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INTRODUCTION

Whereas population genetics underrates the organism, life history theory underrates the
gene. These fields are limited, in part because they ignore each other and in part because
they ignore development. Thus the perspective of life history motivates a new look at
development because developmental mechanisms could connect population genetics with
life history theory to form a predictive theory of evolution more powerful than either of the
first two attempted. (Bonner 1982, p. 238)

. . evolution can no longer be looked at solely as changes in gene frequencies within
populations, or as fossil lineages: it is now essential to consider simultaneously the roles of
genetics, development, ecology, and behavior (Bonner 1988, p. 24)

The definition and evaluation of fitness in terms of expected lifetime
reproduction is central to our understanding of natural selection (118). In
principle, fitness is defined in terms of a range of phenotypes that are the
product of a single genotype; studies of such phenotypes are usually restricted
to morphology. However, behavioral and developmental traits are subject to
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selection as well. Darwin used arguments concerning genetics (variation),
development (embryology), ecology (geographical variation), and behavior
(instinct) to support his theory. Here, we focus on dynamic programming
methods to account for selection on such traits. Our intent is to explain the
basic ideas of dynamic programming and to explore their applicability to the
difficult problems of linking developmental, behavioral, and evolutionary
phenomena. We shall show that, in principle, one can relate measurable
physiological and ecological variables such as developmental times and be-
havioral traits to the fitness of an organism. We are far from being able to
apply such methods to the calculation of the fitness of behavioral and de-
velopmental programs in most organisms, but sufficient progress has been
made to warrant an exposition.

The linkage between development and evolution has consistently received
attention (2, 9-11, 107). It has long been recognized (10, p. 179) that natural
selection may modify developmental stages. Developmental biology typically
focusses on the state of the organism and mechanisms that cause changes in
this state, usually with little concern for evolutionary consequences. In con-
trast, in most of evolutionary biology, “fitness” is treated as an abstract
concept, and the consequences of differences in fitness on gene frequencies
are studied. A framework that joins these two is needed. It must perforce link
states of organisms, ecological conditions, and an evolutionary measure of
fitness within the constraints created by history and development.

Schmaulhausen (96) emphasized the role of development in molding the
phenotype; Bonner (9) discussed (p. 165) the role of environmental cues in
timing of developmental processes and considered animal behavior the pinna-
cle of biological complexity (10). For example, voltinism and diapause
depend partially upon genetic control and partially upon environmentally
controlled variables such as size and nutritional state (3, 7, 8, 14, 29, 36, 78,
100). Wilbur & Collins (117) proposed that size and growth rate together
determine the initiation of amphibian metamorphosis, but they provided no
means for predicting the thresholds for the onset of metamorphosis. Such a
predictive theory would show how to link short-term behaviors such as
foraging with life history (6, 103).

The uses of optimality go back to antiquity: when Dido founded the city of
Carthage she had to enclose the greatest area she could in a bull’s hide. Her
solution was to cut the hide into a thin strip and form a semicircle, with part of
the coast of the Mediterranean Sea as a boundary (64a, Book I, v. 519 ff).
Optimality principles have been an outstanding success in physics. A promi-
nent example is the principle of Fermat: Light rays always follow the path of
shortest time connecting two points. This single principle explains curvature
of light rays in a medium of varying velocity, Snell’s law of refraction, the
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laws of reflection, and a qualitative theory of diffraction. Classical optimality
theory (generalizing the work of Fermat) was extended to the analysis of a
sequence of interdependent decisions, often under the designation of “dynam-
ic programming.” These methods have been applied with great success to
problems arising in industry, economics, renewable resource management
(20), and behavior (68, 69). Some critics of optimality theory claim that its
assumption that genotypes or phenotypes are being optimized may not be
correct. We show that many advantages of optimality theories can be realized
without any assumption of optimality for the genotypes or phenotypes under
consideration (also see 74).

Since the time of the neo-Darwinian synthesis, fitness defined as the
expected lifetime reproductive output has been favored as an organizing
concept in biology (31). The abstract principle of maximization of fitness is
plausible and has many fruitful outcomes, but the calculation of its con-
sequences is full of difficulties. A significant obstacle is the necessity to relate
fitness (which depends upon complete life histories, perhaps over several
generations) to a multitude of localized processes at various stages. To avoid
these difficulties, many of the earliest applications of optimality ideas used a
surrogate for the Darwinian fitness.

One attempt to link behavior and evolution used the paradigm of maximiz-
ing the rate of intake of energy. This led to the development of optimal
foraging theory (OFT) (47, 56, 79, 82, 83, 98, 99, 104). The theory has
branched widely from the original purposes of the prediction of diet choice
and patch residence. Theories based on rate maximization have not met the
challenge described above due to a number of limitations.

1. The theories focus almost exclusively on optimal behavior rather than
fitness. A consequence of attempts to predict “optimal” behavior is that
any variation “disproves” the theory (40, 45, 79). Since, as we shall see
below, a static optimum may not always contribute to an organism’s
fitness in the same way as a dynamic optimum, focus on the static
optimum can lead to a mistaken impression of the relative importance of
behavioral traits.

2. The theories assume that fitness is an increasing function of energy intake
(or some other “currency”) but provide no way to determine how crucial it
is to achieve the optimum. Changes in the fitness corresponding to de-
viations from the optimum cannot be assessed.

3. The theories are concerned only with flows (of energy, matings, etc) and
usually ignore the internal states of the organism.

4. In stochastic situations, the theories assume that the time period of interest
is long enough that a (possibly discounted) mean rate of energy intake
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solely determines behavior but is short enough that behavior is fixed and
not facultative over this interval.

5. There is no easy way to deal with multiple determinants of fitness, such as
those that arise in the predation-starvation trade-off. Some recent work has
attempted to remedy this problem (1, 19, 97).

In summary, the difficulties of OFT and related theories are a focus on flows
rather than states of organisms, the prediction of no variability at selective
equilibrium, an inability to treat disparate consequences of behavior in a
consistent manner, and no method for assessing evolutionary consequences of
short-term behaviors. More recent theories of behavior have addressed the
difficulty of assessing evolutionary consequences of short-term behaviors by
means of the concept of a “common currency,” a focus on states of organ-
isms, and use of stochastic dynamic programming (49, 61, 62, 70).

Ecological applications of dynamic programming were reviewed in 1978
(111). At that time, solution techniques required large mainframe computers.
Partly for this reason, such methods have been regarded as esoteric by many
biologists. Rapid development of hardware and software now allows solution
of relatively complex problems on microcomputers, using simple languages
such as BASIC. The difficulty remains that only problems involving
small numbers of state and decision variables can be handled by comput-
ers; even supercomputers can be bogged down by plausible biological
problems.

Our central concept is a fitness landscape, analogous to the fitness surface
developed by Sewall Wright. Instead of considering such a surface whose
height (the fitness) is associated with all possible allelic combinations, we
consider fitness landscapes associated with different programs of develop-
ment or behavior (examples are given in Figures 1 and 2 below). The
definition of the fitness landscape first involves the specification of a variety
of genetic programs that control development or behavior. One must then
evaluate the expected reproductive success for an ensemble of organisms
which all employ the same program, but which may encounter different
environments due to random influences. Dynamic iteration (62) methods
make it possible to define and compute the expected reproductive success,
without any assumption of optimality.

We conclude this work with some examples where ideas of dynamic
programming have been used to construct optimal strategies for oviposition of
parasitoids (behavioral programs), ontogenetic niche shifts and sex change
(developmental programs). These strategies are more complicated than those
obtained by ignoring internal states of the organism, but some of the quali-
tative predictions have been verified by experiments.
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Figure 1 Fitness landscapes. (a) The dependence of the fourth column of Table 1 on a;. (b)
Fitness associated with the program Eq. 7 at n' = 5. Values of as in the vicinity of .1 are favored,
but the slight differences on the vertical axis indicate that only a slight improvement may be
expected. (See discussion p. 519).
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THREE PRINCIPLES OF DYNAMIC PROGRAMMING
Our exposition is based upon three concepts:

1. The fitness function (expected lifetime reproduction) corresponding to a
given program of development or behavior can be evaluated most effi-
ciently by a “field” approach in which one constructs solutions to problems
by comparing one solution with another, rather than by constructing
solutions one at a time using simulation methods. Field methods were an
important component of the intellectual revolution in physics (12, pg 679),
and they can contribute new understanding to biological problems. Such
methods require us to think in terms of families of programs or strategies
instead of a single program in isolation.

2. Expected lifetime reproduction is insensitive to small deviations in pro-
grams in the vicinity of optimal programs. (In fact, this property is
commonly used to determine optimal programs, as in setting the derivative
of a function equal to 0 to find a maximum or minimum). The principle
has the important biological implication that selection will be weak in the
vicinity of optimal programs. The closer the program is to optimal, the
weaker the selection (cf 47a).

3. Expected lifetime reproduction provides a “common currency” for the
comparison of different programs.

None of these three concepts is new, but their generality and power are not
always appreciated. We illustrate each of these concepts with a simple
example, and each is developed at length in the sequel.

First Concept: The Field Approach and States of Organisms

We can illustrate the essentials of the field idea with a simple example where
fitness is equated with survival, i.e. reproduction is independent of the
condition of the organism (102).

EXAMPLE 1  Suppose that n represents the nutritional state of the organism,
and that death results if » = 0, but survival is certain if n reaches a value N.
Assume that during a given time interval, the probability of encountering food

Figure 2 The fitness landscape for insect oviposition. (a) Expected reproduction at t = T—1
corresponds to the fitness from oviposition in a single host, since there are no future opportuni-
ties. There is no dependence upon egg complement (x), except that the clutch =< x. (b) The fitness
landscape at t = 10 as a function of egg complement and clutch. Fitness is now composed of two
components: reproduction in the current period plus expected future reproduction so that fitness
depends upon both x and c. (c) The fitness landscape at ¢+ = 1. (See discussion p. 528)
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(and increasing n by 1) is «, and the probability of not encountering food (and
decreasing n by 1) is 1 — «. In this way, we have linked a physiological state
with a major component (survival) of expected reproduction. We want to find
the probability of guaranteed survival (i.e. the chance that the nutritional state
reaches N before it reaches 0) given that the current nutritional state of the
organism is n.

To answer this question, let f, be the probability of survival, for an
individual with current nutritional state n. Since death results if n = 0, f, = 0.
When n = 1 there are two possibilities: either (i) food is found, or (ii) food is
not found. The probability of survival if food is found is f,. The probability of
survival if food is not found is 0, since fo = 0. Since the probability of finding
food is a, '

fi=afs. 1.

At this stage both f; and f, are unknown. What is known is that they are
related by Eq. 1. In general, for an individual starting at nutritional state n

fn = afn+1 + (1 - a)fn—la n = 1’ LY N_la 2.

In order to express the assumptions that death is certain when n reaches 0 and
survival is certain when it exceeds the value N, we add the conditions

fo=0andfy = 1. 3,

With the addition of conditions Eq. (3), the system Eq. (2) has the same
number of equations as unknowns. Such a system can be solved without
difficulty using packages available for microcomputers such as MINITAB or
MATHEMATICA'.

!An explicit solution can be found if we rewrite the equations in terms of the differences g, =
fo—fn—1. The resulting solution is:

1-R
=(1+R+R+...+R") —
s 1-RY

-

where R = !
a

The approach we have taken is a standard technique in the theory of stochastic processes,
whose roots are in the Hamilton-Jacobi theory of classical mechanics and optics (27). In physics,
this approach has been identified with the idea of a “field,” which describes the influence of
distant objects upon a given object. In optics, a field describes the totality of light rays emerging
from a given point. There is an analogous field concept in the more general mathematical theory
of the calculus of variations. The field method eliminates action at a distance and sometimes
makes it possible to solve many problems at the same time.
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MacArthur & Wilson (58) used an approach similar to this one for the
problem of extinction of island populations. The most important feature of
such an approach is that we obtain the solutions of many problems simulta--
neously. In fact the method rests upon determining and solving relations
between solutions rather than direct calculation of any but the simplest
solutions. For example, if we were to attempt a direct solution by simulation
methods, many hundreds or thousands of trials would be required to produce
only limited accuracy in the answer to a single problem, with specific values
of n, N, and a. The approach described here produces the solution {f,} of a
family of problems at once; this solution is parameterized by n, N, and a.

Second Concept: Insensitivity of the Fitness Function to
Changes in Programs near Optimal Programs

There is considerable debate concerning whether selection over a long enough
period will lead to perfect optimization. This debate has centered on problems
of matching constraints and shifting target optima. Ignoring the issue of
constraints upon selection, the principle of insensitivity implies that response
to selection may be expected to be slow for populations not too far from an
optimal program. Thus we should not expect to observe populations following
perfectly optimal programs, even in the absence of any genetic constraints.

EXAMPLE 2 In order to illustrate this phenomenon, suppose that fitness f{a)
depends only upon a certain behavior a, and not upon the state of the
organism. Suppose further that the fitness is low at extreme choices of a, and
higher for moderate choices of a. This is a behavioral analogue of stabilizing
selection. In general, there might be many local maxima of £, just as there are
possibly many local peaks of a Wrightian fitness surface. For the moment, let
us consider a single such peak, and suppose that it is achieved at a behavior
a*, the “optimal behavior.” The maximum possible fitness is fla*), which
will be termed the “optimal fitness.” In the vicinity of a*, the fitness curve is
relatively horizontal. That is, the fitness of a behavior that is near a* is close
to the optimal. On the other hand, far from a*, the fitness is substantially
lower than optimal (as in Figure 1 below).

We conclude that selection will be strong on such behaviors far from a*,
but weak on nearby behaviors. For instance, if fla) = 1 —(a—a*)? and
selection removes all but the top 1% of actions, we retain such actions as are
within 10% of a*. In order to achieve a maximum difference of 1% in actions,
selection would have to remove all but the top .01% of actions. Therefore, we
cannot expect that selection over a moderate time period will result in an
optimal action, but only that the fitness of behaviors after selection will be
close to optimal.

A related property of the fitness function near the optimal behavior is that
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small deviations of behavior from the optimal have still smaller effects. This
property makes optimal actions robust to a great variety of variations. For
instance, if the environment varies, then actions that are optimal with respect
to a given environment will have effects upon fitness that are not far from
optimal, provided that the environment doesn’t change too much.

Although one may not expect to find optimal behaviors in nature, a
compact qualitative description of the fitness landscape is obtained by finding
the local maxima and describing the behavior in the vicinity of the maxima.
We then have an idea of how many peaks are present in the fitness landscape
and the shape (“steepness”) of those peaks. This is the sort of procedure
advocated when trying to sketch a complicated curve. It is usually worthwhile
to compute the local optima for use as landmarks, and to provide a standard
for comparison of other behaviors or programs.

Thus optimal programs are distinctive landmarks in the landscape of all
programs. Even though genetic constraints may prevent the attainment of
these special programs, study of them is instructive for a number of disparate
reasons.

1. A by-product of the calculation of optimal solutions is a collection of
dimensionless quantities that enter into the solution. That is, a key factor
in determination of an optimum may be combinations of environmental or
physiological parameters. Examples are the “minimize g'f rule” (115; de-
scribed below) and the quantities involving marginal returns.

2. Information is used by the organism to determine an optimal solution. In
nature, information is necessarily inaccurate to a certain extent. The
optimality principle assures that small inaccuracies in information have a
very small effect.

3. Constraints may have large effects, but not if the optimal solution nearly
satisfies the constraint.

4. The fitness of the programs that contain only small deviations from the
optimal program can be determined rapidly and easily.

Third Concept: Expected Lifetime Reproduction as a
“Common Currency”

Frequently a behavior has both beneficial consequences such as increased
food intake, and harmful consequences such as increased risk of predation. To
compare such qualitatively different consequences in a consistent manner, we
combine the two models described above.

EXAMPLE 3 Suppose that the chance of finding food (denoted by a) is
affected by a certain behavior a; we write & = a(a). We also assume that
there is a mortality risk associated with a, which is different in character from
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starvation, as in the case where foraging results in an increased hazard of
predation. We denote this additional probability of mortality by w(a). The
analogue of Eq. 2 is

Jo = I=w@)] [aa) fur1 + (1-a(@)) fril, 4.

valid forl = n =N — 1.

The new factor 1 — u(a) expresses the fact that survival is no longer
certain. After adding the conditions of Eq. 3, we can obtain a numerical
solution of Eq. 4. As yet we have not specified the behavior a. In principle a
different behavior could be taken for each value of nutritional state n. As we
shall see below, the most effective choices of behaviors have such a general
form. They are called “feedback behaviors,” since the physiological state
affects behavior. The result of such calculations is a fitness vector { f,,, n = 1,
. . . N} associated with a vector describing the program of behaviors {a,, n =
1, . . . N}. Although the fitness vector implicitly depends upon the behaviors
and thus could be written as f,({a,}), we shall not do so for notational
convenience.

Envision a population that follows the behaviors {a,} and an invader that
follows a deviant strategy at certain nutritional levels. In order to determine
the effect of changes in the behaviors {a,} at a specified nutritional state n,,
we can examine the right-hand side of Eq. 4. One behavior may result in a
greater fitness than the other, and such differences can be attributed to
particular terms involving a, w, and the fitness function f. Thus the fitness
function offers a direct means of evaluating the trade-offs involved. In effect,
the fitness function carries the information about the likely effects of given
behavior at a given nutritional level. This is the greater benefit of the “field”
approach.

PROGRAMS AND FITNESS

Programs Link Genes, Organisms and Selection

The genetic code can be interpreted as a “program” for constructing an
organism from a linear sequence. This interpretation has been very successful
in developmental and structural biology. We shall define a program as a
collection of rules that determines the response of an organism to a set of
internal and external states.

Successful programs generally utilize internally maintained states to medi-
ate responses, instead of merely responding directly to external influences.
We expect that successful organisms will have differing responses, depending
upon physiological states such as hunger or fatigue. They may even respond
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to a lack of information about the environment by behaving in a manner that
acquires information, with no other apparent benefit.

The Fitness Landscape of Programs

The fitness landscape of programs is constructed by calculating the fitness
function corresponding to a certain collection of behavioral or developmental
programs. We first discuss the concept of a program in more detail and then
show how optimal or locally optimal programs may be constructed. Such
optimal programs are to be considered as important landmarks in the fitness
landscape; we do not assume that optimality is actually realized in nature.

There are two main methods for determining the fitness associated with
programs. The first is the method of simulation. Given a program, sim-
ulations provide insight into individual trajectories or the distribution of
certain types of trajectories. In simulations, time is run forward, and the entire
program must be specified from the outset. The fitness value of a particular
program is determined by averaging over the results of simulations. Sim-
ulations emphasize the trajectory space. Evaluation of the marginal returns
from incremental changes in programs (which are important in evaluating
take-offs and in formulating costs and benefits in a common currency)
requires rerunning the entire simulation.

The second approach is the backward or field method described in this
paper. This method enables one to calculate directly the expected returns for
programs and the marginal returns from incremental changes in programs.
The backward approach emphasizes the program space rather than the trajec-
tory space: to each program is associated a single family of trajectories which
fills a portion of trajectory space.

EXAMPLE 4 To illustrate these ideas, we adopt a somewhat more com-
plicated model than Eqs. 2 or 4. Suppose that the probabilities of transition
from one nutritional state to another depend upon both the current state n» and
the behavior a,:

Pr[n increases to n + 1, given behavior a] = a(n,a) = a(l — 1%),

Pr[n decreases to n — 1, given behavior a] = B(n,a) = 1 — a,

Pr[n does not change, given behavior a] = y(n,a) = 1 — a(n,a) — B(n,a).
5.

These assumptions imply that it is impossibe for n to exceed N, regardless of
the action taken. In the previous case, we considered survival as a measure of
fitness. We also assume that there is a reproductive payoff R(n) at each time
step, which is proportional to the nutritional level.
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When calculating the expected lifetime reproduction, it may be that be-
cause of population growth the relative genetic contribution of future off-
spring is less than that for present offspring (34, p. 27 ff). This effect can be

included by multiplying the expected reproduction in the next period by e~ ",
where r is the population growth rate, so that the analogue of Eq. 4 is

o= e 1 = way)] [an,a) fur1 + B(n,a) fu—1 + ¥(n,a) ful + R(n) 6.

The program of behavior can be represented by a vector a in which the i-th
component of the vector is the behavior when the nutritional state is i. We first
consider behaviors that do not depend upon r, so that the program specifies a,
= a, for all values of n (Table 1). Each row corresponds to a particular choice
of a,, and each column corresponds to a single starting value for the nutrition-
al state n. For example, the program of behaviora = (1, 1, 1, 1, 1, 1, 1)
leads to fitness vector f = (4.37, 6.29, 8.22, 10.14, 12.06, 13.99, 15.91)
while the program of behavior a = (.4, 4, 4, 4, 4, .4, 4) leads to
fitness vector f = (2.28, 4.91, 7.71, 10.59, 13.52, 16.47, 19.43). From
examination of the table, we see that no single choice of a, is best for all
values of n. For example, a; = 1 is best forn = 1 buta; = .2 isbest forn =7
(Figure 1a, p. 511; this figure is a simple example of a fitness landscape). In
harmony with Concept 2, there is very little difference in the fitness associ-
ated with nearly optimal values of a,. For example, at n = 4, fitness ranges
between 10.43 and 10.93 as a, ranges from 0.4 to 0.9. If selection were to act
upon a population that is capable only of such simple programs, selection
would proceed rather slowly.

Table 1 Fitness when behavior is independent of nutritional state’

Nutritional State n
Action 1 2 3 4 5 6 7

0.00 1.000 2.80 5.24 8.19 11.55 15.24 19.19
0.10 123 326 5.86 890 1224 15.82 19.57
0.20 1.52 378 6.51 9.57 12.83 16.24 19.74
0.30 1.87 434 7.15 10.15 13.27 1646 19.69
0.40 228 491 7.71 1059 13.52 1647 19.43
0.50 271 543 8.14 10.85 13.57 16.28 18.99
0.60 3.15 585 8.41 1093 1344 1594 18.44
0.70 3.56 6.15 853 10.86 13.19 15.51 17.83
0.80 390 6.31 851 10.68 12.85 15.02 17.18
0.90 4.17 6.35 8.40 1043 1247 1450 16.54
1.00 437 629 822 10.14 12,06 13.99 1591

“Parameters are . = .3a, ¢ = .8, R(n) = n, and N = 7.
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Suppose now that a program is introduced that reacts to low levels of
nutrition by increasing the value of a;. For example, if

a=(,1,1, 4, 4, 4, 4), 7.
then the fitness resulting from the numerical solution of Eq. 6 is
f=(4.47, 6.48, 8.62, 11.09, 13.80, 16.63, 19.52). 8.

This simple change in program results in fitnesses all of which are larger than
the corresponding fitnesses when nutritional state is ignored, except at the
highest value of n. Such a program, if it is available for selection, would be
favored over the simpler one which is independent of nutritional state. This
elementary model illustrates how “feedback programs,” i.e. programs which
take differing actions depending upon the state of the organism, may be much
more effective than simpler ones.

Three parameters are required to specify a program of the type of Eq. 7, in
contrast to the single parameter a. Therefore visualization of the fitness
landscape is more difficult. In the present case, by varying the value 0.4 in the
later components Eq. 7, we can verify that 0.4 is close to the best choice, and
that small changes in this value make little difference in the fitness. Similarly
we find that it is best to make the break between the third and fourth
components, but the results are not sensitive to this choice. Thus the fitness
landscape looks like a dome centered over the behaviors described by Eq. 7.

Allowance having been made for the possibility of feedback programs, it is
natural to ask whether substantial improvement may be made by allowing all
possible programs. We suppose that some organisms in the population are
capable of adjusting their responses to each level of nutrition. Each possible
program consists of a specification of a, and hence seven parameters. It is
rather tedious to attempt to explore such a high dimensional space. We may
instead use the fitness associated with a given program as a ‘“common
currency” and ask how the program may be improved. For instance we might
take the program Eq. 7 with the fitness Eq. 8. At a given value, say n' = 5 we
may examine the behavior of the right-hand side of Eq. 6 as a function of a,,
(Figure 1b). Clearly values of as in the vicinity of .1 are favored. But the
slight differences on the vertical axis indicate that only a slight improvement
may be expected. In a similar way, we may guess an improvement at each of
the other points leading to

a = (1,1, 0.75, .48, .09, 0, 0) 9.

with corresponding fitness
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f = (4.50, 6.53, 8.72, 11.17, 13.95, 17.16, 20.73), 10.

which represents a modest improvement over Eq. 8, even though the be-
haviors in Eqs. 7 and 9 differ considerably for some values of nutritional
state. If this process is carried out a few more times, the results quickly settle
down to

a=(1,1,0.76, 47, .16, 0, 0). 11.

To the accuracy shown in Eq. 10, there is no improvement in the fitness.
Although the program Eq. 11 actually is optimal, there is little improvement
in fitness over the simpler program Eq. 7. We conclude that selection is
unlikely to produce a population following the “optimal” program Eq. 11. On
the contrary, there is a large amount of freedom to vary programs, with little
loss of fitness. The implication for testing behavioral theories is that it is not
sufficient to compare predicted and observed behaviors. If those behaviors
differ one cannot reject the optimality model without consideration of the
fitness of the observed behavior (60).

Seasonal Environments

We now consider the role of time, which has been neglected up to this point.

EXAMPLE 5 Reproduction may be postponed until a final time T and a
certain nutritional state n; may be necessary in order to reproduce. In such a
case, the fitness function f; , will depend upon both the nutritional state n of
the organism and the time ¢ remaining until reproduction. We define the
fitness at the final time T by

Oifn<m
fT,n = 12.

rinyif np =n=<N
We still assume that starvation results if n = O:
fio=0forl =¢t=T. 13.

When Eq. 5 is used, no assumption need be made about the fitness at n = N;
the values f, 5 emerge as part of the solution. Now we require relations
between the fitness at earlier and later times.

The Backward Equations

Eq. 4 generalizes to a dynamic relationship
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fin = [1 — wW@)] [a) fi+1,0+1 + Bla) ft+1,n—1 + Ya) fr+1,n),
l=t=T—-1,1=n=N-1. 14.

These equations may be solved by the following scheme (“backwards in-
duction”): fr , is given by Eq. 12. Then fr_; , is obtained from Eq. 14 with
t = T —1. The remaining f; , are obtained in succession by continuing this
process for decreasing ¢. Note that the equations for expected reproduction are
dealt with most conveniently by taking time backwards. To see why this is so,
note that the Eq. 12 describes reproduction at the final time T rather than any
previous time. These conditions force a solution to be computed in the
backwards direction, since otherwise we would have more equations than
unknowns.

This example illustrates three principles which apply to the method of
backwards evaluation (“Stochastic Dynamic Programming”—SDP) of the
fitness of programs:

1. Inclusion: With probability equal to 1, something must happen during the
next interval of time.

2. Optimality: If one knows the optimal program from time ¢ to 7, then the
optimal program is known for all s > ¢ to T as well.

3. Sequential Coupling (62): The fitness of a program at the end of one stage
of the life cycle equals the fitness at the start of the next stage of the life
cycle times the probability of surviving to the next stage. For example, the
system Eqgs. 13 and 14, is sufficient to determine the variables f; ,,. Each of
these variables is itself the fitness associated with a particular behavioral
problem. Thus the “field concept” holds in this more general case.

This example also illustrates that in general fitness will depend upon
nutritional status n and the time 7 remaining until reproduction. Thus Eqgs. 13
and 14 permit a direct calculation of the fitness, without time-consuming
simulations. The key is Eq. 14, which uses relationships between the fitnes-
ses, rather than a separate calculation ab initio for each case.

A Simple Dynamical Example

Eq. 14 is incomplete without a specification of the action a, , corresponding to
each time ¢ and nutritional state n. A great variety of such actions are possible.
A simple description of behavior would be to forage as intensely as possible if
below a value n;, and not to forage at all if n > n;, in analogy with Eq. 7. In
such a case, the action is described by



BEHAVIOR, DEVELOPMENT AND FITNESS 523

1 if n = ny,
= 15.

AGn =
0 ifn> n;.

Once the program of behaviors Eq. 15 and the reproductive output R(n) are
given, the solution of Eq. 14 is obtained by numerical methods (62, Chapter
2). The output of such a numerical procedure is a matrix showing fitness as a
function of time and nutritional state. The result if the final reproductive
output R(n) = (0, 0, 0,0, 1, 1, 1, 1, 1, 1) is shown in Table 2; each row
corresponds to a single time ¢, and each column corresponds to a single
nutritional state n. The triangular array of 1’s in the upper right-hand appears
since n(T) > 3 if, for example n(5) = 10, and so forth. Likewise, the final
state cannot exceed 3 if n(7) = 1. Hence the triangle of 0’s in the upper
left-hand corner of Table 2. Fitness always increases from left to right across
rows, since the probability of starvation or a low final state decreases in the
same direction. At the nutritional states n > 3, fitness increases as ¢ increases
but for n = 1 or 2, fitness first increases and then decreases with time.

The Optimal Program

It is difficult to judge the adequacy of the program Eq. 15 without a standard
for comparison. The best possible program for this case is obtained in analogy
with Eq. 9: at each time ¢ and for each nutritional state n, compute a, , by
maximizing the right-hand side of Eq. 14. The numerical output now consists
of two matrices: the first is the optimal program as a function of time and
nutritional state; the second is the fitness of such optimal programs (Table 3).

The first line of the program described in Table 3 has the same con-
sequences as the program Eq. 15, since the fitness in the lines with ¢ = 9 are

Table 2 Fitness associated with the program equation (15)

Nutritional State
Time 1.00 2.00 3.00 4.00 500 6.00 7.00 800 9.00 10.00

10.00 0.00 0.00 000 000 100 100 1.00 1.00 1.00 1.00
9.00 0.00 0.00 000 042 070 100 1.00 1.00 1.00 1.00
8.00 000 000 021 041 060 070 1.00 1.00 1.00 1.00
7.00 0.00 0.12 0.24 037 045 060 070 1.00 1.00 1.00
6.00 0.07 0.15 023 029 037 045 060 070 1.00 1.00
500 0.10 0.15 0.19 0.24 0.29 037 045 0.60 0.70 1.00
400 0.t0 0.13 0.16 0.19 0.23 029 037 045 0.60 0.70
3.00 0.09 0.11 0.12 0.15 0.18 023 029 037 045 0.60
2.00 007 008 0.10 0.12 0.14 0.18 023 029 0.37 0.45
1.00 0.06 0.07 0.08 0.09 0.11 0.14 0.18 023 0.29 0.37
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Table 3 The optimal program (@) and fitness (b) by which the simple program (15) can
be evaluated

Nutritional State
Time 1.00 2.00 3.00 400 5.00 600 7.00 8.00 9.00 10.00

9.00 000 000 000 100 100 000 000 0.00 0.00 0.00
800 000 000 100 100 100 050 000 000 0.00 0.00
7.00 000 1.00 1.00 100 083 042 036 0.00 0.00 0.00
6.00 100 100 100 100 059 048 0.19 0.29 0.00 0.00
500 1.00 100 100 069 055 036 029 000 0.24 0.00
400 100 100 0.74 060 045 034 0.18 0.13 0.00 0.21
3.00 1.00 074 062 050 039 026 0.17 0.00 0.00 0.00
200 1.00 063 052 042 032 022 0.10 0.00 0.00 0.00
1.00 100 056 044 035 02 0.16 0.06 0.00 0.00 0.00

10.00 0.00 0.00 000 0.00 100 100 1.00 1.00 1.00 1.00
9.00 0.00 0.00 000 042 0.70 100 100 1.00 1.00 1.00
800 000 000 021 041 060 072 100 1.00 1.00 1.00
7.00 0.00 0.12 024 037 046 061 073 1.00 1.00 1.00
6.00 0.07 0.15 023 030 038 048 061 074 1.00 1.00
5,00 0.10 0.15 0.19 025 031 039 048 061 0.74 1.00
400 0.10 0.13 0.16 020 025 031 039 048 0.61 0.75
3.00 0.09 o0.11 0.14 0.17 021 026 031 039 048 0.61
2.00 0.08 0.09 o0.11 0.14 0.17 021 026 031 0.39 0.48
1.00 0.06 0.08 0.10 0.12 0.14 0.17 021 0.26 0.31 0.39

the same in Table 2 and the fitness array in Table 3b. For values of £ < 9 the
optimal actions differ more and more from the simple program, and the
optimal fitness is accordingly higher. However, these differences need not be
very large. For example at # = 1 we have:

Behavioral
Program Fitness for n =

1 2 3 4 5 6 7 8 9 10
Eq. 15 .06 .07 .08 .09 11 .14 .18 .23 .29 .37
Optimal .06 .08 .10 12 .14 17 .21 .26 31 .39

We conclude that the simple program Eq. 15 can be improved by a program
which depends upon ¢ as well as n, but it might require considerable time for
the simple program to be displaced by another. It is also clear that a great
variety of programs will perform nearly as well as the optimal one. Therefore,
one should not expect selection to achieve much more than a qualitative
agreement between programs in nature and the optimal one.
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Stationary and Nonstationary Programs

Programs like Eq. 15 that are independent of time are called “stationary,”
whereas those that depend upon time are called “nonstationary.” Time did not
appear explicitly in our example Eq. 4, and hence we considered only the
possibility of stationary programs. What would happen to that example if it
were made into a time-dependent problem? Suppose, for example, that we set
fr.» = 0 for all values of the nutritional variable. Including population growth
in our computation of fitness, Eq. 14 becomes

Jen = €711 — w@)] [a(@fi+1,0+1 + B@ fir1,n-1 + Ha) fr+1.2] + R(n),
l=t=T-1,1=n=N-1. 16.

Once again, the numerical solution of Eq. 16 determines optimal actions and
fitness associated with those actions (Table 4). We find that as ¢ approaches 1,
the actions approach the optimal stationary program Eq. 9, and the fitness also
approaches the fitness that corresponds to the stationary program. The fitness
corresponding to the stationary policy agrees with the fitness computed from
Eq. 16, except in the second decimal digit for a few particular

Table 4 The optimal program (a) and fitness (b) when population
growth is considered

Optimal Actions
Nutritional State
Time 1.00 2.00 3.00 400 500 6.00 7.00

(@)

9.00 0.00 000 000 000 000 000 0.00
800 1.00 100 1.00 062 0.11 000 0.00
7.00 1.00 100 092 055 017 000 0.00
6.00 1.00 1.00 085 053 0.18 0.00 0.00
500 1.00 100 081 051 017 000 0.00
400 1.00 1.00 079 050 017 0.00 0.00
300 100 100 078 049 0.17 0.00 0.00
200 1.00 100 077 048 0.16 0.00 0.00
1.00 1.00 1.00 077 048 016 000 0.00

(b)

10.00 0.00 0.00 0.00 0.00 000 000 0.00
9.00 1.00 2.00 3.00 400 500 600 7.00
8.00 2.04 352 5.00 6.53 820 10.00 11.80
7.00 285 456 6.29 8.17 10.24 12.56 15.00
6.00 342 525 17.14 9.22 11.55 14.19 17.05
500 379 569 7.69 9.90 12.40 15.24 18.35
4.00 404 599 805 1034 1294 1592 19.19
300 420 6.18 828 10.63 13.30 1636 19.73
2.00 430 630 843 10.82 13.53 16.64 20.08
1.00 437 6.38 853 1094 13.68 16.82 20.31
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values of time and nutritional state. We thus see that, except for values of ¢
close to the terminal time T, behavior is either weakly dependent on time or is
independent of time and that increments in lifetime fitness decrease as the
time to go T—¢ increases. Some of the strongest predictions of this theory
involve changes in behavior as a time constraint is approached (57, 59, 92,
95).

The Connection with Quantitative Genetics

Recent studies of the genetic basis of behavior (80) have revealed three main
features. (a) There is a clear genetic basis of and influence on behavior. (b)
Heritability estimates derived from the magnitude of response to selection are
nearly always less than 50%. That is, in many cases most behavioral variabil-
ity is not genetic in origin. (c) Many genes appear to affect behavior, which
suggests that methods of quantitative genetics are appropriate.

Theoretical work in quantiative genetics (4, 5, 43, 54, 55, 108) has laid the
foundation for the study of the evolution of behavior and development. These
theories predict how the distribution of reaction norms will change over time
in response to selection. The theories, however, are not self-contained since
fitness is treated as an (usually ad hoc) input. The methods developed here
provide a natural way to determine the fitness function for use in the theories
of quantitative genetics. One need no longer assume that lifetime fitness is
normally distributed. The assumption of normality simplifies the analysis of
evolution because the treatment of heredity is simplified, but sacrifices biolo-
gy for this simplification. Behavioral ecology allows us to compute fitnesses
associated with behavioral or developmental programs. The interaction of
behavioral ecology and quantitative genetics will strengthen each.

EXAMPLES OF BEHAVIORAL AND DEVELOPMENTAL
PROGRAMS AND THEIR ANALYSIS

The methods described above aid in understanding the selective forces that act
upon behavior and development. The analysis usually requires some level of
numerical computation to determine a solution. Such specific numerical
examples aid intuition and often provide general insights.

A Behavioral Program: Clutch Size in Insect Parasitoids
(41, 51, 59)

Temperate insect parasitoids (109) are ideal organisms for testing many of the
ideas developed here. Because the adult parasitoids usually die at the onset of
winter, the terminal time T (as in Eq. 12) is clearly defined. In many species,
adults emerge with essentially a full egg complement. Thus, the physiological
state variable n can be interpreted as the current egg complement. Recent
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empirical work (e.g. 26, 35, 77) has shown that the number of mature eggs
that a female carries clearly affects host selection.

Such parasitoids reproduce by oviposition in the larvae or pupae of other
insects. The action a is the clutch of the ovipositing parasitoid. Because host
volume is limited, each host can support a limited number of parasitoid
larvae. In addition, the fecundity of an adult parasitoid is often directly related
to its size, which in turn is directly related to resources available to it as a
larvae. Thus, the per-egg fitness which an ovipositing female accumulates
from oviposition in a host is usually a decreasing function of the number of
eggs laid. Thus, a plot of total fitness per host (fitness per egg times the
number of eggs laid) versus clutch size is “domed” (18, 59), and for a single
host, there is an “optimal clutch,” which maximizes the fitness obtained by
the mother from oviposition in that host. The optimal clutch usually increases
with host volume.

The dynamics of the state variable are

n if no host is encountered, or a host
is encountered but no clutch is laid, or
N1 = 17.
n, — an) if a host is encountered and a clutch
of size a/(n) is laid.

These relations are used in Eq. 16 with appropriate modification (59, 62). The
other parameters that enter into Eq. 16 are adult mortality u(a) and the
increment in fitness from oviposition in a single host. These can be de-
termined empirically. Oviposition involves a “trade-off” between immediate
reproduction (e.g. in a poorer host) and future expected reproduction (e.g. in
a superior host).

The theory leads to a number of strong, qualitative predictions (59, 62).
Optimal clutch sizes for a sequence of ovipositions are in general smaller than
the optimal clutch size for a single host and clutches that are close to optimal
produce nearly identical effects on lifetime fitness. Furthermore, increased
adult survival or encounter rates with hosts will decrease optimal clutch sizes.
As t approaches T, optimal clutch sizes increase. Most of these phenomena
have been observed in recent experiments (92, 94).

What would we predict for the distribution of clutch sizes, in uncontrolled
field observations, for which host volume varies and when parasitoids
encounter hosts at different points in their lives, with different egg com-
plements? We anticipate that any clutch smaller than the optimum clutch for a
single host could be observed, with small clutches predominating (59, 62).
This is exactly the case (18); the considerable variability observed in the field



528 MANGEL & LUDWIG

is consistent with the qualitative understanding provided by the optimality
model.

Visualization of the behavioral landscape (Figure 2—see p. 512) requires
solution of a particular problem, with particular values of parameters. We
assumed that with the time horizon T' = 20 periods, (a) the ovipositing insect
has at most 10 eggs, (b) the probability of encountering a host in a single
period is 0.3, (c) the probability of survival from one period to the next is .99,
and (d) the expected reproduction associated with a clutch of size ¢ is a domed
curve, as shown in Figure 2a. Even if time horizon, maximum egg load,
encounter rates, and mortality rates are held constant, the behavioral land-
scape is a function of time, current egg load (x), and clutch laid (¢). When ¢t =
T—1 (Figure 3a), there is no expected future reproduction, so that the fitness
landscape is identical to the expected reproduction from oviposition in a

(@)

Size
Remain in Shift
Current State
Time
©)
Size
s1
2
3
t t+l t+5
Time

Figure 3 The state variable, dynamic theory of ontogenetic shifts or sex change leads to a
“switching curve” ny(f) which describes the optimal pattern of development. For any time ¢ before
T, if the physiological variable is below the switching curve, the organism should remain in its
current state whereas if the value of the physiological variable is above the switching curve, the
organism should initiate a change. This theory can be tested (panel b) if we can find a cue which
indicates that time has “jumped forward.”
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single host. As the time to go, T—t¢, increases, the balance between current
and expected future reproduction affects the shape of the fitness landscape
(Figure 2b,c). Note first the loss of fitness (expected reproduction) by laying a
clutch that is smaller than optimal is generally less than the loss of fitness by
laying a clutch that is larger than optimal (cf 28). This leads to the prediction
that if clutches are not optimal, they are more likely to be smaller than optimal
rather than larger than optimal. Second, for a fixed value of ¢ the marginal
increase in expected lifetime reproduction decreases as egg complement
increases.

A Developmental Program: Ontogenetic Switching Curves
(32, 33, 50, 57)

Many animals exhibit complex life cycles in which individuals undergo
abrupt ontogenetic transformation (66, 113). For example, it is common that
metamorphosis is associated with a shift in habitat usage. When habitats vary
in risk of predation and growth rate, optimal programs often require habitat
shift during ontogeny. In the first set of models of such ontogenetic habitat
shifts (38, 113, 114, 115), workers concluded that the optimal behavioral
program was to minimize the rate of mortality divided by the rate of growth. -
This is called the “minimize u/g” strategy. This strategy can be derived from
the assumption that reproduction is continuous and extends over an infinite
time horizon. The predicted behavior is that all individuals will shift habitat at
the same size.

Theories of sex change in sequential hermaphrodites (17) similarly assume
populations with overlapping generations and a stable age distribution, corre-
sponding to an infinite time horizon. These theories predict a single size at sex
change.

Such general rules, for either habitat shift or sex change, may be broadly
appropriate for interspecific comparisons. It is common, however, that
reproduction is restricted to certain time periods and that the time horizon is
not infinite. Considerable intraspecific variation in size dependent behaviors
is common (32, 33, 105, 112, 116), and individuals often exhibit substantial
variation in behavior during the course of their lives (16). In these cases, a
dynamic, state variable theory of development is appropriate. Dynamic, state
variable theories have been proposed for the ontogenetic niche shift (57, 95)
and for sex change (33). In each case, the prediction of the theory (Figure 3a)
is a “switching curve” ny(f) which indicates, at any given time, the size for an
individual to initiate the developmental change.

The predictions of such an optimality theory can be tested experimentally if
we can manipulate a cue which indicates that time has “jumped forward.”
That is, consider some intermediate time ¢ (Figure 3b), with corresponding
switching value S;. In the following time period, the switching size will be S,.
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On the other hand, if the animals are given a cue indicating that the following
period were t+5 instead of #+1, the switching value would be S3. We thus
predict that without the cue, individuals whose size was between S3 and S,
would not initiate developmental change, whereas those individuals who
received the cue and whose size was in this interval (darkened region in
Figure 3b) would initiate developmental change.

Fernandes (32) conducted such an experiment using the dusky slug Arions
subfuscus. This slug is a protandrous hermaphrodite living in temperate
climates. Essentially all individuals die at the onset of the first frost, so that T
is well defined. The appropriate physiological state variable is body size, and
the theory is an extension of the size-advantage hypothesis (37) to deal with
time-limited life histories and intraspecific variation. Fernandes found that
light cycle was a sufficient cue for developmental change, in the sense
described above. As predicted by the theory (Figure 3b) when a population of
slugs was subdivided randomly into a group receiving a normal light cycle
(control) and a group receiving a light cycle indicating that time had shifted
forward (experimental), slugs in the experimental group initiated sex change
at-a smaller size than slugs in the control group.

Additional Studies

In Table 5, we provide examples of a variety of other studies of behavioral
and developmental programs that use dynamic, state variable approaches.
This list is not intended to be comprehensive (also see Ref. 22 for additional
studies).

Table 5 Other studies using dynamic state variable models'?

Reference Subject Predictions Exps'  Fitnes:
13 Effect of imperfect knowledge of A wide range of estimates of preda- +
predation rates on fitness tion rate may lead to the same
fitness
15 Physiological integration in Abandonment of ramets as a function
clonal plants of size
21 Foraging group size in lions Group size as a function of physiolog- +
ical reserves
23 Diel migration by juvenile Timing of diel migration +
salmon
24, 25 Risks and costs of parenthood Parental defense, provision to nest- +
Case study of Atlantic puffins lings as function of state
dovekie
39 Foraging group size in lions; Foraging group size as a function of + +
sensitivity analysis of dynamic physiological reserves
models
42 Diet selection by guppies with/  Diet composition (3 prey types) ++

without predators present
(continue.



Table 5 (continued)

Reference Subject Predictions Exps'  Fitness®
46 Timing of breeding of birds in Role of daylength temperature, food + +
temperature environments supply and predation in the timing
of breeding
47b Diet choice in fish Comparison of static and dynamic ++
models of diet choice
48 Nest defense in plethodontid When a parent should defend the nest, + +
salamanders as a function of body size and eggs
52 Mate desertion in Cooper’s Desertion as a function of physiolog- ++ +
hawks ical and ecological variables
63 Role of information in insect host ~ Superparasitism as a function of egg +
choice load and experience
71 Partial preferences in foraging Considerations associated with state
variables can lead to predictions of
partial preferences
72 State-dependent contests for food  ESS behavior in the hawk-dove and
war of attrition behavioral games
may be state dependent and need
not depend monotonically on state
73 Daily routines of singing and Many, including that a peak in singing ++
foraging to attract a mate at dawn can result from variability
in overnight energy expenditure
even in the absence of circadian
patterns
76 Colony formation in social Site selection for location of the + +
hymenoptera colony
81 Territorial bequeathal by female Prediction of females which will be-
red squirrels to their young queath territories as a function of
state and time of the season
84 The way in which individuals With search and sampling costs, + +
acquire information about sequential search for mates domi-
prospective mates nates the best-of-n strategy
90 Role of accurate information Behaviors with inaccurate information + +
about host encounter rates may lead to identical fitness as the
in host choice case of perfect information
91 Density dependence of parasitism  Emergence of inverse density de- +
by fruit flies pendent parasitism in communities
when individuals have direct
density dependent parasitism
93 Host (blood) and energy (nectar)  Seek blood under a wide variety of +
seeking by mosquitoes conditions but seek nectar only if
crop volume, concentration, and
energy are correct
106 Behavior of small bird during the ~ Flocking as a function of energy re- + +
winter serves, predation risk, and mating
status. Prediction of when to sing
(to attract a mate) rather than flock
119 Juvenile alcid life histories Mass of nestlings at fledging +

A ++ indicates the experiments or field studies were conducted to test the state variable model; a + indicates comparison of
the state variable model with previous empirical work.
2A + indicates that a fitness landscape, in addition to optimal behaviors, was computed.
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CONCLUSIONS

A framework in which physiological (state) variables characterizing the
organism are linked to reproductive success is required in order to account for
selection on behavioral or developmental traits. Dynamic programming and
related methods provide a framework for such accounting even if no assump-
tions about optimization are made. These methods are based on a field
approach and work backwards in time, since terminal fitness can usually be
assessed as a function of physiological state. The backward approach empha-
sizes behavioral and developmental programs rather than individual trajecto-
ries of state variables. Such methods explicitly consider the state of the
organism and take development into account.

Developmental and behavioral programs are not static, but they may be
stationary and thus depend only upon the physiological state of the organism.
Simple rules such as rate maximization, which are common programs for the
analysis of behavioral traits, may apply if there are no important internal
states. Our methods allow the computation of a landscape of programs, which
is a more operational version of the fitness landscape. Optimal programs, or
more generally, programs whose value is insensitive to small changes, are
distinctive landmarks in the landscape of all programs. Even though genetic
constraints or slow selection near the optimum may prevent the attainment of
these special programs, study of them is instructive.

Diversity underlies the uniqueness and fascination of biology. Dynamic,
state variable methods help provide a framework in which this great diversity
can be understood. Although dynamic state variable modeling as a tool in
behavioral ecology was elucidated only five years ago (61, 70), these methods
have been applied to a wide variety of biological situations (Table 5). We
expect that empirical studies that are tests of models linking phenotypes and
fitness will expand at every level (30, 89, 110) and that the description of the
fitness landscape of behavior or development will become increasingly com-
mon.
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