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Resource divisibility, predation and group formation
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Abstract. A model for foraging groups as a function of physiclogical state and ecological conditions is
developed. The model is motivated by experiments on avian flocks, but applies to other situations as well.
The model is based on a dynamic, state variable approach in which a measure of Darwinian fitness is wsed
1o relate predation and starvation risks. The experiments concerned the changes of flock sizes when food is
added or predators are present, and the observations of Elgar (1986, Anim Behav., 34, 169-174) that the
divisihility of the resowrce affects whether birds call for conspecifics upon finding food. The dynamics of

flock formation are briefly discussed.

The adaptive significance of hiving in groups or
flocks remains a cenfral question in behavioural
ceology, Reviews are found in Krebs & Davies
(1984, especially chapter 5), Huntingford {1984)
and Barnard & Thompson (1983}, In this paper, 1
coneenirile on avian flock formation, bat many of
the ideas developed here can be applied 1o other
kinds of foraging groups. Thus, throughout the
paper, bird and fock are used instead of indradual
and foraging group. The general answer 1o the
question "Why feed in Aocks? involves a reduction
in individual risk of predation and & reduction in
slarvalion msk throwgh an increases in the rate (or
probability) of finding food (Powell 1974; Caraco
[1981; Pulliam & Millikan 1982; Ekman 1987a).
Both have been studied extensively, although typi-
cally as separate phenomena, A recent exceplion
is the work by Grubb & Gresnwald [1982), who
studdied different combinations of predation nisk
and energy cost on flock sizes. Studies of the gen-
eral reduction im overall nsk of predation are
Tound in Caraco el &l, (1980}, Stinson {1980}, Elgar
& Catterall (1981} and Elgar ot al. (1984), 1115 abo
possible to characterize the process of predator
avoudapce by mechanistic components such as
carly detection (Siegfried & Underhill 1975
Lazarus 1979) or vigilance (Elcavage & Caraco
1983; Metcalfe 1984) and defence (Hoogland &
Sherman 1976),

Flocking usually increases the chances of finding
food (Ekman & Hake 1988). Flocking also pro-
vides information (e.g. Giraldeau 1984; Giralddau
& Lefebvre 19871 and leads to social interactions
{Davies 1978), which are typically aggressive (.5,
Bakeretal. [981; Ekman 198 Th; Metcalfe & Furness
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1987). Ancillary sdvantages of flocking may also
occur. For example, birds in Aocks may be able to
alter ther time budgets (Carace 1979, b)) to
enhance overall fitness, The experimental and, toa
large zxtent, theoretical work (see Clark & Mangel
1984, 1986 and refercnees thers-in) have concen-
trated on predictions about equilibrium fock size
asa function of ecological conditions, rather than a
siudy of the dynamics of fock formation {bul see
Caraco 1980).

Part of the difficulty in unifying the study of
predation and sturvation risk (a5 done by Grubb &
CGireenwald 1982) is that different “currencies’ are
involved, and this makes compansons of the
effects of trade-offs difficult. Fecent theoretical
work (Mangel & Clark 1986, 1988; McMNamara &
Houston 1986; Houston et al, 198%), however, has
shown hiow to ameliorale the difficulties by placing
starvation rsk and predation risk in a framework
of Darwinian fitness involving swrvival and
reprodwction.

This paper offers a unified theoretical treatment
for a serics of experimental and field observatons by
Szekely (personal communication), Grubb (1987)
and Elgar (1986, 1987). Szekely studied the response
of mized species flocks 1o experimental increases in
food abundance, When food was added, mean flock
gize decreased from about 10 birds per fock o about
five birds per flock. In general, multi-species flocks
broke down upon the addition of food, with fewer
species per flock or many birds foraging individu-
ally. Szekely alsa brought a leashed hawk into the
foraging area. This led to a rapid increass in flock
gize, Grubb (1987) reported similar results, Regard-
ing the guestion of starvation/predation risks,
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Grubb concluded that mixed species flocking is
caused either by increased foraging efficiency alone
or by a combination of increased foraging
efficiency and reduced predation risk. In particular,
Grubb argued that reduced predation risk alone
cannot account for mixed species flocks.

The flocks studied by Szekely and Grubb were
formed before food was found. An alternative situ-
ation is that birds search individually, but then
form flocks after food is found. This could be a
result of birds observing each other, and attempting
to ‘steal’ food from the finder (analysed by Clark
& Mangel 1984) or a result of the finder calling
after finding food. Elgar (1986) experimentally
analysed the latter situation and concluded that
house sparrows, Passer domesticus L., will establish
flocks by calling (‘chirrup’ calls) if resources are
divisible. For example, when the food was an eighth
of a slice of bread, 14 out of 35 (40%) of the finders
called after finding food and this increased to 19 out
of 35 (54%) when the resource was half a slice of
bread. However, when the eighth of a slice of bread
was in crumbs, 27 out of 35 (77%) of finders called
other birds. Calling establishes a flock after the
resource is located; presumably the reason for call-
ing to establish the flock involves a reduction of the
risk of predation. In the follow-up study, Elgar
(1987) concluded that ‘food intake rate alone is not
an adequate measure of the costs and benefits of
foraging in groups’. All of these experiments
suggest that a full theory must deal with more than
food intake rate or predation risk individually; the
theory must provide a unified description of the
benefits and costs of flocking.

Here, I present such a theory. It allows one to
predict how added food, increased predation,
colder days, the divisibility of food or any combi-
nation of these factors will affect flock size. The
theory provides an explanation for changes in
group size, as in the experiments of Szekely or
Grubb, and for the formation of flocks, as in the
experiments of Elgar. I first present the basic
model. It is an extension, to include predation, of
the model developed in chapter 3 of Mangel &
Clark (1988) for social foraging by lions. I consider
both divisible resources (which can be shared
equally by the flock) and indivisible resources (in
which only one flock member obtains the benefit of
the food). Next, I consider the situatibn in which
groups are formed before location of resources
(modelling the experiments of Szekely and Grubb).
I then consider the situation in which resources are
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located before groups are formed (modelling the
experiments of Elgar); both optimal foraging and
dynamic game approaches are discussed.

Caraco (1987) presents work that is similar in
spirit, since he considers the divisibility of resources,
but concentrates on the effects of social structure
(dominance hierarchies) on flocking. Newman &
Caraco (1989) also model Elgar’s experiments,
using two-person game theory. The work presented
here differs from theirs in that (1) decisions depend
upon the state of the bird and (2) there are n, rather
than two, players involved in the decisions. Thus,
the work presented here and that of Newman &
Caraco (1989) complement each other.

BASIC MODEL

Assume that a single state variable X(?), ‘reserves’,
describes the physiological state of the bird of
interest, called the distinguished bird. For example,
X(?) might represent fat reserves or body weight at
the start of day 7 in winter. (Nearly all of the exper-
iments of interest take place in winter, so that
breeding can be ignored. This means that fitness is
the same as viability.) The state variable is con-
strained by x, < X(#) < x,,, where x, denotes a criti-
cal or starvation level (the bird is dead if reserves
fall below this level) and x,,, denotes a maximal
capacity for reserves. The theory described below is
easily modified for more than one state variable or
for situations in which there is no limit to reserves.

The size of the foraging group is denoted by n.
Time is measured discretely (e.g. 5-min intervals or
1-h intervals, as appropriate) and A(n) denotes
the probability that the group of size n encounters
resources in a single period. An explicit model for
the encounter probability is

An) =1 — exp(— en) )

In this equation, ¢ is an operational parameter
(Mangel 1985), in the sense that it can be measured
in terms of operational characteristics. That is

& = (area covered per unit time)
x (food density) (2)

In this equation, the area covered per unit time is
determined by multiplying the detection width of
the bird by its searching speed. The units of ¢ are
thus 1/time; 1 unit of time is explicity assumed in
equation (1).

The dynamics of X(r) depend upon metabolic
costs and the nature of the resources. In each
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period, there are fixed and state-dependent decre-
ments {costs) to the state variable. In particular, if
X(#) = x, then if no food is found, the state variable
decreases to ax—a,. Here a<1 measures reserve-
dependent foraging cost and a, represents a fixed
cost. The fixed cost a, represents energy expended
for basic physiological function. The variable
cost ax assumes that further energy expenditure
increases linearly with reserves.

If resources are divisible, then when food is
found each of the n birds in the flock obtains 1/n of
the resource (the effects of changes in this assump-
tion are discussed in the next section and in the final
section). Letting Y denote the value of the resource
measured in the same units as X(f) gives the
dynamics

aX(f) —a, with probability 1 —A(n)
X@t+D)=
aX(t)—ay+ Y/n with probability A(n)
3

In equation (3), and all subsequent ones, it is under-
stood that if the right-hand side is less than x,, then
itis set equal to x_, or if the right-hand side is greater
than x_,,, then it is set equal to x,. In compu-
tations, it is helpful to use the ‘chop function’
defined by Mangel & Clark (1988) and described
below.

If indivisible resources are found, then only one
of the n birds in the flock obtains the food when it is
encountered. Let p,(n) denote the probability that
the distinguished bird obtains the food. There are
now two ways in which the bird ends up with no
food in a period: either the flock does not find food
at all (with probability 1—A(n)) or the flock finds
food, but the bird does not get the food (with
probability A(n)(1—p,(n)). The dynamics of X(?)
are now

aX(f) — ay with probability 1 — A(n)p,(n)
X(it+1)=
aX(t)—a,+ Y with probability A(n)p(n)
C))

The mean rate of food intake for divisible re-
sources is r(n)=A(n)Y/n and for indivisible re-
sources is r(n)=A(n)p,(n)Y. Formally at least, we
can identify the means as equivalent if p (n)= 1n,
but this may not be appropriate since it gives each
bird an equal opportunity of obtaining the food
once it is found. There may be an advantage to the
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finder; below I show one way to model this finder’s
advantage. Depending upon the form of i(n) and
pg(n), the r(n) may be a decreasing function of nora
humped function of n (see Clark & Mangel 1986). If
r(n) decreases for all values of n, then, based solely
on feeding considerations, the bird should forage
alone and other factors (variance reduction, pre-
dation risk) become extremely important as deter-
minants of flock size.

The probability of a successful attack by a preda-
tor in a single period is denoted by f(n) and defined
by

B(n) = Prob{predator successfully attacks a flock
of size n in a single period} (5)

Assuming that each bird is equally susceptible to
predation, the probability that the distinguished
bird in a flock of size n is killed by a predator during
a single period is f(n)/n.

Consider a foraging interval of length 7 and let
¢(x) determine the fitness of the bird at period T.
The choice of ¢(x) depends upon the interval that is
modelled. For example, when considering a small
bird in winter, the natural interval may be 1 day, in
which case ¢(x) is the probability that the bird sur-
vives overnight when its terminal reserves are x.
Alternatively, one might consider the entire winter
period, in which each increment in time corres-
ponds to 1 day. Then ¢(x) would represent the
expected reproduction for a bird with terminal
reserves equal to x. In either case, introduce a fit-
ness function F(x,T) measuring the maximal
expected value of ¢(X(T)), given the current time
and reserve level

F(x.t,T) = max E{p (X(T)IX(t) = x}  (6)

In this equation, max denotes the maximum taken
over all behavioural decisions (size of flock to join
or whether to call or not) between 7 and T, and E
followed by { }denotestheexpectation taken over
stochastic events (finding food, predation) of the
quantity within the brackets. From the definition of
the terminal fitness function we have

F(x,T.T) = ¢ (x) (@]

and fitness for preceding values of ¢ are determined
by solving the equation that F(x,t,T') satisfies. In
deriving the equation for F(x,2,T), it is helpful to
use the chop function introduced by Mangel &
Clark (1988). This is
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aifx<a
chop [x;a,b] = xifa<x<b ®)
bifx>b

This function ‘chops’ the value of x in the sense
that, regardless of the input value, the output of
the function is always between a and b. As will be
seen below, this function allows us to simplify the
equations for fitness.

FLOCKING BEFORE FORAGING
STARTS

When groups are formed before foraging occurs,
the designated bird must decide the size of the flock
to join at the start of each period. (This raises the
question about the dynamics and stability of flock
formation; see Discussion or Caraco 1980.)

For divisible resources, the equation that
F(x,:,T) satisfies is

No predation  Food is found by flock
F(x,t,T) = max,(1 — f(n)/m){ A(n)F(x',t + 1,T) +
(1 — Am)F(x",t + 1,T)} (9)
Food is not found by the flock

In this equation, x’=choplax—ay+ Y/n; x,, X,p]
and x"=choplax—a,; X, X, Where chop is
defined by equation (8). Cues to interpreting the
terms in equation (9) are given above the various
terms. To have any fitness in period ¢+ 1, given that
its current reserves are x, the bird must first avoid
predation during period z. This occurs with prob-
ability 1 — B(n)/n. Then, if the flock finds food, the
state variable is incremented by an equal share of the
food Y/n; this is the second term on the right-hand
side of equation (9). Finally, if the flock does not find
food, then the state variable is decremented.

For the case of indivisible resources, the equation
for F(x,t,T)is

F(x,t,T)=
No predation  Food is found by flock, individual gets it
max,(1—B(n)/n){An)py(n) F(x',t+1,T)
Food is found by flock, individual does not get it
+(1—p,M)F(x",t+1,T)]
Food is not found by flock
+(1=Am)F(x",t+1,T)} (10)

In this equation x’ = choplax —a,+ ¥;x,, x,,,] and
x" is defined as in equation (9). Note that the
terms involving 4(n)(1 —py(n)) and 1 — A(n) could be
combined into 1 — A(n)p,(n) as described above.
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Equations (9, 10) are solved subject to the final
condition given by equation (7), for ¢ ranging from
T—1 to t=1. As these equations are solved, we
obtain optimal decisions as well as the fitness func-
tion in each period ¢. The optimal decisions give the
size of a flock of which the distinguished bird should
be amember. Thisisanalogous to the optimal group
size computed by Clark (1987) for lion foraging
groups. For numerical computations, the terminal
function was chosen to be g¢(x)=x/(x+0-1).
Since this function is bounded by 0 and 1, it can
be viewed either as a terminal viability or a scaled
reproduction when X(7)=x. In addition, the fol-
lowing parameters were used for computations:
X,=2, X, =10,6=0-1, Y=4, T=20, f(rn)=0-005,
pg(m)=1/n,a,=0-5 and a=0-95. These choices of a
mean that a bird at capacity would use 1-5 units,
about 15%, ofits reservesin a period. Table I shows
basic results.

From this table, we draw the following con-
clusions, which are summarized as general
predictions in the final section.

(1) Flock size increases as ¢ approaches 7. This is
an effect of the predation/starvation trade-off. As ¢
gets closer to T, the chance of starvation decreases
(fitness being assessed at time T), so the predation
risk becomes relatively more important. This is
reflected in larger flocks for indivisible resources at
t=T— 1 but smaller flocks for indivisible resources
whenr=1.

(2) Except for the values of ¢ that are close to T,
the results show that flocks foraging on divisible
resources will be larger than those foraging on indi-
visible resources (cf. Recer & Caraco 1989). These
results can be interpreted in terms of risk spreading
(there are two risks that must be considered) or as
mean—variance trade-offs.

(3) The fitness values provide a simple measure of
selection pressures for the flock foraging. In par-
ticular, the selection pressure for flock foraging on
divisible resources is considerably higher than the
selection pressure for flock foraging on indivisible
resources. (A measure of the selection pressure is
the ratio of fitness functions; that is 0-61/0-92=
0-663 and 0-61/0-64=0:95.) A more complex
measure of selection pressure weights F(x,1,T) by
the probability that X(1)=x and gives similar
results. In particular, the results show that a bird
that always foraged alone would not survive for
very long. This does not mean, however, that soli-
tary foraging will never occur. Birds will forage
alone when their reserves are sufficiently low.



Mangel: Resource divisibility

1167

Table 1. Optimal group sizes when flocks are formed before foraging occurs

Optimal flock size for:

X Divisible resources Indivisible resources
Atr=1
3 3 (fitness =0-21) 1 (fitness =0-12) 0-12)*
4 3 1
S 3 1
6 3(0-66) 1(0-40) (0-39)*
7 5 2
8 6 2
9 6 3
10 6(0-92) 5(0-64) (0-61)*
Att=T-1
3 10 (fitness =0-85) 2 (fitness =0-66) (0-60)*
4 10 12
5 10 15
6 13(0-98) 15(0-98) 0-977)*
7 15 15
8 15 15
9 15 15
10 15(0:99) 15(0-99) (0-98)*
*These are the fitnesses of a bird that always forages alone.
Table I1. Response of optimal flock size to changes in parameters
Base case Yx2 ex2 px4 as x2*
x Dt It D I D I D I D I
3 3 1 6 1 1 3 1 1 1
7 5 2 11 2 1 7 3 1 1
10 6 S 12 6 10 5 7 12 3

*Recall that: Y =size of food found, ¢=

predation rate; as are metabolic costs.

search parameter in finding food; f=

+D: divisible resources; I: indivisible resources.

When T=20, by t=1 the decisions of the birds
about flock size depend only upon the value of the
reserves and not explicitly on time. Although the
decisions are stationary, there is no stationary value
to the fitness function, which has the property that
as Tincreases, F(x,1,T) gets smalled for fixed x.

Computer experiments (Mangel & Clark 1988)
can be used to study the effects of changing par-
ameters on optimal flock sizes in a manner
analogous to Szekely’s experiments with réal
flocks. To do this, one computes optimal decisions
for a certain set of parameters, then modifies the
parameters and recomputes the optimal decisions.

Table II shows the results of such computer exper-
iments, using the time independent decisions. In
these experiments, the ease of finding food is
changed by changing ¢, the size of food found is
changed by changing 7, the risk of predation and
the costs of foraging are changed by changing fand
the as, respectively.

For example, an increase in the overall avail-
ability of food can be caused by either changing
Y or changing e. This leads to larger foraging
groups for divisible resources and may lead to
smaller flocks for indivisible resources. An in-
crease in predation risk leads to an increase in
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flock size except for cases in which reserves are
nearly at the critical level and an increase in the
energetic costs of foraging causes a reduction in
flock size.

The value of A(n) chosen for these compu-
tations causes A(n)Y/n to be a decreasing function
of n. Experiments were also conducted with a
functional form for A(n), such that r(n) peaked at
n=4. There is little difference in the optimal
group sizes. For example, for divisible resources,
the stationary optimal flock sizes are 3, 3 and 6
for x=3, 6 and 10 and for indivisible resources
the stationary optimal flock sizes are 1, 1 and 5
for x=3, 6 and 10. This suggests that while the
form of A(n)/n is important for flock size argu-
ments based solely on mean feeding rates (e.g.
Clark & Mangel 1984, 1986), it is less important
when a more unified approach, which includes
predation and physiological state, is taken.
Finally, if there is no predation pressure (8(n)=
0), the birds will forage individually when re-
sources are indivisible and will have slight shifts
or no shifts in flock size when resources are divi-
sible. That is, even if predation is absent, the
reduction in variance in food intake obtained by
flocking provides an evolutionary advantage for
flocking.

AN OPTIMAL CALLER

Next consider a model for the experiments of Elgar.
In this case, birds forage individually and when
they find resources, determine whether to call for
other birds. To highlight the call/do not call de-
cision after food is found, I assume that there is no
predation while searching for food, but only while
feeding (this assumption is discussed in the last
section). If the distinguished bird finds food
and calls, then a fixed number (#) of other individ-
uals join it. I assume that the optimal caller does not
consider the discoveries or decisions of other birds
(that they need not join when another individual
calls or that they will call when finding food) when
the fitness function and calling decisions are deter-
mined. Thatis, the optimal caller makes its decisions
on the assumption that n other birds will always join
when it calls and does not consider calling activities
by other birds. Thus, the model does not involve a
dynamic game; the model treated in the'next section
does.

For divisible resources, the fitness function
satisfies the equation
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Does not find food
F(x,t,T)y=(1 — A)Fx"t + 1,t)
Finds food Does not call
+Aimax {(1 — BQ)F ("t + 1,T);
Calls
(1 —B(n+ 1)n+ DFx"t +1,T)}
an

In this equation, x'=chop(ax —ag; X, Xeap)s X' =
choplax—aq+ Y; x,, x,,] and X" =choplax—a,+
Y/n+1; x,, X,,,]. The three terms on the right-hand
side of equation (11) correspond to (1) not finding
food at all, in which case the bird continues forag-
ing with a decremented value of reserves; (2) finding
food but not calling in which case if the bird sur-
vives predation it begins the next period with a
higher level of reserves; and (3) finding food and
calling, in which case the bird survives predation
with a higher probability but starts the next period
with a smaller increment in reserves.

If resources are indivisible, it is likely that the
finder has an advantage over other birds in actually
obtaining the resource. Modelling this advantage
can be done by a suitable choice of py(n); for
example

pm) = (1/(n + 1)y (12)

In this equation, 1/(n+ 1) is the uniform probability
that the finder would acquire the resource (n ad-
ditional birds join the finder, hence the n+1) and y
is a parameter, with 0 <y< 1. If y=1, the p,(n) cor-
responds to uniform probabilities of acquiring the
resource and as y decreases, the finder has a higher
and higher probability of acquiring the resource.
The parameter y is a measure of the ‘finder’s advan-
tage’. Inthiscase, theequationthat F(x,?,T ) satisfies
is

Fx,t, T)=(1—)Fx t+1,T)
+Amax [(1—B()F(x",t+1,T);
Acquires resource
(1= B (n+ V)/n+ D{p,(mF(x"t+1,T)
Does not acquire resource

+(1—=p(M)F (x',t+1,T)}] (13)

In both equations (11) and (13), the decision to
call or not occurs after food is found. Thus, in the
absence of predation, there is no fitness advantage
to calling. The situation here is thus different
from the situation in which flocks are formed
before foraging occurs.

As equations (11, 13) are solved, we obtain a
calling threshold denoted by x_,,, with the property
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Table II1. Threshold for calling (optimal decision is not to
call if resources are found when reserves are below the
threshold)

Threshold for

Divisible Indivisible

Case resources resources
Base 3 4
nx2 4 4
nx 12 3 4
ex2 2 3
ex1/2 6 6
Yx2 2 4
Yx1/2 4 4
nx2and Yx4 2 4
Bx2 3 4

n=number of conspecifics joining upon calling.

that the optimal decision is not to call if reserves are
below the threshold. Table III shows the results of
computations for the base case (parameters x.=1,
e=2,n=10,a=0-5,a,=05, x.,,=10, Y=7,y=1
and T=20) and a number of cases in which
parameters are changed.

Note the following. First, for both divisible and
indivisible resources there is a range of the state
variable in which calling is optimal. The range is
larger (the threshold is smaller) for divisible
resources. This agrees with Elgar’s experimental
results in which birds called for both kinds of
resources, but with higher frequency on divisible
resources. The threshold is most sensitive to the
rate of finding food and the size of the food found (¢
and Y, respectively) and less sensitive to values of n
or B, at least for the parameters chosen here. This
result is consistent with observations.

THE STRATEGIC CALLER

When modelling the fitness of the strategic caller,
we must consider the discoveries and decisions of
other birds, in addition to the distinguished bird.
This can be done in the following way. Let

p. = Pr{another bird calls if it finds food} (14)
p; = Pr{one of the other n birds joins if a call
occurs} (15)

Assume that in each period, each of the n=1 birds
in the group can find at most one food item, that no
discoveries occur simultaneously, and that the
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Table IV. Threshold for calling by the strategic caller

Threshold for

Divisible Indivisible

Case resources resources
Base 2 5
nx1/2 2 S
ex2 2 3
ex1/2 3 7
Yx2 2 5
Bx2 2 4
Bx1/2 1 5
ax?2 2 6
yx2 1 4

period is sufficiently long that ail food items found
can be consumed.

The equation for F(x,z,T)is analogous to (11) or
(13), only more complicated because the behaviour
of other birds must be considered. First, the dis-
tinguished bird may not find food. However, any
number j of the other n birds may find food; k of the
jfinders may call and each time a bird calls, m of the
remaining n— 1 birds (other than the distinguished
individual) may join. The probabilities 4, P, and P,
are used to characterize the binomial distributions
for the number of other birds that find resources,
that call if they find resources, and that join if a call
occurs. Each time a call occurs, the distinguished
individual has the choice of joining and attempting
to feed (with concomitant risk of predation) or not
joining. If the distinguished bird discovers food,
then it has the option of calling or not calling; all of
the events that happen to other birds still occur.
For the case of divisible resources, when m other
birds and the distinguished bird join the caller, the
resource is shared by m+2 birds. For the case of
indivisible resources, when m other birds and the
distinguished bird join the caller, there is a contest
for the resource. The calling bird has probability
p(m+2) of obtaining the resource, and the dis-
tinguished bird (if it is not calling) has probability
{1 —py(m+2)}/(m+1) of obtaining the resource.

Table IV shows results for computations with
these parameters: =01, n=9, x.=1, x,,=10,
a=095, ay=0-2, f(n)=0-002, T=13, Y=7, y=1,
p.=03 and p;=1. Taking the decisions of other
birds into account leads to results that are even
closer to those observed by Elgar: for divisible
resources, the birds will essentially always call, but
for indivisible resources the frequency of calling
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will be much less. The results presented in Table IV
also suggest a number of experiments. For
example, for indivisible resources, as the ease of
finding food increases we predict the calling will
increase.

There is, however, one caveat that must be dis-
cussed with this model. The calling and joining
probabilities should be, in fact, decision variables.
Thus, they depend upon the state of the bird and the
value of ¢ and should rightfully be denoted by
po(x.t) and p(x,7). In that case, the appropriate way
to treat fully the behaviour of other birds is not to
fix the calling and joining probabilities, but instead
to determine them as part of the computation. This
leads to a dynamic game (see chapter 9 of Mangel &
Clark 1988) in which the distinguished bird plays
the role of the ‘mutant’ (Maynard Smith 1982) in a
game against the field. The evolutionarily stable
strategies would now be p.*(x,f) and p;*(x,).
Mangel & Clark (1988, chapter 9) and Houston &
McNamara (1988) describe iterative procedures for
determining the dynamic evolutionarily stable
strategies. These will not be developed here, since
the main insights concerning the nature of flocking
in relation to food and predation have already been
obtained.

DISCUSSION

By using dynamic, state variable modelling, one
is able to develop a unified treatment of flocking
behaviour that takes both starvation risk and pre-
dation risk into account, through a common fitness
measure. The theoretical results show, for example,
that flocking may be advantageous in terms of
Darwinian fitness even when predation is absent
and why individuals will call to share divisible
resources but not call to share indivisible resources.
A general result is that the fitness for birds foraging
on divisible resources is higher (sometimes only
slightly, sometimes considerably) than the fitness of
birds foraging on indivisible resources.

The theory also leads to a number of explicit pre-
dictions, which can be generalized from flocks to
foraging groups.

(1) In general, foraging groups will be larger
towards the end of the day than in the middle of the
day. The size of groups at the start of the day will
depend upon the overnight dynamics of energy
reserves.

(2) A comparative study of group foraging would
show, all other factors being equal, group foraging
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to be more prevalent in species exploiting divisible
resources.

(3) When groups are formed before foraging
occurs, an increase in the energetic value of forage,
the rate at which food is found, or the risk of pre-
dation will typically increase the size of foraging
groups if resources are divisible. An increase in
energetic costs of foraging will typically decrease
foraging group size. All of these effects are more
pronounced for divisible resources than for
indivisible resources.

(4) When groups are formed after food is found,
byaction of theindividual finding food, thereexistsa
threshold for calling in the sense that the individual
will not call if its reserves are below this threshold.
Such a threshold exists for both divisible and indi-
visible resources, with the threshold larger for divis-
ible resources. Thus, in general, one predicts a higher
frequency of calling when groups forage for divisible
resources. An increase (decrease) in the rate of find-
ingfood typically decreases(increases) the threshold
for calling and thus will increase the rate of calling.
Anincrease (decrease) in the energetic value of food
will typically decrease (increase) the threshold.
Once again, these effects are more pronounced for
divisible than indivisible resources.

(5) If predation occurs only while eating, and not
while searching, one predicts that the individuals
will search alone and call only after finding food.
On the other hand, if predation also occurs during
search, there will be selection pressure for group
searching. In general, an increase in predation risk
will lead to larger groups, except for cases in which
energetic reserves are close to the critical starvation
level.

(5) A finder’s advantage will increase the fre-
quency of calling after food is found. Although not
explicitly modelled here, for the case in which
groups are formed before foraging occurs, a
finder’s advantage would correspond to a larger
share of the resource for the individual finding the
food. I hypothesize that this would lead to larger
foraging groups, but the theoretical details still
need to be worked out.

The theoretical results suggest that in addition to
measuring responses of flock size to increases in
food or predator presence, we should be measuring
the probability of finding food A(n), the probability
of predation f(n) and the finder’s advantage p,(n)
for birds in flocks of size n.

Two extensions of the theory are the following.
Birds in flocks might receive unequal shares of the
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resources not because of finder’s effects but because
of dominance relations (see Caraco 1987 for a treat-
ment). The models developed here could easily be
extended to include two types of birds, say domi-
nant and subordinate, in flocks and to develop the
decision for the distinguished bird on the basis of
the flock composition. Second, by using forward
iteration or Monte Carlo simulation (Mangel &
Clark 1988), it is possible to follow the distribution
of flocks over time, say 90 days in the winter. This
gives predictions that could be matched more
directly with experimental results. That is, rather
than studying the optimal decisions, one studies the
results of those decisions.

One question unresolved by this paper, and
nearly all other theoretical ones on flocking, is the
mechanism of flock formation. That is, imagine a
collection of N birds. The ith bird will have an opti-
mal flock size n,(x,?) that it should join as a function
of reserves x and time ¢ in the winter. The dynamics
of flock formation involve the question of how those
N birds, each with its own optimal flock size, form
and adjust flocks in response to their needs and the
behaviour of others. This remains an important
open question.
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