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Abstract. Behavioral models based on Markovian decision processes lead to
functional difference equations for quantities such as the mean lifetime of
the forager and the probability of reproductive success of the forager. In this
paper, asymptotic and iterative methods are developed for the solution of
such equations. The asymptotic methods are compared with numerical simula-
tions. The iterative methods can be proved by a simple application of contrac-
tion mapping theorems.
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1. Introduction

Recently, Mangel and Clark (1986) introduced a theory of behavior called unified
foraging theory (UFT) which provides a consistent way for modeling three major
aspects of behavior: finding food, avoiding predation, and reproducing. UFT is
based on the theory of Markov decision processes and involves the solution of
various stochastic dynamic programming equations (SDPs). For example, one
of the paradigmatic problems in foraging theory is the problem of patch selection.
It is treated in UFT in the following way. One begins by identifying a suitable
state variable X () which characterizes the (energetic) state of the forager at the
start of period t. The ith patch is characterized by these variables:

B.(x) = Prob{suffering predation in the ith patch between ¢
and t+1|X(t)=x}

a;(x) = energetic cost of foraging in the ith patch when X () =x. "
1
A;;(x) = Prob{finding food type j in the ith patch between ¢

and t+1|X(t)=x}
Y; = energetic value of food type j in the ith patch

(For most of this paper, a discrete time formulation is used. This is done mainly
for pedagogic convenience. In the last section, the methods developed here are
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applied to continuous time problems.) The dynamics of X (¢) are then modelled
in the following way. If the forager chooses to forage in the ith patch in period
t, then with probability B(X(t)) the forager is killed by a predator with the

probability 1—8(X (1))
X(t+1)=X(1)— (X (1)) + W, (2)
where W, is a random variable such that
Pr{W; = Y;} = A;(X (1))
Pr{W,=0}=1-F A;(X(1)).
j

(3)

In many cases, it is reasonable to add a capacity constraint, C, so that X (t+1)=C
if the right-hand side of (2) exceeds C and X (t+1) is given by (2) otherwise.

Mangel and Clark (1986) used this formulation to analyze both the probability
of survival and expected fitness when reproduction within each period is possible.
For example, one can define

p(x, t, T) = max Prob{survival to time TIX(t) =x} (4)

where death can occur either by predation or by X (¢) falling below a critical,
starvation level x.. It can be shown that p(x, ¢, T) is the solution of a stochastic
dynamic programming equation (see Mangel and Clark 1986 for details) which
is easily solved by numerical iteration between periods t and ¢ —1. The same is

true if (4) is replaced by
F(x, t, T)=max E{f(X(T))| X (t)=x} (5)

where f(x) is the fitness associated with the level x at the time when fitness is
assessed. That is, F(x, t, T) is the maximum expected fitness at time T, conditioned
on X(t)=x.

The purpose of this paper is to develop methods for solving a conceptually
different equation that characterizes the mean lifetime of the forager. There are
a number of reasons for studying this lifetime equation, other than its inherent
mathematical interest. For example, if the forager represents a pest, then the
mean lifetime characterizes the average length of the infestation. If the forager
accrues fitness which is related to the length of its life, then the mean lifetime is
a proxy for fitness.

The same methods which are developed for the lifetime equation can be
applied to the problem of computing the probability of reproductive success of
a “sit-and-wait” predator (see, €.g. Arnold (1978), Caraco and Gillespie (1985),
Huey and Pianka (1981), Olive (1982) or Winterhalder (1983) for a discussion
of the ecological and modeling issues associated with a sit-and-wait predator).

In this next section, the mean lifetime equation is derived. It is solved, by
asymptotic methods, in the third section for the case of always foraging. In the
fourth section an iterative solution for the mean lifetime equation is given and
the advantages of foraging optimally are discussed. In the fifth section, the
methods developed in Sects.,3 and 4 are applied to compute the probability of
reproductive success of a set-and-wait predator. Finally, Sect. 6 contains con-
clusions and a discussion of other applications of the method.
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2. Formulation and derivation of the lifetime equation
Define T(x) by

T(x) =max E{s: X(s)<x, or the forager dies by predationl X(0)=x}.
(6)

It is then clear that one condition that T(x) satisfies is
T(x)=0 forx<x,. (7)

The behavior of T(x) at x. depends upon the local behavior of X (s) near x,. If
X (s) can jump across x. (from a value greater than x, to one less than x.) then,
in general, no condition can be placed on T(x.) and T(x) may be discontinuous
at x, (see, e.g. Knessl et al. (1986) for a discussion of this point). This will be
called case J (for jump). If, on the other hand, X(s) smoothly passes through
x, as it decreses below x,, then the condition T(x,)=0 is appropriate. This will
be called case C (for continuous). For many problems analyzed by UFT, one
can develop a formulation in which X(s) is a random walk on a lattice with
single steps towards the left, so that T(x.) =0 is appropriate.

The equation that T(x) satisfies is derived as follows. Suppose that the forager
chooses the ith patch when X (0) = x. The following is assumed: (1) With probabil-
ity B:(x) it lives only one period (in which it is implicitly assumed that the forager
is credited with one unit of time regardless of when the predation occurs). (2)
With probability (1 —B;(x))A;(x) the forager lives one period and starts the next
period with state variable x = a;(x)+ Y. Thus, T(x) satisfies

T(x) = max[ﬂi(xml —ﬁi<x)>(1+z_ A,-,-T(x,-,->)] (8)

where x; =min[x —a;(x)+ Yy, C]. Equation (8) is the nonlinear functional

difference equation for T(x).

It is worthwhile to consider a special case of (8) which has no effect on the
validity of the solution methods but leads to considerable additional intuition.
In this special case, there are only two patches. One corresponds to hiding
(subscripted h) with B, =0, ;=0 and a, given. In the second patch, there is
only one type of food, with energetic value Y, which is found with probability
A(x) and the energetic cost of foraging in a. Setting x'=min[x — a,(x)+ Y, C]
and using this in the simplified version of (8) gives

T(x)=max[ T(x — as),

%)
Br(x)+ (1= BN+ AT(x)+ (1= M) T(x—ep)]]-
Simplifying (9) gives
T(x) =max[T(x —ay),
(10)

1+(1- 3f(x?){)\ T(x)+(1=A)T(x—ag)}].

Most of the methods reported here will be illustrated using (10) rather than (8)
simply because it is easier to see what is going on.
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3. Asymptotic solution for the case of always foraging

In this section, the lifetime equation is solved when the animal always forages.
In that case, the mean lifetime T(x) satisfies

T(x) =1+ =B;)IHA(x) T(x)+(1=2)) T(x — as)}. (11)
To begin, assume that B,(x) and A(x) are constants. Then, if x is large assume
T(x)~T, forxlarge. (12)

Substituting T, for T(-) in (11) gives
To=1+(1-B){ATo+(1-A)To} (13)

with solution
T0=L. (14)
Br

The interpretation of (12)-(14) is straightforward. For large initial values of the
state variable, the lifetime of the forager is determined mainly by predation—so
the lifetime is the expectation of a geometric random variable. The value T, =1/,
which is asymptotic to T(x) for large x is the outer solution in the parlance of
matched asymptotic expansions (Kervorkian and Cole (1981), Knessl et al. (1984),
Matkowsky et al. (1984)). It does not satisfy the boundary condition T(x)=0
for x <x, (case J) or T(x)=0 for x < x, (case C). In order to do that, assume that

T(x)=Ty(1-Ae ™)
_ (1-Ae™ ™)
By

where y is a constant to be determined and A=1 for case C and A must be

determined for case J.
In either case, substituting (15) into (11) and simplifying gives equation for y

1=(1-8)[Ae """ +(1-1) e¥]. (16)

(15)

Since Y > ay, it is easily shown (16) has a solution y> 0. The solution is found
by an iterative scheme such as Newton’s method without any difficulty.

In case C, once vy is known, the approximate behavior of the solution is
known. For case J, the constant A is determined as follows. From (15), T(x.) =
(1— A e™7%)/B,. Comparing this value with T(x,) given by setting x = x, in (11)
gives an equation for A.

Figures 1-3 show a comparison of the theory (15)-(16) with stochastic simula-
tions of the underlying process (using Egs. (2) and (3)) for case C. The theory
agrees remarkably well with the numerical experiments. (In the figures, the
theoretical value was drawn continuously for ease of viewing.)

The theory given by (15) and (16) holds only for constant A and B;. It shows,
however, how the general solution of (11) can be found. In order to do that,
introduce a scaled variable z’ defined so that

X(t)=Cz(1). (17)
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T(x)

Fig. 1. Comparison of the asymptotic solution (=)
with numerical simulations (- ). Parameter values: 5 10 15 20
Y=5, a;=11, =0.025 =04, C=20

20-‘ °

T(x)

Fig. 2. Comparison of the asymptotic solution (—)

with numerical simulations (-). Parameter values: 3 o A 25
Y=5, af=l,[3=0.025,)¢=0.4,C=20 X
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Fig. 3. Comparison of the asymptotic solution (—)
: r , with numerical simulations (-). Parameter values:
5 0 s 20 Y=5,a,=1, =001251=04, C=20

The dynamics (2) are replaced by
1
z(t+1)=min{1,z(t)+E(W,-—a,-(z))}. (18)

It will be assumed that e =1/C is a small parameter and that €Y is less than
1 (i.e. that Y is not order 1/¢). Also, it helps to write (but is not essential) that

A(x)=1—gAo(2)

(19)
Br(x) = B(z).
Finally, define 7(z) by
7(z) = T(x). (20)
Using these in the general equation (11) gives
(2) =1+ (1 =BE){(1—ero(2))1(2') + ero(2)T(z — ase)} (21)
where, in analogy with before, z’=min{1, z+&(y — a,)}. Rearranging (21) gives
7(z) =1+ (1= B(2)){r(z') + eAo(2)[ 7(z — ey) = 7(2)]}- (22)
Now, large x corresponds to z = 1. If a regular perturbation expansion
"(2)= T ()¢’ (23)
=

is substituted into (22), the order 1 term gives
7o(z) =1+ (1 - B(2))7o(2"). (24)

For small ¢, z’=z and (24) has the solution

(25)

To(2) ~

1
B(z)
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Equation (25) provides the outer solution dnce again. The full asymptotic solution
can be obtained by assuming that

7(z)~ 1o(z)(1— A e 7%) (26)

where the function y(z) is to be determined, subject to the conditions that v(0) =0,
and A=1 in case C and A<1 in case J.

Using (26) in (21), and writing A(z) = A(x) gives, after some simplification
(assuming also that min{1, z+ (Y — a)lis z+e(Y—a))

e—'y(z)/s - (1 —B(Z)){X(Z) e—y(z+e(Y—a_,))/s +(1 —X(Z)) e—y(z—saf)/e}. (27)

Taylor expanding around z and keeping terms order 1 gives an ordinary differen-
tial equation for y(z):

1=(1-B@)R() e 7O+ (1-1(2)) ) (28)

with the initial condition y(0)=0.
The solution of (28), when used in (26) gives a complete solution of the

lifetime equation.

4. Tterative solution of the DPE and the advantage of being smart

In this section, the full DPE (10) is solved by an iterative method. The method
is extremely simple and the proof of convergence is a simple example of a
contraction mapping theorem (so the reader is encouraged to try it out for him
or herself). The iteration scheme is defined as follows. Specify a T%(x) and then

define

T*'(x) = max[ T*(x — ap), 1+ (1= B(x)){A(x) T*(x")+(1—=A(x)) T (x — as)t].
(29)

Although the initial function T°(x) is not extremely important (that is, the
method seems to converge in virtually all cases) a good choice for T°(x) can be
picked as follows. Let T;(x) denote the solution constructed in the previous
section for the case in which the forager always forages and let T,(x) denote the
lifetime if the forager always hides. Then

T, (x) =—. (30)
ay
The choice for T°(x) is then |
T°(x) = max(T,(x), Ty(x)); (31)

with this choice of T%(x), the iteration scheme (29) converges with great rapidity.

Figures 4 and 5 show T,(x), T;(x) and the iterative solution T(x). The
difference between either T,(x) or T;(x) and T(x) is a measure of the advantage
of being smart (or behaving optimally). This difference is small when x is small,
mainly because the forager must forage for small x. As x increases, the difference
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T(x)
30
Tf (X)
Th (x)
20
Times
10 -
Fig. 4. Comparison of T(x), T,(x) and
s o s 20 i T;(x). Parameter values: Y =3, a,=2, a), =
x 1, B=0.035,1 =06, C=25

becomes much more impressive. For large x, there is considerable virtue in being
smart.

5. Reproductive success of sit-and-wait predators

The methods developed in Sects. 2-4 of this paper can also be applied, with
minor modifications, to the analysis of reproductive success for sit and wait
predators such as spiders or some lizards. Consider the following model. Imagine
a predator which waits for prey to arrive at its site. The probability that the ith
prey type arrives between ¢ and t+1 is given by A;. If the predator chooses to
attack this prey, it spends energy «; and kills the prey with probability w;(x). It
may also be possible that while attacking a prey item, the predator itself may
perish. Thus, let 8;(x) denote the probability that, given that the ith kind of prey
is attacked, the predator is killed.

One can define reproductive success by assuming that once X (¢) crosses a
level of xg, reproductive success occurs. For example, if X (¢) is body weight,

Fig. 5. Comparison of T(x), T,(x) and
T;(x). Parameter values: Y =3, a,=2,
a,=1,3=0.035 1=0.7, C=25
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then xz could be the minimum weight needed for the production of a clutch of
eggs. The maximum probability of reproductive success can then be defined by

u(x) = max Prob{X (t) crosses xg before x, | X (0) = x}. (32)

It is easily verified that u(x) satisfies the following functional difference equation
u(x)=(1-3 A)u(x—a,)+ ¥ A max{u(x—a,);

(l_ﬁi)[wiu(x;)—l_(l—wi)u(x_ai)]} (33)

where a, is now interpreted as the basal activity cost and x,=min[x—a; + Y}, C]
where Y; is the energetic value of the ith prey type. The boundary conditions

14

associated with (33) are

u(x)=0 x<x,
(34)
u(x)=1 X = Xg.
Equation (33) can be solved by exactly the same kind of iterative scheme as was
used to solve the lifetime equation. Note that if one switches “max™ to “min”
in (32) and (33) and reverses the boundary conditions, then u(x) can be inter-
preted as the minimized probability of reproductive failure.

This kind of problem is often complicated by the requirement that reproduc-
tion occurs before some environmental event kills the predator. For example,
funnel spiders in the desert need to produce an egg sac before the rainy season
arrives. The arrival of the rains is a random event. Thus, let

p(t) = Prob{rainy season starts at the end of period t} (35)
and define u(x, t) by
u(x, t) = max Prob{X (s) crosses xgr before x.
and before the rains arrive| X () = x}.

Assume that there is a T that p(T) = 1; that is, that the rainy season surely starts
at the end of period T. Then u(x, t) satisfies

u(x, t)=0 X< X,
u(x, t)=1 X=X,
(37)
x T) {0 if x<x,
u(x, T)=
’ 1 ifx=x,.

The functional difference equation that u(x, t) satisfies is
u(x, ) ={1-p(OHQ—-Z A)u(x —ay, t+1)+ X A max{u(x —ay, t+1);
+(1-B)[wu(x], t+1)+(1 - w))u(x —a;, t+1)]}]. (38)
This equation can be solved by time iteration, as in Mangel and Clark (1986),
starting at t = T and working backwards. One can think of x = x, as an “‘entrance
boundary”” from which probability flows into the region x < x,. It’s also interesting
to note that, in contrast with differential equations, for the foraging models time
dependent problems are easier, to solve than time independent ones. (One can
be done exactly; the other only approximately). An interesting state of affairs,
to be sure.
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6. Discussion and conclusion

In this paper two methods were developed for the solution of the functional
difference equations that arise in behavioral theory. The first is an asymptotic
method for solving equations which do not involve an optimization step. This
method is essentially an adaptation of the WKB method (Bender and Orszag
(1978)) to the functional difference equations of behavioral theory. The second
is an iterative, numerical method for the solution of the dynamic programming
equation characterizing mean lifetime. Both methods have broader applicability
than the equations discussed in this paper. For example, the WKB method can
be used to analyze the behavior of the “Holling hungry mantid” in the spirit of
Heijmans (1984). As already mentioned, the functional iteration scheme can be
applied to models for decision making by a sit-and-wait predator. Both methods
are easy to use and involve relatively modest computer requirements such as a
good personal computer.

The methods developed in this paper can be applied to continuous time
problems, too. In the continuous time formulation, the quantities defined in (1)
are now viewed as rates (i.e. multiply each of the left-hand sides by dt to obtain
probabilities). The equation that T(x) satisfies is now derived as follows. In

analogy to (10), one has
T(x) = max{T(x — aydt); dt+ (1 — Bs(x) dt){A dt T(min(x — a,dt+Y, C))
+ (1= dt))T(x — asdt)}. (39)

Taylor expanding in powers of dt, dividing by dt and letting dt approach 0
converts (39) into the following equation

0=max{—a,T'(x); 14+ A(x) T(min(x + Y, C)) — a;T"(x) — (Bs(x) + A(x)) T(x)}.
(40)

Equation (40) is a nonlinear, functional differential-difference equation. It can
be solved by an extension of the methods developed in this paper (cf. Hanson
and Tuckwell (1978) or Cope and Tuckwell (1979)).
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