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Questions that involve “barrier crossings” arise in both ecology and evolution.
When two species compete, and the population dynamics have multiple equilibria,
a barrier crossing corresponds to fluctuations driving the populations across a
deterministic separatrix. Similarly, fluctuation may drive quantitative traits across
valleys in the surface of individual fitness, particularly when the fluctuations interact
with a deterministic force such as a correlated selection reponse. In this paper,
I show how to formulate and solve the barrier crossing problem. Two classes
of models are considered. In models based on stochastic differential or difference
equations, fluctuations are superimposed upon a system of deterministic differential
or difference equations. In the case of a Markov chain, there may be no underlying
deterministic system, so that the system is only characterized by Markovian
transition probabilities. The validity of the diffusion approximation and the origin
of macroscopic population dynamics from a underlying purely probabilistic system
are investigated.  © 1994 Academic Press, Inc.

INTRODUCTION

Questions that involve “barrier crossings” arise in both ecology and
evolution. Thomas Park’s classic experiments (Neyman, Park, and Scott,
1956) illustrate the ecological setting. Park and his colleagues studied the
processes underlying competition between flour beetles, at individual and
group levels (Neyman, Park, and Scott, 1956, pp. 48 ff). Six different com-
binations of temperature and humidity were used to construct six different
“ecologies” for the flour beetles. Single species persisted in essentially all six
ecologies, with equilibrium levels of about 100 adults. However, in com-
petition between two species, one species always persisted and the other
was always eliminated, but the results of the competition were sometimes
an indeterminate function of initial conditions. That is, for some sets of
initial conditions, species 1 (e.g., Triboluium confusum) always won the
competition; for other sets of initial conditions, species 2 (e.g., Tribolium
castaneum) always won the competition; but there was a range of initial
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BARRIER CROSSINGS AND FLUCTUATIONS 17

conditions in which species 1 won the competition only some of the time.
Neyman, Park, and Scott (1956) refer to these as determinate and indeter-
minate regions.! The results are consistent with a model of stochastic
competition (Fig. 1) in which population fluctuations are superimposed
upon classical, deterministic equations of competition. That is, one
envisions an underlying deterministic competition described by a pair of
differential equations

dx dYy
== —= Y 1
C=h(XY)  —=h(XY) (1a)

or difference equations

X+ 1)=X()+b,(X(2), Y(2))
Y(t+1)=Y(2) + by(X(2), Y(2)).

(1b)

Here X(¢) and Y(¢) are the population sizes at time ¢. The system (1) is
assumed to have three equilibria. Two of them are stable (one of the two
species extinct) and the third is a saddle point (Fig. 1). The population
trajectory that enters the saddle point is called the separatrix. It separates
the plane into two “domains of attraction”: Points on one side of the
separatrix are deterministically attracted to the equilibrium in which
X(t)=0; points on the other side to the equilibrium in which Y(¢)=0.
When fluctuations are present, initial conditions that are deterministically
attracted to X(z)=0 may end up with Y(#)=0 and vice-versa. This event
is a “barrier crossing.” If the intensity of the noise is small, then we expect

"In a provocative and thoughtful essay, Simberloff (1980) points out that 1859 (the year
of publication of The Origin of Species) was the watershed year for the “revolution against
determinism”: not only did Darwin publish his seminal work, but Maxwell published the
kinetic gas law. These are the foundations for non-deterministic thinking in biology and
physics. Park’s work had many goals, but one high priority was the attempt to explain the
probabilistic outcome of competition between different species of flour beetles in terms of
physical factors (e.g., temperature and humidity) and their relation to biological factors (e.g.,
fecundity, cannibalism rate). Simberloff describes the attempts to demonstrate that Park’s
results were illusory; but in the end the indeterminacy could not be eliminated by better
controls (e.g., genetic uniformity). The stochastic nature of the competition is real and “our
understanding of population phenomena will require stochastic treatment” (p. 21). Simberloff
identifies three levels of indeterminacy: (i) molecular indeterminacy (e.g., random mutations
in the genome of the flour beetle), (ii) chaotic behavior of non-linear systems (e.g., the flour
beetle dynamics are deterministic, but so non-linear that they are chaotic), and (iti) the
indeterminacy engendered by the enormous number of entities in the ecological system (e.g.,
each species has eggs, larvae, pupae, and adults interacting with complex behaviors).
Simberloff concludes that the probabilistic revolution is far from complete and that the
“variability [that] typifies ecological systems because of their complexity - - - suggests different
mathematical approaches and criteria for success” (p. 27).

.
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Fic. 1. An underlying deterministic phase portrait that gives rise to a region of indeter-
minacy in stochastic competition. We assume that the competition equations have an unstable
equilibrium (saddle point). The separatrix trajectory % divides the phase plane into two
domain of attraction. Deterministically, all points in one region tend towards (0, Y,,) and
all points in the other region tend towards (X, 0). When fluctuations are present, initial
conditions near the separatrix may lead to indeterminate results, since fluctuations may force
trajectories across the separatrix into the opposite domain of attraction.

that points near the separatrix will be most sensitive to fluctuations. The
indeterminate region described by Neyman, Park, and Scott (1956) is thus
the vicinity of the separatrix. Mangel and Ludwig (1977) showed how one
can compute the probability that fluctuations cause a point which is deter-
ministically attracted to one domain of attraction to end up at the other
domain of attraction. The objective of the present paper is to explain the
method of Mangel and Ludwig (1977) so that it is accessible to individuals
not expert in asymptotic analysis, mathematical physics, and the writing
style associated with the Courant Institute of Mathematical Sciences
(Courant and Hilbert, 1962).

Price et al. (1992) recently proposed a model for the evolution of
correlated characters in a changing environment (Fig. 2). According to this
model, we envision two correlated traits, X and Y, which are near one of
two peaks in the fitness surface of individual fitness. After an environmental
change, X is subject to directional selection. As a correlated response, Y
may be driven from one fitness peak to the other. When genetic drift is
taken into account, the stochastic fluctuations may produce a peak shift
when it is not predicted in the deterministic model, or may prevent it when
it would occur deterministically. (Crossing this valley of fitness is
equivalent to crossing the deterministic separatrix in the ecological setting. )

We wish to compute the probability that fluctuations cause a shift from
one outcome to another. This involves (i) specifying an underlying model,

.
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Y
Current Peak (and location New Peak After
Environmental
@ of population) @ Change
Valley of Fitness (anhlogous to Separatrix)
X
D New Alternative
Peak
Alternative Peak

FiG. 2. The model of Price et al. (1991) for the evolution of correlated characters. We
envision two correlated traits, X and Y, currently at a peak of fitness but for which another
peak exists. After an environmental change, both peaks shift and selection on the X-trait
drives the population towards the new peak. When fluctuations are present, it is possible that
the population may cross the valley of fitness for the Y trait, on its way to the new peak for
the X-trait. Crossing this valley of fitness is equivalent to crossing the deterministic separatrix
in the ecological setting.

(ii) deriving the equations for the probability of outcome, given initial
conditions, and (iii) solving those equations. This program is carried out in
the remainder of the paper.

In the next section, models based on stochastic differential equations,
stochastic difference equations, and a Markov chain are introduced. In
addition, a “practice” problem is solved. The solution of this problem,
which involves only one state variable, indicates the form of the general
solution. The method of general solution is summarized and explained in
more detail than presented in the extremely terse version of Mangel and
Ludwig (1977). Similar ideas have also recently been used by Barton
and Rouhani (1987) and Rouhani and Barton (1987a, b) to calculate the
expected times associated with transitions, rather than probabilities. In the
fourth section, two simple examples of the method are illustrated. In the
fifth section, the method is extended to models in which there is no under-
lying deterministic system. A thorough study of the results illustrates
why the diffusion approximation is appropriate in this case, and how
macroscopic population dynamics such as (1) arise from an underlying
Markov chain model.

.
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MODELS

Stochastic Differential and Difference Equations

Consider two populations or two traits X(z) and Y(z) that satisfy the
following stochastic differential equations:

dX—_—bl(X, Y) dt+\/ Sall(X, Y) dWl +\/ Salz(X, Y) dW2
dY=b2(X, Y) dt+\/ 8012(X, Y) dWl +\/8a22(X, Y) sz.

In this equation, dX=X(¢t+dt)—X(t), dY=Y(t+dt)—Y(1), and the
b,(X, Y) are the deterministic components of either selection or population
dynamics. The intensity of fluctuations is measured by the variance-
covariance matrix with components ea;(X, Y), so that ap,(X,Y)=
a,(X,Y), and the dW, are the increments in two independent Wiener
processes: each dW, has independent increments and is normally
distributed with mean 0 and variance dt. The parameter ¢ is a measure of
the intensity of fluctuations. In most settings, it is inversely proportional to
a measure of population size. According to the model (2a), given that
X(t)=x, Y(1)=y, dX is normally distributed with mean b,(x, y) dt + o(dt)
and variance [ea,,(x, y) + ea5(x, )] dt + o(dt), where o(dt) denotes terms
such that lim, _, 4(o(dt)/dt) = 0. Similarly, dY is normally distributed with
mean b,(x, y) dt + o(dt) and variance [ea,(x, y)+ eaxn(x, y)]ldt+ o(dt).
All higher moments are o(dt).
The analog of (2a) for difference equations is

(2a)

X(1+1)=X(2) + by(X(2), Y(1)) + &,1(X(2), Y(1))
Y(t+ 1) = Y(1) + bo(X(1), Y(1)) + E2(X(2), Y(2)),

(2b)

where the &,(X(1), Y(t)) are noise terms analogous to the Brownian motion
processes. The key point, which is essential for the analysis that follows, is
that for either (2a) or (2b), increments in X(¢) and Y{(¢) have conditional
distributions that are normal.

A Markov Chain Model

It is, of course, possible that there are no underlying deterministic
dynamics and that the dynamics of the system of interest are based solely
on transition probabilities. In that case, we use a discrete time and state
description in which changes in X(z) and Y(z) are summarized by a
transition probability

py(x, y)=Prob{X(t+ 1) =x+4i, Y(t+ 1) =y +ej| X(t)=x, Y(1) =y}. (3)
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The mean change in X is then AX = X(¢t+1)— X(¢) =2, >, p;(X, Y) &i and
the mean change in Y is then AY=Y(t+1)-Y()=3,%,p,;(X,Y) ¢,
where the summations are taken over all possible values of i and j. Unlike
the case of the stochastic differential equation model, in which third and
higher moments are o(dt), all moments of (3) may be of the same order.

The model (3) is substantially different from (2) in that there is no
underlying deterministic system upon which fluctuations are superimposed.
However, the same methods derived for the stochastic differential and
difference equations can be applied here.

A “Practice” Problem and Its Exact Solution

The main ideas of the solution technique can be illustrated with a
practice problem that is exceptionally simple (Mangel and Ludwig, 1977).
In only one dimension, the separatrix collapses to a point, so consider the
model

dX =X dt + /26 dW (4)

with X restricted to the range [—1,1]. The underlying deterministic
dynamics are then dX/dt = X and if X(0) <0, the system is deterministically
attracted to X' = —1, whereas if X(0)>0, the system is deterministically
attracted to X' = 1.

When fluctuations are included, a trajectory starting from an initial
condition that is attracted to X = —1 might end up at X=1 (and vice
versa). It is exactly the probability of this event that we wish to compute:

u(x) = Prob{ X(z) reaches 1 before —1, given that X(0)=x}. (5)

This function is the analog of the probability of fixation in population
genetics (Ewens, 1979) or the colonization probability in ecology
(MacArthur and Wilson, 1967). We can derive an equation for u(x) by
applying the law of total probability (Mangel and Clark, 1988) to u(x),

u(x) = Eax {u(x +dX)}, (6)

where E,, denotes the expectation taken using the distribution of dX
determined by (4). Taylor expanding u(x + dX) in powers of dX gives

du 1 d*u
u(x)= de{u(x) + dX—cE +§ (dX)? Ec—ﬁ. }

du 1 d?
=u(x)+EdX{dX}d—_l;+§EdX{(dX)2}Elzl+ (7)

.
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The terms ignored in this expansion are proportional to (dX)?, (dX)*, etc.
As described above, they are o(dt). According to (4) the mean of dX is
X dt + o(dt), the variance of dX is ¢ dt + o(dt), and all higher moments are
o(dt). Thus, taking the average in (7) gives

2

du 1 d“u
u(x)—u(x)+xdta+§(2£)dt~[&—2+ o(dt), (8)

so that dividing by dt and taking the limit as dt — 0 gives the equation

du d*u
XE-}-EZX—Z:O. (9)

This equation requires two boundary conditions. If the value of x=1, then
the probability of reaching X =1 before X=—11s exactly 1; if x=—1,
this probability is 0. Hence u(1)=1, u(—1)=0. The solution of (9)
corresponding to these boundary conditions is

_.‘x—1 exp(—y?/2¢) dy
_,jl—leXP(—yz/ZE)dy' (10)

u(x)
The denominator in this expression is simply a constant; introducing a
change of variables v = y/\/g allows us to rewrite (10) as

[Y7 7 exp(—v%/2) do
u(x)= /s —
j'_l/\/;exp( v2/2) dv

(11)

When the intensity of fluctuations ¢ is small, the lower limit of integration
in (11) — 1/\/5 < —1, the upper limit in the demoninator 1/\/5 > 1 and we
can approximate (11) by '

X

u(x)~go?® <$> (12)

where g, is a constant and &(z) is the cumulative normal distribution
function

u2

l z
(p(z)=ﬁj_wexp<—7) du. (13)

In this case, if ¢ is sufficiently small, g, is essentially 1; otherwise it is simply
the normalization constant in (11).
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A MORE GENERAL ONE DIMENSIONAL PROBLEM AND
ITS APPROXIMATE SOLUTION

Suppose we consider a more general but still one dimensional problem,
dX =b(X)dt+./2ea(X)dW, (14)

with 5(0)=0 and 4'(0)>0, and a(x)>0. We define u(x) as above and
follow the procedure that led to (9) to obtain

d*u

—==0. (15)

b(x) j—z + ea(x)

The boundary conditions for (15) are the same as those for (9) and it is
possible to solve (15) by integration, just as (9) was solved. The result is
only slightly more complicated:

* * b(y) e * b(y) ,
u(x)=f_leXP<—f w(y)dy)dx/f_lexp<—f mdy)dx. (16)

An alternative procedure, however, is to obtain an approximate solution,
using (9) as a guide. That is, let us seek a solution of (15) in the form

u(x) ~ g0 (%) (17)

where ¥/(x) is an unknown function which must be determined and g, is a
constant. In order to evaluate the derivatives of u(x), we note from (13)
that

&)= z 18
(Z)_\/z—nexp<_2> ( )

so that @"(z) = —z®'(z). Thus, if u(x) is given by (17) we have

(4180
£ () () 2
oo (e AT
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(the last line follows from (18)). We now substitute these into (15) to

obtain
o[ () 542]
+ ea(x) [godi’ ('{;?) _\k di;/;(z)C)

L

=0 (20)

If we collect the terms in (20) according to powers of ¢, the most important
term involves 1 /\/E and the coefficient of 1/\/5 vanishes if we set

d 2
b(x) '/;ix)—a(x) () {f%(xi)} —0. 1)

At the present level of approximation we cannot set the coefficient of \/E
equal to 0. To do this, we must modify the initial guess (17) and replace
it by u(x)~goPW(x)/\/2) + /2 ho(x) ®'(Y(x)/y/2), where the function
ho(x) is to be determined (Mangel and Ludwig, 1977, show how to do
this). However, when ¢ < 1, the equation for u(x) is closely approximated
by (17) if (21) is satisfied.

To satisfy (21), either d(x)/dx =0, which we reject because then y(x) is
a constant, or

blox) = atx) wx) 22, (22)
from which we conclude that
2 (Gor)-23 @3)
so that
.p(x)2=2jx§%d (24)
and
yw=zx 2] 2w (25)
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Both the + and the — are needed: for x>0 we choose + and for x <0
we choose —, to ensure that u(x) has the appropriate behavior
(approaches 1 as x > 1 and 0 as x » —1).

We thus have constructed the solution

)~ o0 (£ 2 2 ay [ 5). (26)

where the constant g, is chosen for normalization. If we choose b(x)=x
and a(y) = 1, this procedure leads to the exact solution we computed in the
previous section. A similar procedure is used in the two dimensional case,
except that the details are more complicated.

THE MULTIDIMENSIONAL CASE: A GENERAL APPROXIMATION

Mangel and Ludwig (1977) developed methods, analogous to those used
above, for coupled stochastic differential equations, such as those which
occur in stochastic competition or in the evolution of correlated characters.
In this section, that work is summarized and the details are made more
explicit, so that readers will be able to use the method. For simplicity, only
two species or two traits are considered. However, the methods generalize
readily for more than two species without any conceptual difficulty and few
technical difficulties, except for problem formulation. For some special

Xeo

X

Fic. 3. Boundary conditions for the barrier transition problem. We wish to compute the
probability that a system starting somewhere between ./ and # crosses # before «/. The
expansion method (described in the Appendix) can be used to find u(x, y) for points (x, y)
that are close to the separatrix.

.
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forms (“potentials”) of the mean changes in X and Y, it is possible to
obtain exact results (e.g., Barton and Rouhani (1987) and Rouhani and
Barton (1987a, b)); the emphasis here is on methods that are generally
applicable.

Using the language of stochastic competition, we are now interested in
u(x, y) = Prob{species X wins a competition with species

Y, given X(0)=x, Y(0)=y}. (27)

To make this more precise, surround the separatrix by a band (Fig. 3) and
define

u(x, y) = Prob{the trajectory (X(¢), Y(t)) crosses & before

A, given that X(0) =x, Y(0)=y}. (28)

This probability is the solution of an equation analogous to (9),

3 0*u 0’u 0’u
0 =3 {au(x, ) ‘a—x—2+ 2a5(x, y) 'a—x'é; +axn(x, y) ayz}
ou Ou
+by(x, ) 5o+ balx Y) 2, 29)
x y

with associated boundary conditions u(x, y)=1 for points (x, y) on the
curve o and u(x, y) =0 for points (x, y) on the curve A.
We now seek a solution of the form

u(x, ¥) = go® (‘“\7{ )) +0(/%), (30)

where g, is a constant (determined by normalization) and 0(\/5) denotes
that the next term in the approximate solution is proportional to \/E The
function (x, y) satisfies the following equation (Mangel and Ludwig,
1977) analogous to (20):

2

0 oy 1 0
b5 Lot bt P fantn v 0 (5

oy o : AN
205, 00590 Z X b a0t ) (37) =0 6D
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If we define a new function

0(x, y) = —3¥(x, y)* (32)
then (31) becomes
00 06 1 06\? 06 00
by(x, y) P by(x, y) o +3 {all(xa ) <(—9;> +2ay,(x, y) 9 oy
00\ |
+ ax(x, y) <6_> } =0. (33)
y

Equation (33) can be solved by the method of characteristics (Courant and
Hilbert, 1962, p. 75), which is a classical method of applied mathematics.
By doing this, we have converted the second order, linear equation
for u(x, y) to a first order, nonlinear equation for 6(x, y). In addition
to the solution by characteristics, (33) has an associated Hamiltonian,
Lagrangian, and variational principle, all of which are now explained (and
are important for the biological interpretation of the equation).
The Hamilton associated with (33) is

H(x, y, p, q)=2{ay(x, y) p* + 2a,5(x, y) pq + axn(x, y) ¢4°}

+b1(x9 y)p+b2(xa y)q (34)

Note that (34) is the same as (33), except that the derivatives of 6(x, y)
have been replaced by two new variables, p and ¢g. The essense of the
Hamilton—Jacobi variational theory is to treat these quantities as inde-
pendent variables. The Hamiltonian generates trajectories according to the
differential equations (Courant and Hilbert, 1962, pp. 97 ff.)

de_ot
ds  dp
@_aﬂ
ds  dq
! (35)
dp_ OH
ds~  0x
dq 0H

ds~ oy’
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In this equation “s” parameterizes the solution curves (or characteristics).
Along these solution curves, 6(x, y) satisfies the ordinary differential
equation (Courant and Hilbert, 1962)

do

1
I 2 [a;,p*+2ay, pq + axnq’]. (36)

The Lagrangian L(x, y, dx/ds, dy/ds) is (Rund, 1973, pp. 67 ff.)

dx dy\ dx dy
| H(X,)’,Pa 4)+L<x,y, dS, dS>_P dS+q dS, (37)
so that in this case, the Lagrangian is
dx dy\ 1 _ dx\?
L <~x9 B ) ZS'_, dS) _Eall(x, )’) (bl(xa J/') _E>
- dx d
+antn ) (b )= F) (e 0 -F)
ds ds
1_ ay\?
#3503 )= ) (38)

where the matrix a(x, y) is the inverse of the matrix a(x, y). The important
reason for studying the Lagrangian is that according to Hamilton—Jacobi
theory, 0(x, y) is the minimum of the integral of the Lagrangian taken over
all paths joining the point (x, y) and a given initial point (xo, yo)- If this
point (x,, o) is chosen to be the saddle point (Fig. 3), then the Lagrangian
vanishes on the separatrix since the separatrix is the solution of the
equations dx/ds = b,(x, y) and dy/ds = b,(x, y); this means that f(x, y)=0
on the separatrix and consequently ¥(x, y) =0 on the separatrix. One can
now find 6(x, y) by integrating the Hamilton-Jacobi equations. In actual
fact, as shown in the next section, we can often escape the numerical
solution of the Hamilton—Jacobi equations by an expansion of (33) near
the separatrix.

AN EXPANSION METHOD NEAR THE SEPARATRIX

In this section, I now show how (33) can be expanded near the
separatrix and then provide two examples showing how the expansion
method is used. Both of these turn out to be exceedingly simple, but they
illustrate the point. '



BARRIER CROSSINGS AND FLUCTUATIONS 29

A General Method for Expansion Near the Separatrix

A method for determining 6(x, y) near the separatrix by an expansion
technique is tersely described in Ludwig (1975) and Mangel and Ludwig
(1977); the description here makes it more easily accessible. The starting
point is (33) and the assumption that the functions b,(x, y) and
a;(x, y) are sufficiently differentiable in the region around the separatrix.
On the deterministic separatrix, we have ¥(x, y) =0, and since 6(x, y)=
—1y3(x, y), 0(x, y) and its derivatives with respect to x and y are 0 on the
separatrix.

Let us thus consider a point (x,, y,) on the separatrix and another point
(x, ¥) near, but not on, the separatrix. The distance between the two points
is determined by dx=x — x, and dy =y —y,. We write

00(x, y) _9°6(x,, ys) 0%0(x,, ys)
= 0
ox ox? ox+ ox dy Y
1[°0(x,, y) . 0°0(x,, y5) 2%0(x,, y,)
2 sy Vs 7 s 7s) s s» Vs 2
+2[ PR A v A S (5”}
+o (39)
and
00(x, y) _0%0(x,, y,) 0%0(xs, ys)
dy  Oxdy ox+ oy? o
1[0°0(x,, ys) 2, ~0°0(x, ¥;) 0°0(x,, ¥s) < s
+2|: o2 Oy (6x)°+2 oyt ox (5y+T(5y) :l

+ ...

Similarly, we can expand b,(x, y) and b,(x, y) as

0 0
bu( )= bis 2+ | 5 2 | 054 | 01630 [ o9+
(40)

0 _ 0
bal )= bat 30+ | 5=l 3 | 85+ | £ batr ) [ oyt -
As will be seen, it is only necessary to know a(x, y) on the separatrix. We

now substitute (39) and (40) into (33). There are terms proportional to dx,
3y, (6x)? 6x dy, and (dy)?; since the increments in x and y are arbitrary,
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we require that the coefficients of these increments vanish. The terms that
multiply dx in the expansion are

0%0 0°0
bl(xs7 ys) W‘*‘ bZ(xs’ ys) Ox ay (41)
and the terms that multiply dy are
0%0 0%0
b —+b —. 42
l(xs7 ys) ax ay + Z(xs7 ys) ayz ( )

Both of these terms are identically 0. To see that this is true, note that the
expressions (41) and (42) can be rewritten as the product of vectors. If we
let t denote the tangent vector along the separatrix, t=(b,(x,, y;),
b,(x,, y;)), and Grad(w) denote the gradient of a function w,
Grad(w) = (0w/0x, dw/dy), then the expression (41) is

2 2
by 2 e+ balrn 2 o=t Grad (31), (43)
where “.” denotes the usual dot product between two vectors. Since
00/0x=0 on the separatrix, we conclude that the expression in (43)
is identically 0. Similarly, the expression in (42) can be written as
t - Grad(06/0y), from which we conclude that it too vanishes. Thus, the
terms proportional to dx and Jdy are both identically zero. This means
that the equation is approximately solved if we set the coefficients of the
quadratic terms equal to 0. (Were this not the case, we would have to set
the coefficients of the linear terms to 0.)
The next terms in the expansion are proportional to (dx)? déx dy, and
(6y)* The coefficient of (dx)? is

L L BN .
2 all xs’ys axzaxz a12 xs>ys axzaxay
+ )628 0%0
a22 xsays axayaxay

+ abl(xs"ys)g_z_g_l_abZ(xs’ ys) 620 .
ox  0x? ox  dxady

0%0 0%0
#3| Bir ) 4 bao 2 3 | @)

ox3

N =
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The coefficient of dx dy is
1 ( ) 62_0_@
2a11 xsays axayaxz
et [ 2920, 2020
12X Vo) 552 oy 0x dy 0x dy

ey Z08
2 22 says axayayz

+—abl(xs: ys) 620 +ab2(-xs9 ys)g_z_e]

ox  Oxdy ox  0y?

—abl(xw ys)gz_e__’_ abz(xs(-xsa ys) 620
. dy  ox? oy Ox Oy

i 0’0 0’0
] bixi ) s+ il ) G | )

Finally, the coefficient of (dy)* is

U oy 2020
2| #ule V) 55y bx oy
0%0 0%0 0%0 0°%6
+2a,5(x, ys) 92 9x 3y + a35(Xs, ¥s) »° W]

al)l('x"sa ys) 620 abZ(xs9 ys) 620]
+ + =
oy 0x 0y oy dy

1 0’0 0%0
+3[ 010 s bt 20 5 | (46)

Setting the expressions (44)-(46) all equal to 0 provides a coupled set of
three equations for the three unknowns §20/0x>, 9°0/0x dy, and 3°6/9y>.
This set of equations can be written in a compact form (Mangel and
Ludwig, 1977) by introducing matrices

%0 %0 ob,(x, y) 0by(x,y)
ox? m _ 0x dy
%0 0% | 8by(x, y) . 0by(x, ¥)
ox Oy W Ox dy

_ <a11(x’ y) an(x, )’))
ap(x, y) axn(x,y),
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in which case (44)—(46) can be written as

d
;£+ BP+ PB™ + PAP=0. (47)

In this equation, s measures “time” along the separatrix, with s= 0
corresponding to the saddle point. Equation (47) is derived by noting
that along the separatrix dx,/ds=b,(x,, y;) and dy,/ds=b,(x,, y,) so
that the total derivative of any function § along the separatrix is
dd/ds = b(x,, y) 09/0x + b,(x,, ys) 09/0y, where the partial derivatives are
evaluated on the separatrix. Since the saddle point corresponds to s= o,
(47) is actually not directly usable for computation. In fact, at the saddle
point, both b,(x,, y,) and b,(x,, y,) are zero, so that (47) becomes a non-
linear matrix equation for the second derivatives of 6:

BP+ PBT + PAP=0. (48)

Once (48) is solved, we know the second derivatives of 6(x, y) at the saddle
point. To find the values of the second derivatives along the separatrix, we
first note that a saddle point is characterized by one positive eigenvalue
and one negative eigenvalue. The eigenvector corresponding to the negative
eigenvalue is the direction of the separatrix near the saddle point. We then
consider a point close to the saddle and on the separatrix, take one more
term in the expansion of (39), and evaluate §%6/0x?, 96/0x dy, and 9%0/0y?
in the direction of the eigenvector corresponding to the negative eigenvalue
by a Taylor expansion. We then run time backwards along the separatrix
and use (47) to determine the second derivatives of 0(x,, y,) at points
(x5, ys) on the separatrix. Mangel and Ludwig (1977) provide an example
of this computation. Alternatively, Mangel and Ludwig show that (47) can
be converted to a single ordinary differential equation for the second
normal derivative of 0(x,, y,) along the separatrix. Given the power of
modern computational packages, it is probably just as easy to work with
(47, 48). Once these derivaties are known, since 6(x - y) = —1y(x, y)* and
0(x, y) ~ (8%0/0x?)(6x)* + 2(0%6/0x dy)(dx Sy) + (3°6/0x)(5y)>, the value
of u(x, y) at a point near the separatrix is

70 ., . %0 7
) ~ga® (£ [ -2 53 057 —a T o -2 55 9P V5,
| @)

where the choice of sign (+ ) is determined by the location of the point
relative to the sparatrix and the constant g, is picked so that points far
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from the separatrix, in the appropriate direction, have u(x, y)~ 1. To
implement this result, we employ the following procedure:

Step 1. Find the values of the second derivatives at the saddle point
from (48).

Step 2. Find the eigenvector corresponding to the negative eigen-
value of the linearized deterministic system at the saddle point.

Step 3. Move away from the separatrix in the direction of this eigen-
vector.

Step 4. Integrate (47) backwards in time along the separatrix.

Step 5. Use (49) to determine u(x, y) for points not on the separatrix.

However, as the following two examples show, the full machinery is often
not needed to solve apparently complicated problems.

Example 1. A Simple Model of Stochastic Competition

The following extremely simple model of stochastic competition has been
analyzed by a number of authors (e.g., May, 1973; Mangel and Ludwig,
1977):

dX=X[1+c—X—cY1di+./edW,

(50)
dY=Y[l+c—Y—cX)dt+./edW,.
The underlying deterministic system is
dX
E—;X[l +c—X—-cY]
(51)
dy
o Y[1+c—Y—cX]

which has stable steady states at (0, 1 +¢), (1 +¢, 0), and a saddle point at
(1, 1) if ¢> 1. In this case the separatrix is the line ¥'=X. If we transform
variables to

U=§ [X+Y—-2]
(52)
V=£?- [Y—X]

2
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then the dynamics of U and V are

dU
—=—[ U?—V2—cU?+cV?>— /2 U(1 +¢)]

d
LV (53)

av
E‘T[ 20V—/2V(1-¢)l.

The steady states of this system are now (0,0), (c—1, —1—¢) ﬁ/Z, and
(c—1,1 +c)\/5/2. The latter two are stable and the origin is a saddle
point; V' =0 is now the separatrix. On the separatrix we have

dU  —
— \/_(1+ ¢) ULU+/2]. (54)

From the analysis of (33), recall that both 6(U, V) and its tangential
derivative are 0 along the separatrix. But here the tangential derivative is
the same as d0/0U and the normal derivative is 06/0V. Thus, the only non-
zero second derivative of (U, V) is (6%0/0V*)(U), which is a function of U
along the separatrix. This means that (47) becomes

d (0°0 0%0 0%0 2
(G )+ 280) Vz(U)+A(U)( SA) =0 (9

where B(U) and A(U) are defined above (47) after transformation from
(X, Y) to (U, V) coordinates.

Equation (55) is a Ricatti equation, which is solved by the substitution
W(U)=1/(0*0/0V?*)(U). As described in the general method, at the
saddle point, (55) becomes an algebraic equation for (6%0/0V?)(U=0)=
(6%0/0V?)(s= o). The solution of (55) is then chosen to satisfy this
condition.

In summary, this example shows how a two dimensional problem can
be converted to essentially a one dimensional problem, but because the
function B(U) is complicated, one still needs to integrate (55) along the
separatrix. A more complicated and realistic model of competition is
discussed by Mangel and Ludwig (1977), who give numerical results and
compare the theory with Monte Carlo simulations.

Exqmple 2. The Correlated Response to Selection (Price.et al. 1992)

Price et al. (1992) studied the correlated response to selection for two
characters X and Y with phenotypic means u, and p,, variances o2 and ai,
and phenotypic correlation p,. Selection was assumed to act independently
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upon X and Y, with X experiencing stabilizing selection of the form
w (x)=exp(—x%/202) and Y experiencing stabilizing selection of the
form w,(y) = 4 exp(— (y —y.)/202)+ yexp(— (y +y.)/20}), so that p,
has stable equilibria at +y.. In fact, for the purposes of analysis, if y. is
sufficiently large and wi sufficiently small, one can equally consider
destabilizing selection for Y of the form w,(y)=-exp( y2/2b*). In this
simpler case there are no finite, stable equilibria for u,, which approaches
+ oo0. In this case, a peak shift occurs if Y begins near y. (or —y.) and ends
up approaching oo (—o0) as a result of selection.

The changes in the means from one generation to the next are modeled
by the standard approximation of quantitative genetics and are of the form

Ap,=gr B +p:8:8 B,
x x g yry ( 5 6)
Ap,=p. 8.8, B:+2: B,
where the additive genetic variances are g2 and gi, the additive genetic
correlation is p,, and the selection gradients are linear functions of the
means,

Bx= (I/D)[_(sz—bz) .ux+ppo-xay .uy]

By= (1/D)[—(ai+wi) Hx +ppaxay :ux]a

(57)

where D= (02— b)(02 + ®2)— p,0.0,. Price et al. (1992) then show that
using (57) in (56) converts (56) to a pair of linear difference equations:

A#xzbllyx+b12#y (58)

Apy,=byy px+b3 4y

This is the underlying deterministic system that is then perturbed by
fluctuations. It can be shown that the matrix B=(b;) has one positive
and one negative eigenvalue, corresponding to a saddle point at (0, 0).
Price et al. Show that the evolution of the vector p=(u,, u,)" can be
written as p(7)=(B+I)" u(0), where u(r) is the value of the vector of
means at time ¢ and p(0) is its value at 0, and I is the identity matrix.
Furthermore, since the matrix B+ 17 has distinct eigenvalues, we have
(B+1)'=UA'U"", where 4 is the diagonal matrix with whose elements
are the eigenvalues of B+ 1 and U is the matrix whose columns are the
corresponding eigenvectors of B+1. We thus have a phase portrait
.analgous to Fig 1, in which—because the dynamics are linear—the
separatrix is once again a straight line..
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Price et al. (1992) now add stochastic perturbations to (58) and write
it as :
Ap,=by p+bpp, + &,

(59)
Au,=by pu+byp,+¢,.

Here (¢,, ¢,) has covariance matrix (1/N)G, where N is population size,
and where higher moments are o(1/N). Price et al. then approximate (59)
by a two dimensional Ornstein—Uhlenbeck process with infinitesimal mean
given by the right hand side of (58) and infinitesimal covariance (1/N)G.
As in the previous example, Price e al. (1992) reduce the fundamental
equation (47) to a single equation for a single unknown by changing coor-
dinates from p to z= U ~'u. Then the dynamics of z are approximated by
a diffusion with infinitesimal mean Az and infintesimal covariance
(1/N) U~'G(U~")T. With the change of coordinates, the abscissa becomes
the separatrix (as in the previous example), and we need only find the
value of the second normal derivative of 8%0/0z5 along the separatrix.

1.0 7
0.8 -
0.6 ]

0.4 7

Probability of peak shift

0.2 ]

0_0 T T Y T T 1
45 -1 05 0 0.5 1 15

Distance from the initial point to the separatrix

F1G. 4. The results of Price et al. (1992), comparing the theory (solid line) described in
this paper, and used by them, with Monte Carlo simulation of the underlying stochastic
difference system based on stabilizing selection with two peaks (circles) or destabilizing
selection (squares). Parameters were y, =35, w’=w’=10, 62=0¢2=1, h2=h2=05, and
Py =p.=pp=0.75. Reproduced with permission from Price et al. (1992).
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Because the dynamics are linear, in fact, (47) shows that 0°0/0z3 is
constant along the separatrix. Price er al. show that this constant is
3%0/0z2= —24, /(U 'G(U")"),,, where 4, is the positive eigenvalue.
Thus, the probability of a peak shift from initial values (g, pu,) 18
Prob{peak shift from (u,u,)} =®(dist /24, /(U 'G(U")")y), where
dist is the distance from the initial condition (u,, u,) to the separatrix
(which corresponds to the stable eigenvector).

Price et al. compared the theoretical results with numerical computation,
based directly on the difference equation rather than the approximating
diffusion model. Their results (Fig. 4) show that the theory just described
is extremely accurate for both the model of stabilizing selection with two
peaks and the model of destabilizing selection and that the diffusion
approximation for (59) is extremely accurate. This can be understood
by considering the derivation of (29): the probability of peak shift is
characterized by the expectation of a first exit time. Thus, the form of the
time dynamics (i.e, the left hand side of (59) or its diffusion approximation—
differences or differentials) is actually irrelevant to the form of the
backward equation (29).

BARRIER CROSSINGS FOR THE MARKOV CHAIN

We now consider barrier crossing for stochastic difference equations. The
function u(x, y) is defined as in (28). Applying the law of total expectation
to this definition gives

u(x, y) =Z Z py(x, y) u(x +ei, y + &) (60)

In this equation the summation is over all values of i and j for which
p;(x, y) is non-zero. Based on the results of the previous section, we
assume that u(x, y) is given by (30), with y(x, y) satisfying

0=X 1 pyl y)[l—exp<—l//<i%%+j%)ﬂ- (61)

The solution of this equation by the method of characteristics is virtually
identical to the procedure followed previously. More importantly, Eq. (61)
can be used to study (i) the validity of the diffusion approximation to
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the stochastic difference equation and (ii) the origin of macroscopic,
deterministic population dynamics.

On the Validity of the Diffusion Approximation

The validity of a diffusion approximation is usually demonstrated (e.g.,
Kurtz, 1981) by proving weak convergence of a sequence of stochastic
processes to the diffusion or by showing that important quantities such as
moments or distribution functions coverge. This is required because the
naive approach of expanding (60) in powers of ¢ and then assuming that
terms higher than second order are insignificant provides no way of
estimating the third or higher order derivatives, which could be very
large. However, the procedure leading to (61) can give an idea of the
region of (x, y) space in which the diffusion approximation will be valid.
When ¢, ¥, and ¥, are small, we Taylor expand the exponential in (61)
to obtain

35 (2) (2} @

This equation corresponds exactly to (31), when appropriate identifications
of b{(x, y) and a;(x, y) are made. We thus conclude that the diffusion
approximation should be valid in the regions where  is small and its
derivatives are not changing too rapidly. This will be in the region around
the separatrix, which is the region of most interest from the experimental
viewpoint. Thus, the diffusion approximation should be valid in the
neighborhood of the separatrix. This conclusion explains, in part, why
Price et al. (1992) obtained excellent results when comparing the diffusion
and Markov chain models.

Emergence of Macroscopic Population Dynamics

Equation (61) is the starting point to show how macroscopic population
dynamics emerge from the Markov chain description. As before, we set
6= —1y? in (61) to obtain

.06 00
1=ZZp,-j(x,y)exp<za+ -6;) (63)

i
The Hamiltonian H(x, y, p, q) is now
H(x, y,p,q)=1-33 py(x, y)exp(ip + jq). (64)

i
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The trajectories generated by this Hamiltonian are the solutions of

%=%{= _z; py(x, ) iexp(ip + jq)
%;;iq’: =2 byl ) jexplio +ja)
‘ ' (65)
%: _%-g=;§j%—é—i’—y)exp(ip+jq)
%= _%ﬁgga—%ﬂexp(wﬂql

We now consider the sub-class of trajectories where p(x, y, dx/ds, dy/ds) =0
and ¢(x, y, dx/ds, dy/ds)=0. The first two equations in Eq. (65) become

dx .
ZS'--; —;Z pij(x’ J’)l
’ (66)
dy < .
5= Z‘j[, Py (%, ) J.

These are equivalent to “deterministic trajectories” which we might
associate with the underlying Markov chain model. That is, the “deter-
ministic” trajectories are a sub-set of the solutions of the Hamilton-Jac >bi
equations for which p(x, y, dx/ds, dy/ds) and q(x, y, dx/ds, dy/ds) are identi-
cally 0. This interpretation of the macroscopic equations complements the
work of Kurtz (1981), who provides a probabilistic interpretation for the
emergence of macroscopic dynamics.
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