported by Charnov and Skinner (1984). One can
understand the shift towards smaller clutches as the interplay of a concave fitness
function, the time horizon and a survivorship function. Given a sufficiently long
time horizon an insect with a concave fitness function should deposit as few eggs
per host as possible since that will maximize the total lifetime fitness. It is only
when the time horizon is short (so that eggs would remain at period T) or the
future is uncertain (so that there is a considerable probability of death during a
period) that one would expect clutches approaching the SHM clutch. It is shown
in Appendix B that this reasoning is true even in a completely deterministic setting.
Generalizing the computational results leads to two more predictions:

P,: Consider a host for which the SHM clutch is large. As the probability of
finding this host increases, the observed distribution of clutches in this host
will change so that small clutches are more frequent. Conversely, if encounter-
ing this host is a rare event, then the clutches in this host should be close to
the SHM clutch.

P,: Note from Eq. (8) that the survival 4(x, c, t) essentially “discounts” the value
of future clutches. Thus, as the probability of mortality between periods
increases, one should observe larger clutches more frequently.

These four predictions already provide insight into the experimental results. There
is some overlap between these results and the work of Weis et al. (1983), who
use demographic models, and Waage and Godfray (1985), but neither of those
papers explicitly deal with the distribution of clutches. Such distributions are an
immediate prediction of the state variable models.

Model 2: Unlimited eggs with conversion from energy to eggs

In this model, one assumes that the number of oocytes is essentially unlimited
(not an unreasonable assumption in some cases — see Dunlap-Pianka et al.
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Table 3. Optimal oviposition decisions

Optimal oviposition decision®

Host type 2 Host type 4
“Time to go
(T-1) x =40 x =80 x =40 x =80
1 12 12 23 23
2 12 12 20 23
3 9 12 14 23
4 6 12 11 21
5 5 10 9 17
6 4 8 8 15
7 4 7 6 13
8 3 6 6 11
9 3 5 5 10
10 3 5 5 9
11 2 4 4 8
12 2 4 4 8
13 2 4 4 7
14 2 3 3 6
15 2 3 3 6
16 2 3 3 6
17 2 3 3 5
18 2 3 3 5
19 2 3 3 5
20 2 3 2 5

2 Survival function given by Eq. (10a) and A, =0.05, A,=0.05, A;=0.1,
A,=08

(1977)) and that the insect must expend energetic reserves converting oocytes to
mature eggs. Since the number of oocytes is assumed to be unlimited, there is
only one state variable. Let X (¢) denote the energy reserves of the insect at the
start of period t. The insect faces two behavioral choices during period ¢; these
choices determine the dynamics of X (¢). If the choice is to forage for food during
period ¢, then

X(t+1)=X(t)—a(t)+ Y (1) (11)

where o, is the cost of foraging during period ¢ measured in terms of energetic
reserves and Y () is the (possibly random) energetic content of the food found
during period t. It is reaonable to assume that in addition to the constraint that
X (t)=0, there is a minimum energy level x,, so that if X (¢) ever falls below this
critical level the insect is dead. It is also possible to add other constraints to the
dynamics without any difficulty. For example, if there is a capacity constraint,
so that X (¢) can never exceed some capacity C, then the right-hand side of (11)
is replaced by min(C, X () — ay(t)+ Y(¢)). If there is a rate constraint, so that
the per-period increment in the energetic reserves cannot exceed a value R, then
the right-hand side of (11) is replaced by X (¢)+min(R, Y(t)— a,(1)).

If the behavioral decision during period ¢ is to search for oviposition sites,
then the dynamics of X (¢) are given by

X(t+1)=X(t)— ap(t)—a.C(t) (12)



10 M. Mangel

120

Forage for
oviposition sites

601

Forage for food

| ]
¥ 1

10 20

Fig. 1. Division of the state variable/time horizon plane into regions of foraging for food and for
oviposition sites. Parameter values: y =0.5, A; =0.25, 1,=0.2,A;=0.15,A,=0.15, oy = =5, a, =5,
Y=25 C=125

where a, is the energetic cost of searching for oviposition sites during period ¢,
a, is the energetic cost of converting one oocyte to a mature egg and C(t) is the
size of the clutch laid during period ¢; in particular C(t) =0 is a possibility.

Let A/(t) be the probability of finding food during period t. Dropping the
time dependence of the A’s, the DPE for F(x, t, T) is thus

F(x,t, T)=max[AF(x', t+1, T)+(1-A)F(x—ap t+1, T);
YA max  {Wix, ¢ t)+p(x ¢ ) F(x—ao—ac, t+1, T)}]

Oscs(x—ag)/a,

(13)

b

terms on the right-hand side of Eq. (13) give the expected future lifetime fitness
if the insect chooses to forage for food; the second two terms give the expected
increment fitness and expected future lifetime fitness if the insect chooses to
forage for an oviposition site. The decision rule is then to choose the action that
contributes most to expected lifetime fitness.

The most interesting use of a model such as this one is the ability to be able
to predict when the insect should forage for food and when it should forage for
oviposition sites. Figure 1 shows a typical result from this model. The plane
defined by “time to go/state variable” is broken into two regions. In one of the
regions, the insect should forage for food and in the other it should forage for
oviposition sites. (The step-like nature of the boundary is more or less an artifact
of the model in which only one food value Y occurs. If there is a distribution
of food values, then the boundary is a smoother curve.) Study of Fig. 1 suggests
the following prediction:

where x'=x—a,(t)+ Y, subject to any appropriate constraints. The first two

P.: Insects will spend less time foraging for food and more time foraging for
oviposition sites as they get older.

Model 3: Mature eggs and oocytes

In this model, it is assumed that the insect is born with a limited number Y, of
oocytes which can be converted to mature eggs. Fletcher and Comins (1985), in
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a model of the life history of Dacus oleae, refer to the oocytes as potential eggs.
Let X () denote the number of mature eggs held at the start of period ¢, Y ()
denote the number of oocytes which remain at the start of period ¢ and r(x, y, t)
denote the number of oocytes that can be converted to mature eggs during period
t when X (1) =x and Y(t)=y. The production function r(x, y, t) should satisfy
a number of reasonable conditions. For example, r(x, 0, t) is certainly 0 and if
there is a maximum capacity C of the number of mature eggs that can be held,
r(C, y, t) is also 0. The coupled dynamics of X(t) and Y(¢) are then

X(t+1)=X({t)—C(t)+r(X (1), Y(1), )
Y(t+1)=Y(t)-r(X(t), Y(1), ).

(14)

The DPE for this particular case is derived and studied in detail in Mangel (1987),
where the theory is applied to study the behavior of the rose hips fly Rhagoletis
basiola.

Model 4: Energy, mature eggs and oocytes

Models 2 and 3 can be combined in what should by now be a relatively clear
way so that one can consider expected lifetime fitness that depends upon energetic
or nutrient reserves E(t) at the start of period ¢, the number of mature eggs X (t)
held at the start of period t, and the number of oocytes Y(¢) remaining at the
start of period t. The lifetime expected fitness function is now

F(e, x, y, t, T) = maximum expected lifetime fitness through egg
production between f and T,
giventhat E(t)=e, X(t)=x,and Y(¢)=y. (15)

The DPE for F(e, x, y, t, T) should be clear to the reader; the main difficulty (if
there is one at all) will be computational complexity.

Model 5: Mature eggs in continuous time

The four models discussed thus far deal with events in discrete time and this on
occasion may cause difficulties for the interpretation of experimental results.
Thus, one continuous time model will be developed, for the case in which the
state variable X () represents the number of mature eggs remaining at time .
(Note the shift in interpretation of the state variable if one works in continuous
time. This is also true for the interpretation of the expected lifetime fitness function
F(x, t, T) which now is the expected lifetime fitness obtained by foraging for
host sites between time ¢ and T, given that X (z)=x.) Other variables are also
changed accordingly:

Prob{encountering a host oftyp'e i during the interval (1, t + Af)} = L, At + o(4t)
(16)
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and

Prob{an insect that is alive at time ¢ survives to time ¢+ At | X (1) =x,
clutch of size c is laid at time ¢}
=1-4(x, c, t)At+o(4t). (17)

(Especially note the change in the interpretation of the survivorship function.)
In these equations, o(z) denotes terms such that o(z)/z approach 0 as z

approaches 0.
The DPE for expected lifetime fitness is now derived as follows. One compares

F(x,t,T) and F(x,t+A4t, T):
F(x, 1, T) =L \At max {Wi(c x,1)+(1 — p(x, ¢, ) AF(x —c, t+At, T)}

+(1=Y M4t (1—4(x, 0, t) At)F(x, t+ At, T)+ o(4t). (18)

The right-hand side of Eq. (18) is now Taylor expanded in powers of At (see
Mangel (1985) for a further description of this method for deriving dynamic
programming equations) to give

F(x,t, T)=Y A;At max {Wi(c, x, 1)+ F(x—c, t, T)+o0(A)}

+F(x, t, T)+8,FAt—((x,0, 1)+ A,) AtF(x, t, T)+o(4r?).  (19)
Dividing by At and letting At approach 0 gives the equation
3, F =Y A, max{Wi(e,x, )+ F(x—¢, t, T)} = (4(x,0, )+ L L) F(x, 1, T)}. (20)

This is a nonlinear, partial differential-difference equation. It still satisfies the
end condition F(x, T, T) = 0 and still should be solved by some kind of backwards
iteration. It is very likely that the solution methodology for dealing with Eq. (23)
will involve the discretization of the equation over either time or state variables.
The complexities and approximations associated with such a discretization,
however, make the continuous time model no more compelling than the much
simpler discrete time models.

Model 6: Mature eggs and variable handling times

There are many situations in which host types are sufficiently varied that one
needs to consider handling times that are functions of host type and clutch size.
Thus, one would define 7;(c) as the time needed to lay a clutch of size ¢ in a
host of type i. The biology of the insect-host system must determine the form of
the variable handling time, and the way that fitness is accrued to the insect. At
least two broad cases can be envisioned: (i) the entire clutch is laid at once and
there is no gain in fitness for the insect until the handling time elapses; (ii) the
handling time for a clutch of size ¢ is the sum of handling times for the first egg,
second egg, etc. up to the «cth egg and the fitness is increased incrementally. In
either case, however, it is no longer sufficient to describe the state of the insect
by the value of X(t) only. One must include the activity of the insect at the start
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of period t (searching for a host site or ovipositing) and, if the activity is
ovipositing, how long the insect has spent on the current host. Thus define the
following fitness functions:

F(x, t, T) = maximum expected fitness between ¢ and T, given that X(t)=x
and the insect is searching at the start of period ¢ (21)
1

Fy(x, s, t, T) = maximum expected fitness between ¢ and 7, given that
X (1) = x, the insect will lay a clutch of size [ on a host of type i,
and the insect has already spent s units of time on the host.

Assuming the first case, in which fitness is accrued only at the end of the handling
time, the DPEs are

F(x, t, T)=Y A, max{/tsF(x, tt+1, T); max pi(x, ¢, 1) Fo(x, 1,1, T)} (22a)

and

Wi(c)+F(x—c t+1,T) ifs=m(c)—1
Fe(x, 51, T )={ (23b)
F.(x,s+1,t+1, T) otherwise

where now £, and #;(x, c, t) are respectively the probability of surviving one

period while searching for a host and the probability of surviving through the
handling time 7;(c) on a host of type i while ovipositing.

Experiments with computer insects

One can use Monte Carlo simulation to perform experiments on ‘“‘computer
insects”. These model insects are assumed to behave optimally according to the
dynamic state variable models and encounter hosts randomly (the Monte Carlo
method is used to simulate the encounters with hosts). In the simulations reported
here, model 1 was used. In each simulation, 100 computer insects were allowed
to forage for host sites for 20 periods. Each insect started with 120 mature eggs
and, upon encountering a host, determined the optimal oviposition behavior
based on the solution to the DPE. Table 4 shows the various “‘experimental”
set-ups used for the computations.

Experiment 1: Effect of host distribution

The effects of the distribution of hosts on the oviposition behavior of the insects
can be studied by varying the encounter probabilities A, — A,. The effects of host
distribution on the distribution of clutches is shown in Table 5. Note that a higher
probability of encounter with the hosts for which the single host optimum clutch
is large leads to a smaller frequency of large clutches. This can be interpreted as
a “risk spreading mechanism”, although the optimal decision does not in any
way model the risk trade-offs directly. That is, when large hosts are plentiful the
concavity of the fitness increments means that it is advantageous for the insect
to deposit fewer eggs per host, since the likelihood of encountering another large
host is high. Second, note the interplay of probability of survival and clutch
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Table 4. Parameter values used in different cases for the computer experiments

Case T Ay A, Az Ay Survival function

1 20 0.1 0.1 0.1 0.1 10a

2 20 0.05 0.05 0.1 0.8 10a

3 15 0.1 0.1 0.1 0.1 10a

4 15 0.05 0.05 0.1 0.8 10a

5 10 0.1 0.1 0.1 0.1 10a

6 10 0.05 0.05 0.1 0.8 10a

7 20 0.1 0.1 0.1 0.1 10b, y=1

8 20 0.05 0.05 0.1 0.8 10b, y=1

9 15 0.1 0.1 0.1 0.1 10b, y=1
10 15 0.05 0.05 0.1 0.8 10b, y=1
11 10 0.1 0.1 0.1 0.1 10b, y=1
12 10 0.05 0.05 0.1 0.8 10b, y=1
13 20 0.1 0.1 0.1 0.1 10b, y=2
14 20 0.05 0.05 0.1 0.8 10b, y=2
15 15 0.1 0.1 0.1 0.1 10b, y=2
16 15 0.05 0.05 0.1 0.8 10b, y=2
17 10 0.1 0.1 0.1 0.1 10b, y=2
18 10 0.05 0.05 0.1 0.8 10b, y=2

size. The overall distribution of clutch sizes is thus caused by the interplay of
the stochastic environment and the state variable dynamics. The results of this
computer experiment show the same kinds of trends as the experimental results
of Charnov and Skinner (1984).

Experiment 2: Effects of host deprivation

In terms of a dynamic state variable model, host deprivation is equivalent to a
reduction in the time available for foraging for oviposition sites. For the models
developed in this paper, in which encounter probabilities are constant, one can
think of host deprivation as a reduction in the final time T. Table 6 shows the

Table 5. Results of the host distribution experiment® (entries are frequency of observed clutches)

Clutch size

Case 1-5 6-10 11-15 16-20 21-25 >25
1 0.02 0.35 0.41 0.15 0.07
2 0.24 0.76 0 0 0
7 0.01 0.26 0.52 0.04 0.17
8 0.14 0.29 0.57 0 0
13 0.013 0.271 0.510 0.054 0.152
14 0.16 0.36 0.48 0 0

#Cases 1, 7 and 13 correspond to &l A; =0.1. Cases 2, 8, and 14 correspond to A, =A,=0.05, A;=0.1,
A,=038. In all cases, T=20. The survival function is Eq. (10a) for cases 1, 2; (10b) with y=1 for
cases 7, 8 and (10b) with y =2 for cases 13, 14
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Table 6. Results of the host deprivation experiment (entries are the frequencies of observed clutches)

Clutch size
Case T 1-5 6-10 11-15 16-20 21-25
1 20 0.02 0.35 0.41 0.15 0.07
3 15 0.008 0.301 0.459 0.046 0.186
5 10 0 0.260 0.481 0.003 0.256
2 20 0.24 0.76 0 0 0
4 15 0.163 0.821 0.016 0 0
6 10 0.023 0.210 0.742 0.023 0.002
7 20 0.01 0.26 0.52 0.04 0.17
9 15 0.004 0.249 0.495 0.007 0.245
11 10 0 0.233 0.505 0 0.262
8 20 0.14 0.29 0.57 0 0
10 15 0.082 0.278 0.325 0.315 0
12 10 0.029 0.178 0.137 0.656 0
13 20 0.013 0.271 0.510 0.054 0.152
15 15 0.003 0.236 0.485 0.023 0.253
17 10 0 0.242 0.512 0 0.246
14 20 0.16 0.36 0.48 0 0
16 15 0.11 0.27 0.62 0 0
18 10 0.04 0.19 0.18 0.59 0

a Cases 1-6 have survival function Eq. (10a). Cases 7-12 have survival function Eq. (10b), with y = 1.

Cases 13-18 have survival function Eq. (10b) with y=2
For odd numbered cases, all A, =0.1; for even numbered cases A, =A,=0.05, A3=0.1 and A,=0.8

results of a host deprivation computer experiment. Shorter time horizons lead to
a clutch size distribution that is skewed more towards larger clutches, although
there is still considerable variation in the size of clutches. Mangel (1987) does a
similar kind of computer experiment in attempting to understand the oviposition
behavior of Tephritid fruit flies, in particular Rhagoletis pomonella (Roitberg and
Prokopy (1983)). These flies mark fruit with a pheromone after an oviposition.
Roitberg and Prokopy (1983) found that there was an increased proclivity to
oviposit in marked fruit after modest periods of host deprivation. This kind of
behavior can be understood within the framework of dynamic state variable
models: host deprivation leads to a reduction in total time available for searching
for oviposition sites. Since it is always better to lay an egg than to still have it
when ¢ = T, fruit which would not be acceptable when there is considerable time
available for foraging becomes more acceptable when time is short.

Comparison with other work

The theory closest to the one presented in this paper is the work by Iwasa et al.
(1984). They also approach the problem using a dynamic programming formula-
tion but work only in “physiological time”. (Of course, dynamic programming
itself is really just a book-keeping technique, so one is almost forced to use it.)
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Thus, their methodology could not be used to study host deprivation experiments
(although it could obviously be adapted, as in this paper). They provide an easily
computed iterative solution of the DPE. The simplification of working in physio-
logical times does not, however, allow one to obtain an explicit analytical solution.
On occasion, such analytical solutions can be found; especially if one is willing
to resort to approximate methods - see Mangel (1986). The points stressed by
Iwasa et al. are (1) effects of forager mortality and (2) effects of limited numbers
of eggs on the oviposition decision making. The models developed in this paper
treat not only those issues, but also the connection between a physiological state,
a reproductive state, and behavior. Although not explicitly stated, the variability
of clutch size observed by Charnov and Skinner (1984) or Weis et al. (1983) is
also implicit in the theory of Iwasa et al.

Papers by Parker and Courtney (1984), Waage and Godfray (1985), and Weis
et al. (1983) are similar to this one in that all three predict fewer eggs per host
than the SHM for that host and a relationship between the number of eggs laid
on a host and inter-host survival. This papers differs in that the inter-host survival
is explicitly tied to demographics and life history effects. Many of the predictions
developed by Parker and Courtney (1984) using completely different models (e.g.
species with shorter development times should lay bigger clutches, disparity in
clutch sizes increases as risk increases, or predictions about the occurrence of
super-parasitism) can be obtained using the models developed in this paper. The
work of Parker and Courtney is based on four different models, whereas the
models developed in this paper are more unified. Finally, there are some predic-
tions that differ. For example, Parker and Courtney (1984, p. 36) predict that
clutch size should decrease throughout adult life and refer to certain measurements
on butterflies. In contrast, the models developed in this paper show that clutch
size need not necessarily decrease with age, but is instead a complicated function
of time horizon, previous ovipositional experience, and distribution of hosts.

The papers by Weis et al. (1983) and Waage and Godfray (1985) stress the
dependence of clutch size on survival probability from one host to the next. Their
theories, however, do not specify how survival probability is related to behavioral
decisions or how physiological or reproductive state is tied to behavior decisions.

The theory developed by Charnov and Skinner (1984), (1985) and Skinner
(1985) is based on a marginal value type argument. As soon as one introduces
handling times for laying eggs in hosts, it is clear that laying clutches that are
smaller than the SHM clutch may become optimal. A marginal value rule,
however, cannot predict the wide variability of clutch sizes, nor can it be used
easily to discuss problems of host deprivation, since there is no allotment for the
state of the insect or the total time available for foraging in a theory that is based
solely on rates of fitness increase.

Finally, consider the results reported by Godfray (1986) that the most
frequently observed clutch for the leaf miner was also the SHM clutch. The
explanation provided here is based on an elaboration of Godfray’s ideas (Godfray,
personal communication). Let p(c) denote the probability that any individual
from a clutch of size ¢ on a host of a certain type survives. Then the expected
number of offspring from a clutch of size ¢ is ¢p(c). For the observations reported
by Charnov and Skinner (1984), (1985), p(c) is a decreasing function of ¢
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A simple model would be p(c)=1—ac where a is a constant. The expected
number of offspring on a single host would then be cp(c)=c(1—ac). The
individual survivorship is maximized at c¥=1, but the expected number of
offspring is maximized at c* =1/2a. For the observations reported by Godfray,
on the other hand, p(c) itself has an internal maximum. A simple model would
be p(c)=c(1-bc), with a maximum at cf=1/2b. The expected number of
offspring is the cp(c) = c>(1— bc) and this has a maximum at 2/3b. For all intents
and purposes the difference between 1/2b and 2/3b is essentially zero (that is,
it will be swamped by other kinds of experimental variation). For the data of
Charnov and Skinner, then, there is a “conflict” between individual survivorship
and expected number of offspring whereas for the data of Godfray there is no
such conflict. This kind of reasoning can be extended to a more general model
for p(c) with an internal maximum cf; the SHM clutch size — that is the value
of ¢ that maximizes cp(c) — can then be related to the clutch that maximizes
individual survivorship. One can also begin to speculate about when p(c) will
have an internal maximum. One speculation (Godfray, personal communication)
is that for parasitic insects p(c) will have a maximum at 1 while for herbivorous
insects p(c) will have an internal maximum.

In summary, although there is overlap between this paper and previous
theoretical work, the application of dynamic state variable models leads to a
unifying methodology for dealing with host selection and clutch size problems
faced by parasitic insects.

Conclusions and discussions

The use of dynamic state variable modelling allows one to view host site selection
and clutch size problems in a way that unifies the physiological state of the
organism, the state of the environment and the behavior of the organism. All of
the parameters that enter into the state variable models can be directly measured.

Current work involves the simultaneous development of experiment and
theory on the relationship between clutch size, host volume and the effect of host
deprivation in medfly and on the response of the rose hips fly Rhagoletis basiola
to marked fruit and the changes in survival of the rose hips fly as a result of
behavioral decisions.

Another kind of application of the state variable models developed in this
paper involves the evolutionary ecology of tephritid fruit flies. These flies have
considerable variation in behavior. For example, the medfly has many generations
per year, attacks many kinds of hosts, and lays many eggs per oviposition. The
apple maggot has one generation per year, attacks a small number of hosts, and
lays one egg per oviposition. The evolutionary ecology of such widely disparate
behavioral mechanisms is an interesting problem from both a purely scientific
standpoint and also from the perspective of pest management.
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Appendix A: Life history theory and state variable models

In this appendix, life history theory is approached from the viewpoint of dynamic state variable
modelling. There is a considerable literature concerned with what can be called ‘““optimal life history
theory”” — that is, how do organisms make trade-offs in various life history parameters (Boyce (1977),
Caswell (1980), Ebert (1985), Goodman (1982), Etges (1982), Lenski and Service (1982), Rago and
Dorazio (1984), Schaffer (1974), (1983), Stearns (1976), (1980) and Taylor et al. (1974)). Perusal of
this literature shows that without considering a state variable approach, it is extremely difficult to
understand what is being traded for what in life history theory. The point of this appendix is to show
the natural connection between the ideas of classical demography, life history theory, and dynamic
state variable modelling.
To begin, let

V(a) = value of future reproduction, starting at age a. (A1)
According to standard demographic theory, one writes

V(a)=e™ T (Im/l,) e (A2)

t=a
where
w = age at the last reproduction
I, = probability of surviving to age ¢
m, =reproduction at age ¢
r = growth rate of the population.

(For simplicity in what follows, it will be assumed that the population is at a steady state, so that
r=0. One of the most difficult questions associated with life history theory, however, is to develop
reasonable models from which the value of r can in fact be computed.)

Separating ¢ = a from the rest of the sum and manipulating it gives

w

V(a)=ma+{ ) (l,m,/la)}(laﬂ/l.m)

=my+ (/L) V(a+1). (A3)

Equation (A3) is a backwards recursion relationship with the end condition that V(w)=0.

The recursion relationship (A3) can be converted to a DPE by letting m, and I, depend upon a
strategy set S. Then V(a) is interpreted as the maximum expected reproduction, with the maximum
taken over the strategy set. Instead of (A3), one can write

V(a)=r£1é15x[ma(s)+p(a+l,s)V(a+1)] (A4)

where

p(a+1,s)=Prob{living to period a + 1] alive at period a and strategy s is chosen}. (AS)

Schaffer (1983) derived an equation analogous to (A4).
If one now introduces a state variable X (a), it is much easier to interpret trade-offs associated
with the strategy set. Thus, let m, and p depend upon a state variable X (a) with dynamics given by

X(a+1)=X(a)+f(X(a),s a) (A6)
when strategy s is chosen. Then V(a) is replaced by
V(a, x) = maximum reproduction from age a, starting with state variable X (a) =x, (A7)
where once again the maximum is-taken over the strategy set S. One thus obtains

V(a, x) = Teasx[ma(s, x)+tpla+1,s,x)V(a+1,x+f(x,s,a))l (A8)
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Equation (A8) is a deterministic dynamic programming equation completely analogous to the
stochastic dynamic programming equations discussed in the text.

Appendix B: The completely deterministic situation
The purpose of this appendix is to show that even in a completely deterministic situation it may be
optimal to choose clutches smaller than the SHM clutch. That is, that the time and state variable
constraints operating on an insect may lead to clutches smaller than the SHM. The thrust of this
appendix is to get at the interplay between time horizon and lifetime fitness by eliminating the
uncertainties associated with finding hosts and surviving. The idea for this appendix arose in
conversations with Colin Clark, and then again with Hugh Dingle. I thank them very much.
Imagine this variant of model 1: The insect starts with a complement of R mature eggs, so that
X (0) = R, lives with probability 1 for exactly T periods, and in each period encounters with probability
1 exactly the same type of host. Suppose that it lays a clutch of size ¢ in each period. If ¢ is the
number of periods in which it oviposits, the lifetime fitness is tW(c), where W(c) is the fitness
increment from laying clutch of size ¢ in the host. Clearly one must have that < T and that tc<R.
Other than that, ¢ and ¢ can be viewed as control variables, chosen to maximize lifetime fitness. The
following constrained optimization problem arises:

max tW(c)

(B1)
suchthat T—¢t=0,R—tc=0.

This problem is easily solved by Lagrange multiplier methods (Wismer and Chattergy 1978). The
Lagrangian is
L=tW(c)+A(T-t)+u(R—tc) (B2)
where A and u are the Lagrange multipliers associated with the two constraints. The optimality
conditions are
W(c)—A —uc=0,
tW'(c)—ut=0,
MT—-t)=u(R—-1tc)=0. (B3)
From these conditions, one immediately sees that if u # 0, then when ¢ =T the optimal clutch size is
c¢*=R/T (B4)

and this becomes smaller as T increases. A complete discussion of the solution will not be given
here, but the reader is encouraged to work out the remaining details.

It is instructive to consider some numerical results pertaining to the problem posed in Eq. (B1),
since the numerical results shed light on the optimality conditions. Consider fitness functions

c(1-¢/K) logistic
Wi(c ={ (BS)

cexp(—Bc) Ricker

where K and B are parameters. The SHM clutches are ¢*= K/2 for the logistic case and ¢*=1/B
for the Ricker case. If a clutch of size c is laid in each period, the total number of clutches laid is
the minimum of T and the integer part of R/c. The total fitness is then determined as follows. Let
t* = min[ T, Int(R/ ¢)] where Int(z) is the integer part of z Then the lifetime fitness F*(c) of a clutch
cis

F*(c)=t*W(c)+ W(R-r*¢)H(t*, T) (B6)

where H(t*, T)=1if T>t* and 0 otherwise. Results of computations using Egs. (BS, 6) are shown
in Tables B1 and B2. These results show that even in a completely deterministic setting the state
variable constraints may cause clutches smaller than the SHM clutch.
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Table B1. Fitness in the completely deterministic setting

X,=150 c*=10
F*(c) for
T=10 T=50 T=250
c Logistic Ricker Logistic Ricker Logistic Ricker
1 9.5 9.0 47.5 45.2 142.5 135.7
2 18 16.4 90 81.9 135 122.8
3 25.5 222 127.5 111.1 127.5 111.1
4 32 26.8 120.5 100.8 120.2 100.8
5 375 303 112.5 90.9 112.5 90.9
6 42 329 105 82.3 105.0 82.3
7 45.5 34.7 98.1 75.2 98.1 75.2
8 48 359 90.6 68.0 90.6 68.0
9 49.5 36.6 83.4 61.8 83.4 61.8
10 50 36.8 75 55.2 75 55.2

Table B2. Fitness in the completely deterministic setting

X,=150 c*=20
F*(c) for
T=10 T=50 T=250

¢ Logistic Ricker Logistic Ricker Logistic Ricker

1 9.8 9.5 48.8 47.6 146.3 142.7

2 19 18.1 95 90.5 142.5 135.7

3 27.8 25.8 138.8 129.1 138.8 129.1

4 36 327 135.1 123 135.1 123

5 43.8 38.9 1313 116.8 131.3 116.8

6 51 44.4 127.5 111.1 127.5 111.1

7 57.8 493 124.1 106.2 124.1 106.2

8 64 53.6 120.3 101 120.3 101

9 69.8 57.4 116.7 96.3 116.7 96.3
10 75 60.7 112.5 91 1125 91
11 79.8 63.5 109.5 87.4 109.5 87.4
12 84 65.9 105.9 83.5 105.9 83.5
13 87.8 67.9 102.3 79.6 102.3 79.6
14 91 69.5 98.5 75.6 98.5 75.6
15 93.8 70.9 93.8 70.9 93.8 70.9
16 91.5 69.1 91.5 69.1 91.5 69.1
17 87.3 65.1 87.3 65.1 87.3 65.1
18 84.3 63 84.3 63 84.3 63
19 79.6 58.7 79.6 58.7 79.6 58.7
20 71.5 57.6 71.5 57.6 71.5 57.6
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