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We consider the problem of modelling uncertainty in the location of schools of fish
and the effect of search by fishing vessels in reducing the uncertainty. Our methods
involve a preliminary period of searching and fishing, followed by a Bayesian update
of information and a reallocation of vessels. The first search problem that we study is
how to determine the optimal allocation of search effort over several historical fishing
grounds. in which the current abundance of fish has a known prior probability dis-
tribution. In our second application. we consider the case of a single fishing ground
and determine the optimal allocation of search effort over time. We assume that
fishermen are profit maximizers (although this can be relaxed) and compare the value
of competitive fishing strategies with cooperative ones in which search effort is

optimized.

Introduction

Until recently, most bioeconomic fishery models pre-
sented in the literature were of a deterministic nature
(e.g. Clark, 1976). Considerations of ‘“‘uncertainty”
have been limited (with some notable exceptions) to the
introduction of random *‘noise”, or fluctuations, either
in the biological system (Reed, 1979; Beddington and
May, 1977; Ludwig and Varah, 1979), or in the econo-
mic system (Andersen, 1982: Wilson, 1980).

Most actual fisheries, however, exhibit severe forms
of uncertainty in the deeper meaning of the word. im-
plying “ignorance” — at least partially. Estimates of
stock abundance, for example, are usually highly un-
certain in this sense, as are estimates of the parameters
of biological processes such as recruitment, growth. and
natural mortality rates. The latter type of uncertainty
has been discussed in the setting of “‘adaptive” man-
agement policies by Walters and Ludwig (1981), and
Ludwig and Walters (1982), using data from the Pacific
salmon fisheries.

From the point of view of the individual fisherman,
one of the most important sources of uncertainty con-
cerns the location of fish. It is this question, which has
received very little study, that we take up in the present
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paper. (See Bockstael and Opaluch (1981) for an em-
pirical study of fishermen’s response to uncertainty re-
garding relative abundance of alternative stocks.)

Specifically, we consider here the problem of mod-
elling uncertainty regarding the location of fish con-
centrations, and the effect of search by fishing vessels in
reducing such uncertainty. We show how to determine
the optimal allocation of search effort between several
“historical fishing grounds™. The current abundance of
fish on each ground is assumed unknown, but the prob-
ability distribution for abundance (the so-called prior
probability distribution) for each ground is known from
the historical record of catch and effort. After a pre-
liminary period of searching (and fishing), the abun-
dance estimates are updated by a Bayesian formula, and
vessels may then be reallocated according to the results.

A second searching problem that we analyse isone in
which the fishing ground is far from the home port of
the fleet, so that a trip to the ground is costly. For this
case, we show how to find an optimal allocation of
search effort over time.

These problems, which are computationaily difficult
(mainly because of the “curse of dimensionality” in
stochastic dynamic programming, see Bertsekas. 1976)
are solved here only under a number of quite restrictive
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Table 1. Characteristics of search in four selected fisheries.

Fishery Size of No. No. Quality of Approximate
cells of of 47101 fishing
km? cells vessels  information time per

trip in hours

Eastern tropical Pacific purse seine ................. 111x111 ~300 ~300 Poor 1 000

British Columbia salmon purse seine ............... 18x 18 30 ~ 50! Good 20

Gulf of Carpentaria prawn trawl ................... 111x111 13 ~200 Poor 1000

California shrimp trawl ........................... 37x 1°8 30 < 50 Poor 10-100

!Coordinated group.

assumptions. The possibility of relaxing these assump-
tions is considered in a concluding section of the paper.
A question of interest for fishery management is
whether fishermen, acting competitively, will be moti-
vated to allocate searching effort in an approximately
optimal manner. or whether a cooperative (or reg-
ulated) solution would be more productive. The com-
petitive case will be referred to as the EMFH (“every
man for himself’) strategy, whereas the cooperative
case will be called AFOAOFA (all for one and one for
all’’). In general EMFH will be a suboptimal strategy,
owing to the information externality (see Peterson
(1975), who argues that the use of EMFH strategies
results in severe underexploration for oil deposits).

Some examples of exploration and
search in fisheries

In this section. we give four examples of fisheries in
which significant effort is devoted to search. Unlike
other natural resources where search is important (such
as oil exploration), the fisherman’s problem is compli-
cated by the movement of fish. Thus, even if the fish are
known to be present, they still must be found.

As examples, the fisheries of interest here are: i), the
eastern tropical Pacific (ETP) tuna-purse-seine fishery:
it), the British Columbia salmon-purse-seine fishery:
iii); the Australian Gulf of Carpentaria prawn fishery:
and iv), the California-Oregon-Washington shrimp
fishery. These fisheries are all linked by the problem of
locating fish, but it will be seen that the length, time.
and number scales of the variables characterizing the
problem are very different. Some of the parameters of
the fisheries are summarized in Table 1.

Eastern tropical Pacific tuna-purse-seine fishery

The ETP fishery operates off the coast of Mexico, Cen-
tral, and South America. taking yellowfin tuna (Thun-
nus albacares) and skipjack (Katsuwonus pelamis),
primarily using purse-seine vessels. In a large region
near the coast, fishing was, until 1978, regulated by the
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Inter-American Tropical Tuna Commission (IATTC).
Outside the regulated area, fishing was not controlled.
For purposes of data analysis and presentation, the
commission considers effort and catch data in 1° cells; at

‘the latitudes of interest this cell is about 60 nautical

miles (111-2 km) square. More than 350 vessels have
operated in the regulated region at a time (Calkins,
1975). Tuna vessels generally remain at sea for long
periods, moving from cell to cell. Tuna are migratory
species, and there is usually considerable uncertainty
regarding the location of the fish. The apparent year-to-
year fluctuations in population size also appear to be
large. Search for tuna has become a very complex pro-
cess, sometimes involving helicopters and other forms
of airborne sensing (Woods, Stevenson, and Gandy,
1975). The location of tuna schools is related to the
position of thermoclines and other hydrographic fac-
tors. The distribution of information over a season has
been recognized as important (Delpierre and Thibau-
deau, 1975). The explicit inclusion of search as part of
the fishing process has also been recognized (Pella and
Psaropulos, 1975). Since the cells are large, the reallo-
cation of boats is a time-consuming, and therefore
costly process.

A number of distinct searching modes are used in this
fishery. For example, tuna are often found associated
with logs or other debris, and with dolphins. When
seeking associated tuna, fishermen tend to search at the
horizon, but when looking for unassociated tuna the
search is concentrated near the vessel (Greenblatt,
1976). The search can also be described as active or
passive. For example, a vessel steaming from home to a
ground where fish are known to be present may pas-
sively search on the way out by looking for signs indi-
cating the presence of tuna. If signs are found, then an
active search for tuna may begin.

The IATTC has begun a study of search effort and
catch rates for this fishery (R. Allen, personal com-
munication). One discovery arising from statistical
analysis concerns the tail of the distribution of times to
detection. Since it provides a way of introducing some
of our ideas, we will briefly digress to discuss it here.
One might assume that the times between detection of
schools are exponentially distributed, i.e. that Pr (de-
tection given t hours of search) = 1 — exp(—At) and then



try to estimate the parameter A. When this is done, it is
found on comparison with data that the theoretical form
1 — exp(—At) falls off much more rapidly than the data
for the large . One possible explanation of this
phenomenon is that 4 itself has a distribution associated
with it; e.g., suppose that

Pr[ie (x, x+dx)] = dx X a’e”x" (),

i.e. a gamma density. The expression 1 — exp(-At) is
viewed as a conditional probability of success and the
unconditional one is found by averaging over the
gamma density. If this is done, we find that Pr (detec-
tion given ¢ hours of search) = 1 —a"/(a +t)’, which has
a tail that decays more slowly than exp(~At). Thus, such
an integration may yield a result that fits the data better.
One interpretation of such an integration is that the
data from the fishery involve mixing a large number of
expressions of the form 1 — exp(-4¢) with frequency of
occurrence

a’ e rw).

British Columbia salmon purse seiners

The salmon fishing areas on the coast of British Colum-
bia have been divided into 30 regions and eight aggre-
gated regions (Hilborn and Ledbetter, 1979). The cells
used in this fishery are relatively small, about 10 nauti-
cal miles (18 km) square. Five species of Pacific salmon
are taken: sockeye (Oncorhynchus nerka), chinook (O.
tshawytscha), coho (O. kisurch), pink (O. gorbuscha),
and chum (O. keta). We shall describe the activities of
purse seiners, although other vessel types are also used
in the saimon fishery.

Although thousands of vessels may participate, one
expects no more than a maximum of 50 vessels to par-
ticipate in information sharing: the larger fishing com-
panies may own about 50 vessels. In general, the fishing
week consists of an opening of two days, and closure of
the fishery for the remaining five days. Unlike the tuna,
salmon runs are fairly predictable, hence the prior in-
formation on the location of fish is better. In general,
the following characteristics apply. On any opening day,
there may be about three cells in which salmon runs are
likely, based on historical data. In addition, aerial sur-
veys during the closed days may provide up-to-date in-
formation. Although salmon may be present in all three
cells, the main problem is to pick the cell in which the
run is highest. Hence, before the fishery opens. attempts
are made to allocate the vessels so as to maximize the
expected harvest and to insure that a big run is not
missed. After the first day of the opening, the vessels
may be reallocated across the cells, based on the infor-
mation gained during the first day.

The actual mode of fishing in the different celis may
differ. In some cases, the seiners move around looking
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for fish. In others, they wait in queues at the mouth of
the bay or strait. Each seiner gets to lay one set and then
returns to the end of the line. In such cases the length of
the queue may be important in allocating vessels to
cells.

Gulf of Carpentaria prawn fishery

This fishery, which occurs in the tropical waters of
northern Australia, was recently studied by Clark and
Kirkwood (1979), who developed a bioeconomic model
for the fishery, but did not include search explicitly.
Two types of vessels (brine and freezer demersal traw-
lers) and at least three kinds of prawns (banana,
Penaeus merguiensis; tiger, P. esculentus; and en-
deavour, Metapenaeus endeavouri) are involved in the
fishery. We shall, however, concentrate here on a dif-
ferent aspect of the fishery. For the brine vessels, a large
cost is associated with travelling from home port to the
fishing grounds, a distance of over 1800 km. For exam-
ple, for brine trawlers Clark and Kirkwood (1979) as-
sumed a cost of steaming to and from the fishing ground
at about A $ 2000, so that at A’ $ 1/kg at least 2000 kg
must be caught to make the trip profitable. (Other con-
siderations, including lost income opportunities, in-
crease this figure. Clark and Kirkwood (1979) suggest
that brine trawlers require at least A $ 8000 expected
net revenue per trip to induce owners to travel to the
Gulf.)

The banana prawns, in particular, form dense schools
(called boils), but the stock fluctuates considerably and
unpredictably from year to year: the current year’s
abundance only becomes clear as the season develops
and catches are recorded.

If information sharing does not occur, then the only
way that the individual fishermen can obtain informa-
tion about catch rates is by steaming out to the grounds
themselves and spending a certain amount of time
searching for prawns. If information sharing occurs,
then only k of N vessels might go out for some initial
time, with costs, gains, and information shared. After
preliminary explorations, more vessels could go out to
sea or, in bad years, some of the k vessels could return.

We note that the fishing ground is large, e.g. it con-
sists of about 13 cells of the order of 1° X 1° (60 nautical
miles or 1112 km square). Reallocation of vessels be-
tween cells in various vears is a possibility, but it is also
costly.

California ocean-shrimp fishery

The fishery for ocean shrimp (Pandalus jordani) can be
viewed as operating in three large, distinct areas along
the coast of California (Eales and Wilen, 1982) as-
sociated with the ports of Crescent City, Eureka, and
Fort Bragg, California. Each area is approximately 20
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nm (about 37 km) long and 1 nm (about | -8 km) wide.
The narrowness of the fishing areas appears to be the
result of the concentration of shrimps along a certain
depth contour (Eales and Wilen, 1982). Each of the
large aggregate areas contains a number of smaller
fishing regions.

Otter trawls, which became legal in 1963, are now
used exclusively in the shrimp fishery (Abramson and
Tomlinson. 1972). In general, between 17 and 50 ves-
sels participate in the fishery in a given year. The vessels
remain at sea for only a few days before returning to
port. Catch rates of about 310 kg/h (standard deviation
about 75 kg/h) were experienced between 1958 and
1969 (Abramson and Tomlinson, 1972).

The sharing of information between fishermen is
presently being investigated. It is thought that too many
fishermen in a given area **spoil” the ground, inasmuch
as shrimp concentrations are scattered by fishing, and
catch rates are thereby reduced with each drop of the
net. Hence there is an incentive to limit the number of
fishermen sharing information on the location of shrimp
concentrations.

A model of two independently
fluctuating fish stocks

The models of search that we consider in this paper are
stylized simplifications of the search process in a real
fishery. The underlying problem is, how can fishermen
make rational decisions on where to search for fish?
Also, what advantages, if any, are there to cooperative
searching?

The fisherman must make his decisions on the basis of
the information available to him at any given time. On
the other hand. fishing itself (including searching) pro-
vides additional information regarding the local abun-
dance of fish. In our models we shall adopt the standard
Bayesian approach to the question of continual *‘up-
dating” of past information as new information be-
comes available.

Let 4; be a parameter proportional to the average
density of detectable fish “‘clumps” (schools or other
aggregations) in a given fishing area A;, during a given
fishing season. We shall assume, in our first model, that
4; remains constant throughout a given fishing season
(this assumption is relaxed later), but that A, varies in a
random manner from one season to the next. Thus 4, is
a random variable: we denote its probability distribu-
tion by f.(4;).

Searching for fish in area A, is itself a random process.
which we model by means of the Poisson process with
parameter 4; (see Koopman, 1980: Shotton, 1973:
Swierzbinski, 1981). In area A; we have (for small dr)

Pr(one encounter, by one vessel,
in time interval f,r+dr) = A;dr (1)

96

where Pr(...) represents the probability of the event
(.. .). By an “encounter” we simply mean that the ves-
sel locates one “‘clump” of fish. Thus the expected rate
of encounter in area A;, per vessel, equals 4; “clumps”
per unit time. To keep the calculations reasonably sim-
ple, we shall assume that all “‘clumps” are the same size.

Suppose now that k; vessels search independently in
area A;, for a unit time period 4 = 1. If n; denotes the
number of clumps encountered during the period. we
have

(kid)" ~kidi (2)

e
n;!

Pr(n;) =

We now look at the “inverse” question: given that n,
encounters with fish clumps have occurred on A, in the
given time period. what additional information does this
provide about the current season’s value of 1,7 Let
f(Adn;) denote the probability distribution for 4;, given
that n; clumps have been encountered. We then have,
by Bayes's theorem

i) = wPr(”iMi)fi(Ai) 3)

| praiiyia) aa

where Pr(n;|4,) is given by Equation (2). In the language
of statistical decision theory, the original probability
distribution f;(4;) is referred to as the *‘prior” distribu-
tion, and f;(;n;) is the “updated” or “posterior” dis-
tribution. We shall henceforth adopt this terminology.

A particularly simple expression occurs if we adopt
the gamma distribution as our prior probability dis-
tribution:

ydiaw) = —Fa(—;;/l""e""(/l = 0). 4)

The gamma distribution involves two positive paramet-
ers a, v: the mean and standard deviation are given by

mean i=va (s)
standard deviation o= \W/a

A straightforward calculation establishes that if the
prior distribution f;(1) is given by the gamma distribu-
tion y(y;a;,v;), then the posterior distribution following
n; Poisson encounters by k; vessels during time 4 = 1
unit, as given by Equation (3), becomes

Pr{Ae (A° A°+dA%)|n; encounters]
= y(A%n+v, a;+k;) di,. )

In other words, the posterior distribution is once again a
gamma distribution, with updated parameters

vi=v;+n; and o = a; 4k,



We can now address the problem of optimal allocation
of search effort. Imagine that the N vessels of a certain
fishing fleet exploit stocks of fish on two fishing areas
A,, A,. The abundance parameters 4,, 1, have prior
distributions as described above; these distributions are
assumed to be independent (but this assumption could
be relaxed — see the concluding section).

For the first period k; vessels search in area A;, where
k, + k, = N, resulting in updated distributions f(4;|n;)
which depend on the number of encounters n;. At the
end of this first period, vessels may be reallocated
among the two fishing grounds, depending on the up-
dated probabilities. The process is repeated during
period 2, and a further reallocation undertaken if indi-
cated. Suppose there are M such periods constituting
the total annual fishing season.

We shall assume that the objective to be maximized
(the so-called objective function) is simply the expected
total net seasonal revenue, equal to the expected total
value of the catch, minus the cost incurred in moving
vessels from one ground to the other. Qur optimization
problem is to determine the allocation of vessels k“}, k)
fori = 1,2,..., M, so as to maximize this expected
value. This can be formulated as a problem in stochastic
dynamic programming.

Consider the situation where the updated parameters
v;, a; have just been obtained, and the reallocation de-
cision is about to be made. Let there be n periods of
fishing remaining in the current season, and Q vessels
currently allocated to ground A,.

To start with, take n = 1. Let J, (Q, v, a,, v, a5)
denote the maximum expected net return with one
period remaining:

'I! (QJ Vy, Gy Va, aZ)

= k,:;:;N E[p(kt, + kqny) — c|Q—k,|]

(7
where p is the value of one clump of fish (all clumps
have the same value!) and c is the cost of switching one
vessei from one ground to the other.

Since E(n;) = A; = v/a;, Equation (7) reduces to

Jl (Q: Vi, Ay, Va, aZ)

T N WPldy + (V=K )] el =k}

0<k, <

plktd, + (N=k%)1]~clo—k%|

(8)
where k*, the optimal number of vessels on A, is given
by

N if 4, <1, -c/p

Q if I, —c/p<dyy<i,+clp
0 if 1, +c/p <A,

9

This simply says: if there are no switching costs and only
one fishing period remaining, all vessels should be allo-
cated to the more likely ground: otherwise vessels are

reallocated if the expected increase in catch value ex-
ceeds the switching cost.

When more than one period remains (n > 1), the
above rule may not be valid, because searching yields
improved information about the location of fish. In gen-
eral let J,(Q, vy, @,, v, @) denote the maximum ex-
pected value of net returns when n fishing periods re-
main, and where v,, a, represent the most recent up-
dates. We then have the easily derived Bellman equa-
tion:

J,,+|(Q,V,a)
= k,-:tiN (Palk A +kody) = c|OQ—k |+
+  E[Ju(ky, vitny, aytky, vatn,, artk;)]} (10)
the expected value being taken with respect to n, and
n,. (If gamma priors are not assumed, the notation must
be changed to represent the updated distributions.)
The expected-value expression in Equation (10) can
be written as:

E[] = i i jn(kh vytny,

n,=0 n,=0

a,+k,, votn,, a,+k,)Pr(n,)Pr(n,) (11)
where
Pr(n) = [ Prnld)y(iv, ) &k
k'.'i a!’i r(n+v)
= ‘M i ! i i X . 2
P R (12)
1 ;=0
) = i ;= 0). 13
Py = [0 MSH ®=0) (13)

In the decision-theory literature Equation (11) would
be called the ““pre-posterior” expectation.

The computational complexity of our allocation
problem is now apparent. First, the double series Equa-
tion (11) generally contains a large number of signifi-
cant terms (i.e. converges slowly), because Pr(n,) is sig-
nificant for many values of n;, and also because the
factors k;/(a; + k;) are usually close to 1 (generally a; is
of the order of 1). But more important, at each iteration
the previous value function J, must be evaluated for
every pair (n,, n,) used in the (truncated) summation.
These values must be obtained by interpolation from
:he (large) array of values of J, stored at the nth stage.
We thus encounter the usual “curse of dimensionality”
of dynamic programming compounded by the need at
every step to sum a slowly converging double series. Itis
to be doubted whether this approach can be developed
into a practical fishing management tooi!

Let us, therefore, adopt a further simplification. As-
sume that updating of probabilities occurs only after the
first fishing period; vessels are then reallocated to their
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final destinations for the remainder of the season. (This
would introduce the problem of optimizing the length of
the initial search period, but we will not study this
problem here.) Unless the cost of switching vessels is
low, this assumption does not seem to be unreasonabie.
We call this strategy “myopic Bayes”, in analogy with
the work of Walters and Ludwig (1981).

Under this new assumption, the expression J, for the
second-period return becomes

J@ma) =, "%
<t

X plk,A, + (N“kx)}:z]—dQ"k:'}

{(M-1) x
(14)

(for which the optimal &, is easily determined, as in
Equation (9)). Here M denotes the total number of
periods in the season. The total expected value is
therefore

0 <n/:ax< N {p[kl'i‘l + (N-kl)jE} +
<=k =

+ E[],(k,, vitn,y, atk,y, vatn,, ay+N—k ).

Jv,a) =

(15)

Here we assume that the cost of initial allocation of the
vessels is independent of their destination, and can be
ignored. This assumption could easily be altered if one
ground is more remote than the other.

In order to give an indication of the significance of
searching and updating of information. we performed
some sample calculations using artificial data. The re-
sults are illustrated in Figures 1, 2, and 3.

In Figure 1 the two grounds are taken to be equival-
ent, withy, =v, =0"landa, =a,=1-0. Thusi, = 1,
= 10. There are N = 10 vessels: switching costs were
ignored: ¢ = 0. The expected catch in period 1 is 100
clumps of fish, independent of vessel allocation. The
figure shows the expected catch in period 2 following
appropriate reallocation of vessels, as a function of the
number &, of vessels allocated to ground A, in period 1.
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Figure 1. Expected catch plotted against number of vessels on

ground 1 for parameter values: a, = 0 1;a, = 0" Livy=1-0:
v;=1'0;¢c=0;andp = $1000.

98

. ZOOE Period 2
<

= T iod

o 100F Period 1
> -

¥ »

3 -

;6 -

OO 1 1 1 i 51 1 1 1 1 ]b

Number of vessels on .ground !

Figure 2. Expected catch plotted against number of vessels on
ground 1 for parameter values: a, = 0-0l;a, = (- Liv,=0-1;
v;=10;¢=0; and p = $1000.

As expected, the maximum is achieved for k, = N/2 =
5, and this results in a 50 % increase in expected catch.
But almost the same degree of improvement (49 % or
better) arises for 1 <k, <9. Only if no searching takes
place on one of the grounds (k, = 0 or 10) does pertor-
mance in period 2 fall off, and even then there isa 37 %
improvement due to updating.

The difference between the period 2 and period 1
values can be interpreted as the value of informarion
obtained from the first-period observations. In Figure 1,
where the coefficient of variation 0,/4; is 1-0 on each
ground, the value of information amounts to 50 % of
the expected catch for each subsequent period. (A non-
myopic strategy would employ the additional informa-
tion obtained during periods 2.3, ...)

In Figure 2, the parameters are altered so that, while
A= 4. the stock abundance on A, fluctuates more
than that on A,. (The values are @, = 0-01 and v, =
O0-1.a,=0'1andv, = 1-0. Thus A, = 4, = 10 as
before. but the coefficient of variation on A, is now
3-16.) In this case the optimal allocation k* is one ves-
sel on the "‘uncertain ground” 4, and nine on A,; this
leads to a 76 % increase in expected catch in later
periods. Again. however, the degree of improvement is
not very sensitive to k,, provided some searching occurs
on the uncertain ground.

Finally, in Figure 3 we supposed that expected
catches on A, are twice those on A ,. The optimum allo-
cation in period 1 is k% = nine vessels on A, but the
actual choice of k, is not very critical.

Three conclusions seem to follow from these sample
calculations. First, information obtained from ‘‘sam-
pling” of fish stocks can lead to significant increases
in expected seasonal catches, particularly where stock
fluctuations are large. Second, the amount of informa-
tion obtained depends on the initial allocation of ves-
sels. But third, the exact allocation may not be critical,
provided that some searching takes place on each
ground.
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Figure 3. Expected catch plotted against number of vessels on

ground 1 for parameter values:a, = 0'1:a, = 0-2:v, = 1-0;
v,=10;c=0;andp = $1000.

One distant fishing ground

We now consider a second search problem in which N
vessels of a fishery operate on one historical ground that
is far from port. We assume that all vessels start at the
port, that the cost of travel to the ground is high, and
that the myopic Bayes strategy is used.

For this problem to be meaningful, depletion must be
included in the model. Hence, we now replace Equation

(1) by

Pr (one encounter, by one vessel, in time 1, t+dt, given
that n schools were already encountered)

= (A—nd) de (18)

In Equation (18), we interpret é as the amount that the

encounter rate 4 is reduced by one set: thus 4/ repre-

sents the total number of schools initially present.
Instead of Equation (2), we find that (Feller, 1968)

Pr [k vessels encounter n schools in (0,1))

A/0] ( _-kdryn  ~kiti-n8) ) <
=1'Jn(k,t|/1)=l[n:‘(1 e e O=n 5'1/‘3(19)
0 n > /6.

For a given 4, the expected harvest H, is simply

H. = % (1—e k), (20)

As & — 0, the results in Equations (18) and (20) ap-
proach the limiting form of a Poisson process. If the
prior density on 4 is a gamma density as before, then we
have that the unconditional harvest, H is simply

H= 2 (1-¢7). 1)
ad

In order to do our pre-posterior analysis, we rewrite
Equation (19) as

_l_ (A) (l__e—kbt ne-kr(/\—né) 0<n<Aai/d
P(kid) = {nt 0" T
LA (22)
0 n> Ao

where the notation (1/0), is due to Feller (1968):

Ay, = G-n+ DA-n+2)... & wozn (3

‘We note the recurrence

/)nss = (g— n)(A/6)s (24)

and set

W), = X AGmA/6). 25)
j=1

For the coefficients A (j,n), the following properties are
easily derived:

A(n,n)
A(k,n+1)

1
A(k—1,n) ~nA(kn)
k=23,..,n—1n

A(Ln+1) = —nA(Ln). (26)

Using Equation (25) in Equation (22) gives us
1 ~kdtyn , —ki(A—nd)
o (1-e™™")'e X

P =1 S AGm@) 0Sn =40 g

0 n > A/0.

If the prior density on 1 is a gamma density with
parameters v and a, then the unconditional probability
of finding n schools is

P,,(k,l) = ;Il_' (l_e—kél)neklnd X

» e—ldle—a.ilv—lav n . A i
x Lo o) E‘ A(],n)(s) n=1 (28)

Pyk,t) = a’/(a+kt)".
Hence we find that

P.(kt) = ;1'— (1_e‘kél)nekma a_ x

r(v)
& A(jn) I[j+v(a+knnd] =1 (29
« 3 A0 ismie n (29)

Po(k,t) = a’/(a+kt)".
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In what follows, we will only write the more compli-
cated expression in Equation (29), understanding what
it means for n = 0. In Equation (29) I'(&,x) is the in-
complete gamma function
r(ux) = J"e"s““‘ ds. (30)
Many of its properties are described in Abramowitz and
Stegun (1965) or Gradshteyn and Rhyzik (1980). For
our purposes, the most important properties are these:

[(ux) = Fu)-x"Te™ 3 —X
(ux) = M(u)—x"I(u)e Eo FGenTD) o

X

[(u+1.x) = pl(pux) + xfe™.

The posterior density is obtained by Bayes’s formula.
At the end of the interval (0,1), we compute

Pr [A was between (4,4, Ao+ dA,)lk vessels found n

schools}

0 A <néd

e T 3 AGm)(32) ddo
j=1 0

i A(j,n) T[j+v,(a+kt)nd]
vt o’ (a+kty™

(32)

if 1o = nd

and we note that

Pr fcurrent value of 1 is between (14, 1o+dA)ik vessels
found n schools]

= Pr [prior value of 1 was between (1,+nd.
Aotnd+dig)lk vessels found n schools]

—(a+kiAin+nd)

— [
T AGM [(Fulatkond] X
P (a+ke)™

(33)

n j
X (Agtnoy™' 3 A(j,n)(}‘";né)dj.o,
j=1

The updating formula now follows from this:

A =E@'k, n)

= r AoP1[A between 1, and A,+dA gk, n] di,
4]

where the probability expression is given by Equation
(32).

We now consider the myopic Bayes strategy and as-
sume that at the end of the interval (0,t), we decide on
the optimal number of vessels for the rest of the season.
of maximum length 7—1; here T is the total length of the
fishing season. If [ vessels are sent out (with/ < 0 im-
plying that vessels are called back to port), the condi-
tional harvest for the remainder of the season is

Ho= A

5 (l_e—(lﬂ-l)é(T-l)]'

(34)
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We find that:

expected harvest [given that k vessels found n schools in -
(0,1) and k + [ vessels out in (,7)] = H(n,k,[,T-t:v,a)
%[1_8-(k+1)¢>(r—n]

3 AGm T[j+v.a+kond] x
j=1 o’ (a+kl)’*"
o A(jn) [[j+v+1(a+knnd]

le & (a+key™*!

(33)

X

For simplicity we write this as

H(n,k,l,T-t;v,a)
- % [l_e—(ku)d(T—r)]R

where R is the quotient of the two series.

We can now formuiate the economic optimization
problem. Assume that p is the price per school, c, is the
fixed cost of sending a vessel to the ground, and ¢, is the
cost per unit time of operating a vessel on the ground.
Suppose that k vessels found n schools in the first period
and that [ vessels are sent out in the second period.
Fishing in the second period will stop when the marginal
rate of return is zero. This occurs at the time ¢, such that

(36)

Edf (PH(n, k, I, 15y, @) — cy(k+1)t,] = 0. (37)
Thus

1 oe (PR
b= &aho °8 ( s ) (38)

(If t; given by Equation (38) is greater than the remain-
ing length of the season (T—1) then t, is set equal to T—1.)

Our two-period dynamic programming problem is
therefore

max -
J = 0<ksN{§_; (1—e 7™y — (c,+cyt)k +
+ 2 Rk T2 g lpHe ko Ly @) -

- A, —csk+D)t,] . 39)

Here H() =1 ifl = 0,0if/ < 0.

The solution of Equation (39) is the AFOAOFA
strategy. In the EMFH strategy, all ¥ vessels go out in
the first period. Total catch is assumed to b known to
each fisherman, who then updates A as above. The ves-
sels leave the fishery at time 1, given by Equation (38)
withk +1 = N.

Resuits of some sample calculations based on the
above formulas are given in Tables 2 and 3. The base-
level parameter values used were: A=667,v=28"0;
6=05T=10r=0-15p = $2000;c, = $4000;
¢, = $2000; and N = 6.



Table 2. Single-ground model: the effect of uncertainty on k*
A = optimal number of vessels in period 1, and on the US §
& yalues of the AFOAOFA and EMFH strategies. (CV = coeffi-
& ent of variation = 1/Vv.)

v CvV k* Value in US $
AFOAOFA EMFH
8 0-35 3 7234 2737
5 0-45 4 8324 5974
3 0-58 B 11119 10 765

Table 2, obtained by varying the value of v from its
base level, shows the influence of uncertainty on the
values (net returns) for the AFAOAFA and EMFH
strategies, as well as the optimal amount of searching
(k*) in period 1.

Why does uncertainty increase the value of the
fishery, given that the average recruitment A remains
constant? The answer again lies in the process-of up-
dating estimates of abundance 4, and adjusting sub-
sequent fishing policy accordingly. This procedure is
most profitable when the year-to-year fluctuations in
abundance are high. Both strategies profit from updat-
ing, and in fact the competitive (EMFH) strategy does
so relatively more than the AFOAOFA strategy, be-
cause searching by vessels is appropriate at high levels
of uncertainty. In fact, when k* = N, the two strategies
are equally profitable (for the parameter values used
here).

Table 3 shows the effect of the total fleet size N (here
the value 6 = 0-25 was used). The EMFH strategy
performs progressively worse as N increases. In fact, for
N > 13 the EMFH strategy yields a negative return.
This reflects the well-known economic phenomenon of
rent dissipation in the competitive fishery.

Extensions of the models

The models used in the previous sections were the
simplest ones possible, chosen to illustrate the key
points of search theory in fisheries operations. In this
section, we consider some extensions, that will add
realism (and complexity) to the models. Some of these
factors are: 1, non-uniform school size; 2, correlations
on A between the two fishing grounds; 3, imperfect in-
formation; and 4, set times. false detections, and other
operational factors.

Table 3. Single-ground model: the effect of fleet size N on the
US §$ value of the AFOAOFA and EMFH strategies.

N k* Value in US $
AFOAOFA EMFH
2 2 10252 10 252
4 4 14 022 14 022
6 S 14 076 13736
8 5 14 076 11 146
10 5 14 076 7451

The simplest assumption on school size is that schools
come in two sizes: big and small. Since the actual school
size is not observed by the fishermen (only the catch is
observed) this assumption may not be as unreasonable
as it first sounds. Thus, let us suppose that the prob-
ability that a randomly chosen school is large, is q and
that the prior density on g is denoted by fo(q). If schools
are encountered randomly, i.e. school size does not af-
fect detectability (again a reasonable assumption for
some fisheries (R. Allen, personal communication)),
then the probability that m of n schools encountered
will be large is (")q™(1—q)""". Hence, as our conjugate
prior we choose the beta distribution

I(a+b)

@) “0)

fo@) = ¢ (1-q)""

A simple calculation shows that if n schools are en-
countered and m of them are large, the posterior density
ongis

T(n+a+b)
filg) = ==\

[(m+a)l(n—m+b)

qrn+a—l(l__ll)n—m+b—l (41)

i.e. another beta distribution. With these choices, it is
easy to incorporate school size into our stochastic
dynamic programming equations.

Another approach, following the work of Cozzolino
(1972), would be to assume that detectability is propor-
tional to school size and to introduce a utility structure
on school size. We hope to report on the resuit of such
calculations in a later paper.

In the analysis of the two-ground problem, we as-
sumed that the densities on the two grounds fluctuated
independently. A more realistic assumption would al-
low for correlations between the densities on the two
grounds. These correlations could be either positive
(i.e.. A, high implies that i, is high and vice versa) or
negative (i.e.. 4, high implies that 4, is low and vice
versa). One way of treating this problem would be to
assume that from historical records it is known that
i /A, = & (positive correlation case) where ¢ is arandom
variable. For example. we might assume that log ¢ is
N(0,02). Another approach would be to work with a
given joint density f(4,4,) rather than assuming inde-

pendence (in which case f(4,.4,) = fi(ADf2(A2)).

In our analysis, we assumed that the information was
perfect, but in a highly stochastic system such as a
fishery the chance of imperfect information is high. One
source of imperfect information is that the vessels may
not be allocated properly. i.e. there is a certain prob-
ability p, that a vessel will go to the wrong ground. This
can be included in our dynamic program by adding
another expectation.

A second source of imperfect information is that
schools may be fished more than once. Such a practice is
common, for example, in the purse-seine fishery for
vellowfin tuna where a school will be fished and then
followed as it regroups and then fished again. In a case
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such as this, the imperfect information is of two types.
First, the search is highly non-random, so that expo-

nentially distributed times (e.g. Models (1) or (18)), .

which correspond to random encounters, are no longer
valid. Second, the count on number of schools encoun-
tered must be modified. One way of doing this is to
introduce another expectation as follows. Let p, be the
probability that a school will be fished twice and assume
that no school is fished more than twice. Then

Pr(N, observations of schools)

No-1
= > Pr(Ny_;schools were really observed
i=0

and j schools were fished twice). (42)

Let Py(k) be the probability of observing k schoois, cal-
culated from Equations (12) or (22). Then, assuming
independence between observations and double fishing,

Pr(N, observations of schools)

Nyl No—i A
- 3 Pouvo—f)[ ;’} [PH(1=p )™,

(43)

Equation (43) can be modified in an obvious way to
include the chance of fishing a school 3,4, ..., times.
Equation (43), or one of its extensions can be included
in our dynamic programming equation in a simple way.

Finally, we consider the inclusion of some other
operational factors. One of these is set time; our
analysis has assumed that set time can be ignored, but if
it is not ignored the problem becomes much harder to
solve (Mangel, 1982; Neyman, 1949). Our dynamic
programming equations would then be changed in a
fundamental way. The same holds true for the inclusion
of false detections, in which time is lost pursuing a signal
that turns out to be false.

Discussions with fishermen and analysts familiar with
fishermen indicate that not missing a good year may be
as important as maximizing profit. One way to include
this factor in the formuiation of the problem is as fol-
lows. Let p;. be the prior probability that A > A*. For
our models using the gamma density, we have that

—-aiyv=1_v
- (" ¥V a
pe = [ 2 o

(44)
Let p;. be the posterior probability that 1 > i*, given
one period of searching. With no searching pj. = p;». To
our objective function involving profit, we add the term
¢y {(p1+/ps+)—-1], where ¢, is constant. This term is large if
the posterior chance of a good year is large and is zero if
no searching is done. In this way, we can include
another operational factor.

A third operational factor is that our choice of net
expected gain as the optimization criterion may not ac-
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curately describe the behaviour of fishermen. For
example, a recent study of the behaviour of herring
fishermen (Swierzbinski, 1981) shows that they are
more likely to be fishing for a quota than maximizing
profit. We plan in a later paper to discuss the di¥">rence
between the effects of profit maximization anc quotas
on fisherman behaviour in detail.
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