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MARK-RESIGHT POPULATION ESTIMATION WITH
IMPERFECT OBSERVATIONS!

SHEA N. GARDNER AND MARC MANGEL
Center for Population Biology, University of California, Davis, California 95616 USA

Abstract. Minta and Mangel (1989) developed a Monte Carlo method for estimating
population size from mark-resight data in which there is considerable variability in the
resighting frequencies among individuals and irregular census surveys. Their method as-
sumed that sightings were perfect, so that all animals present (marked or unmarked) were
resighted. We describe an updated version that allows a proportion 1 — p of the individuals
present to be overlooked during censusing. We compare confidence interval coverage for
the original method and the updated method using simulated data sets, describe a method
to estimate p, and evaluate how error in estimating p affects confidence interval coverage.
The updated method for estimating a confidence interval performs considerably better than
the original estimate. We find that p can be overestimated by 30% or underestimated by
10% and the confidence interval generated still includes the true population size 90% of
the time. This technique may improve confidence interval estimates for small and threatened

populations.
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INTRODUCTION

Minta and Mangel (1989) proposed a method for
estimating population size from mark-resight data for
small, heterogeneous populations. Their method, based
on Monte Carlo simulation, both allows the experi-
mental freedom of either continuous or heterogeneous
surveys and includes individual variation in sightability
characteristic of different populations. White (1993)
noted that if observations are imperfect (i.e., not all
available animals are seen), the Minta—Mangel (MM)
estimate, because it is conditioned on the sighting in-
formation, may not generate a sufficiently wide con-
fidence interval; White proposed a corrected method
based on the hypergeometric distribution.

Imperfect sighting of animals can arise in a number
of ways. For example, in cetacean populations, resight-
ing surveys may be heterogeneous in time and space
for these seldom-seen animals (Scott et al. 1990). Often
greater than half of a population’s members can be
identified by natural markings on the dorsal fin. Fur-
thermore, observation error probably occurs because
an individual may swim under the water’s surface and
not be recorded although it is present during an aerial
sweep.

The original MM method was developed for esti-
mating population size of northern mammals by radio-
collaring individuals and resighting tracks in the snow.
Snow melt or falling branches may obscure some of
the tracks, contributing to observation error. Birds and
primates that remain camouflaged easily may be over-
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looked so that estimates of their populations also re-
quire correction for imperfect observations.

In this brief article, we (i) confirm White’s obser-
vation, (ii) propose a correction of the MM method,
and (iii) validate that the revised method works. To do
this, we first simulate mark-resight data from a known
population size with imperfect sightability, compute a
confidence interval under the false assumption of per-
fect sightability, and tabulate how frequently this con-
fidence interval includes the known population size.
Then, we revise the MM population estimate to correct
for observation error in resighting animals and affirm
that the known population lies within the new confi-
dence interval. Since this method requires that census-
takers estimate the proportion of animals present that
they observe, we describe a method for computing the
observation probability from resight data collected si-
multaneously by two census-takers. Finally, we eval-
uate how error in the estimate of observation proba-
bility affects confidence interval coverage.

METHODS

The accuracy of the Minta—Mangel population
estimate with imperfect observation

The original MM algorithm estimates the total num-
ber of unmarked individuals in a population through a
Monte Carlo method based upon the frequencies of
resighting marked individuals and the total sightings
of unmarked individuals (Minta and Mangel 1989). The
observed frequencies of resighting marked animals are
scaled by the total number of marked animals to es-
timate the probability distribution of sighting frequen-
cies, which we denote by S (k) = Pr{animal will be
resighted k times}.
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Next, one randomly draws individuals from the dis-
tribution S (k) and sums the sighting frequency asso-
ciated with each individual until the total number of
randomly chosen sightings equals the empirically ob-
served number of resightings of unmarked animals. As
advocated by White (1993), to reduce bias we only
accept samples in which cumulative sightings exactly
equal the number of observations of unmarked indi-
viduals and reject samples in which sightings exceed
this number. One could modify the stopping rule to
continue drawing individuals beyond the exact number
of unmarked observations if these individuals were
drawn from the group with O resightings, only stopping
when an individual with >0 resightings was drawn.
This is a modest modification of the program that might
improve confidence interval coverage, particularly if
there are a large number of marked animals with 0
resightings. However, our method will only underes-
timate the true population size N by an average of
3720 i(8,(0))/(1 = 8,(0)) = S,(0)/(1 = 5,(0)), where S,(0)
is the probability an individual is never resighted. The
upper bound on the confidence interval could be en-
larged by this amount if there were a large number of
marked animals that were never resighted. At least 50%
of the marked individuals must have O resightings for
this average bias to be as much as a single individual.

Repeating this procedure 10000 times leads to an
empirical frequency distribution of estimates for the
number of unmarked animals. The point estimate of
population size is the mode of this frequency distri-
bution of unmarked animals. An empirical 95% con-
fidence interval around the peak of the frequency dis-
tribution contains 9500 of the total 10000 population
estimates.

To evaluate the accuracy of this method when an-
imals that are present may not be sighted, we started
with a population of known size N (we used N = 40)
and simulated mark-resight data similar to those that
would be collected empirically. First, each individual
was randomly ‘‘marked” with Bernoulli probability
15/40. Independently of each individual’s marked or
unmarked status, we randomly assigned each animal
a chance of being available for resight from a uniform
distribution ranging from 0.3 to 0.6. Finally, we spec-
ified the probability p that an animal that was present
would be resighted. For each simulated day of cen-
susing, an animal was designated as present or absent
during a survey according to its probability of being
available for sighting, and then was seen by the cen-
sus-taker with probability p. After n,, = 10 d of
censusing, we tabulated (1) the distribution of re-
sighting frequencies for the marked individuals and
(2) the total number of resightings of unmarked in-
dividuals.

We calculated a 95% confidence interval for the pop-
ulation size with the MM algorithm and checked how
often this confidence interval included the actual pop-
ulation size N. For a given observation probability p,
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we averaged the results from 100 sets of simulated data
and MM estimates. Repeating this procedure for each
of 10 observation probabilities (p = 0.1, 0.2, ..., 1)
determined the largest observation error (1 — p) al-
lowable to estimate a 95% confidence interval.

Updating the MM population estimate to
account for imperfect sighting

When we know that an individual may be present
but not sighted, two modifications to the MM algorithm
correct for imperfect observations in both the marked
and the unmarked sightings. First, the observed sight-
ing distribution of marked animals S (k) must be used
to construct an estimate for the “‘true” distribution of
the frequencies of individuals that are available for
sighting, S,(n). Individual sighting frequencies are then
drawn from this updated distribution. Second, only a
randomly chosen fraction of these sightings are
summed, using the binomial probability p to determine
if a potential sighting is included in the sum. This pro-
cedure expands the confidence interval from the case
of perfect observations.

To begin, we need to find S(n). Since we no longer
assume that the sighting distribution of marked animals
is based on perfect observations, an animal observed
k times could have been present k, k + 1, k + 2, ...,
Nma. times. Suppose that G,(n) is the probability that
an individual is present n times given that it is seen k
times. Then by Bayes’ theorem

G Pr(observed k | present n)Pr(present n) o
n) =
k Pr(observed k)

In Eq. 1, Pr(observed k | present n) is a binomial dis-
tribution.

There are two obvious choices as a prior distribution
Pr(present n) for the probability that an animal is pres-
ent n times during resighting efforts. One is the uniform
prior Pr(present n) = 1/n,,,. A second possibility is the
noninformative prior in which the data change the lo-
cation, but not the shape, of the posterior distribution
(Box and Tiao 1973). Mangel and Beder (1985) showed
that when estimating the parameter n in the binomial
distribution, using the uniform prior results in essen-
tially the same posterior distribution as that obtained
using the noninformative prior. Since the noninfor-
mative prior is so much harder to compute than the
uniform prior, we stay with the latter. Thus, we assume
a uniform prior, so that

Nimax

(Z)pk (1 —_ p)(n—k) L

G(n) =

Mmax 1 ’
) ('")p*(l - P —]
m=k k nmax

forn=kk+1,k+2,..., )
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which simplifies to

(Z)(l - pr

Gn) = ——/—. 3

Nmax m
1 — m
2 ( k)( P
From a Bayesian viewpoint, G,(n) is an estimate of the
prior for the sighting distribution S(n) informed by the
estimated magnitude of observation error. The ob-
served sighting distribution S (k) is the likelihood, so
that

S(n) = 2 G (m)S, (k). @)

In the modified MM algorithm, the numbers of times
that individuals are available for resighting are gen-
erated using the Bayesian estimate of the distribution
S/(n). This accounts for imperfect observation (p < 1)
of marked individuals.

To correct for imperfect observation of unmarked
individuals, some of the times that each individual is
available for resighting are selected as actual resights
according to a binomial random variable with proba-
bility p. These resightings are summed until the em-
pirically observed number of unmarked sightings is
reached. The confidence interval (c1) is computed as
before. We averaged the results from 100 simulated
sets of data for each value of p to determine the percent
of time the updated c1 estimate included the true pop-
ulation size.

Determining the probability of sighting

We now describe a simple method that can be used
to determine the probability of successfully sighting an
individual. To do so, we assume that the resighting
process is modified so that two searchers work essen-
tially simultaneously (e.g., Estes and Jameson 1988).
Ignoring whether resighted individuals are marked or
not, we then have a number of resighted individuals
(C) that both searchers detect and a number of resighted
individuals (K) that one of the searchers detects. As-
suming that each searcher has the same probability of
resighting an animal, the probability that both searchers
sight a particular individual is p?, the probability that
one of them encounters a particular individual is 2p(1
— p) and the probability that neither of them encounters
a particular individual is (1 — p)2. If there are N in-
dividuals present during resighting, the observed data
will follow a multinomial distribution

Pr{C=c, K = k}

P [2p(1 = I = pP]Veh
()

We view Eq. 5 as the likelihood function for p and N,
given the data ¢ and k, with the restrictions that 0 <

N!
clk!(N —c —k)!
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p < 1 and that N = (¢ + k). The maximum likelihood
estimate for p is

2¢c + k

BT ©

PmLE

However, N is unknown in Eq. 6. To determine the
maximum likelihood estimate for N, we consider the
likelihood ratio

Lp N+1|ck (N+ DDA —ppP
L(p, N| ¢ k) N+1—-c—k’

@)

Setting this ratio equal to 1, which is the analog—for
a discrete variable—of setting the derivative equal to
0 (see Mangel and Beder 1985), and solving for N gives
the maximum likelihood estimate

ctk—1+ 1 — p)?
1—(-pp
Since we are only interested in p, we ignore the con-

straint that Ny, must be an integer, substitute Eq. 8
into Eq. 6 and simplify to obtain

Nuig = Im( (3)

2pvie® + P 2c + k—4) — 2¢ = 0. 9)

This equation has one positive root <1 for the cases
of interest here.

An alternative to (9) is to use the method of moments
to estimate p (e.g., Estes and Jameson 1988). This can
be found by noting that the expected value of K is 2p(1
— p)N and that the expected value of C is p?N. Thus,
given values K = k and C = ¢, we can eliminate N and
find that

2c
k+ 2c’

pmoment = (10)
We prefer the Maximum Likelihood Estimate of p, but
the two methods give similar values for the estimate
of the probability of sighting.

Effect of error in estimate of p on
CI coverage

We evaluate how uncertainty in estimating p affects
confidence interval coverage. For example, suppose the
actual probability of observing individuals is 0.5, but
because of error in estimating this actual value of p, a
value of 0.7 is used to compute the confidence interval
for the population size. To assess this effect, we sim-
ulate mark-resight data with one value of p but com-
pute a confidence interval with a different, therefore
incorrect, estimate of p. The greatest difference be-
tween the estimate and the true value of p for which
95% of simulated data fall within the c1 indicates the
acceptable error in estimating p. In these computations
we used p = 0.5 as the actual observation probability.

RESULTS

With the original MM estimate, any level of imper-
fect observation decreased confidence interval cover-
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true population size was contained in the 95% confidence
interval (c1) determined from the frequency distribution of
estimates of population size for the original Minta—Mangel
method and the updated method in which imperfect obser-
vation is accounted for.

age below 95% (Fig. 1). The updated method improved
c1 coverage for all values of p tested, and for most
values of p it increased coverage to at least 95%. How-
ever, particularly for low values of p, this correction
did not always boost CI coverage above 95%, although
it always brought the coverage above 91%. Averaging
the results from more sets of data could resolve this.
Thus, the updated method improved the confidence in-
terval when observations were imperfect.

cr’s calculated with an incorrect value of p resulted
in >90% coverage if the mistaken value of p was =30%
higher than the actual value (Fig. 2). However, low
estimates of p could be only 10% beneath the actual p
for 90% coverage. The flatness of the curve in Fig. 2
for values of p from 0.4 to 0.8 shows that CI coverage
does not differ drastically for a range of p values. The
drop-off for underestimates of p indicates that it is
better to overestimate p than to underestimate p. The
reason for this is the reciprocal nature of the relation-
ship between p and the estimate of the number of un-
marked individuals, so that the curve relating the two
is steeper for lower values of p. Hence, underestimating
p changes the estimate of the number of unmarked
individuals more sharply than overestimating p.

DiscussioN

This method of estimating a confidence interval is
useful in censusing small or threatened populations
where individuals can be recognized, show individual
variation in behaviors that affect sightability, and may
be seen rarely, thus requiring prolonged and irregular
census surveys. In such small and heterogeneous pop-
ulations, estimates based on the assumption of a Gauss-
ian distribution, centered around the mean number of
resightings per individual, are hard to justify.
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true population size was contained in the 95% confidence
interval (c1) determined from the frequency distribution of
estimates of population size for the case in which the prob-
ability p that individuals present are also observed = 0.5 but
for which values of p in the range 0.2 to 1.0 are assumed.

A key assumption common to this and all other
mark-resight population estimates is that an indivi-
dual’s probability of being resighted is independent of
its marked or unmarked status. Therefore, a study must
be designed so that the method of capturing individuals
to mark is different from or occurs in different local
points than does resighting. For example, traps for
marking animals may be placed in several locales such
as watering holes frequented by a large number of in-
dividuals, while resighting surveys are made along a
number of transects that are systematically arranged to
cover the habitat. Thus, if there are ‘‘sight happy” in-
dividuals made apparent by outstanding coloration or
vocalization, the original capture and marking would
be independent of subsequent differences in resight
probability. If the probabilities of marking and of re-
sighting individuals are not independent, then the po-
pulation’s true size may be larger than that obtained
from the estimated confidence interval. Even with this
caveat, mark and resight methods remain some of the
most valuable and most used methods for estimating
population abundance. Consequently, we must strive
to develop the best possible methods.

One may implement the technique we have outlined
for estimating population sizes on a personal computer.
The only data necessary in addition to that collected
during the original formulation of the MM algorithm
are the results of a simultaneous survey to estimate p.
This method promises to be especially useful to census
threatened populations for which accurate knowledge
of confidence intervals is essential.
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