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Insects foraging for oviposition sites face many of the same problems that are
addressed in optimal-foraging theory: hosts are often encountered randomly,
differ in contributions to lifetime fitness, and require different handling times. A
number of authors (Iwasa et al. 1984; Mangel 1987a,b; Charnov and Stephens
1988) have recently suggested that the most insight into insect oviposition deci-
sions will be gained through the computation of trade-offs in lifetime fitness
(essentially an ‘‘economic’’ rather than a genetic approach). In that vein, Charnov
and Stephens (1988) treated the oviposition-selection problem by the methods of
“‘optimal-foraging theory’’ (Stephens and Krebs 1986), producing results analo-
gous to those in the theory of optimal-diet selection. (The theory of Charnov and
Stephens is summarized in the next section.) This paper is, in a broad sense, a
reply to their modeling effort and a direct response to the challenge that they put
forth: ‘““How do the results derived here compare with those that would emerge
from an explicit dynamic-state-variable approach to the same questions. . . ?”’
(Charnov and Stephens 1988, p. 719).

The main issue in this paper is not the comparison of the theory of Charnov and
Stephens, which I call a rate-maximization theory, with experimental data. Since
rate-maximization theories are inherently static (see below), many phenomena
cannot be predicted by a theory of oviposition decision making based on rate
maximization, for example, the dynamics of host acceptance (Singer 1982) and the
response to host deprivation or marking pheromones (Mangel 1987a,b). The major
thrust is a comparison of theoretical predictions of rate-maximization and dy-
namic state-variable approaches for the computation of fitness functions. Al-
though this paper is written with insect parasitoids in mind, the general question
actually applies to many phytophagous insects (Dethier 1982; Miller and Strickler
1984).

Parasitoids are classified into one of two broad reproductive groups: those born
with a full or nearly full complement of eggs, and those that mature eggs through-
out their lives. The approach taken by Charnov and Stephens (1988) and here is to
assess trade-offs in fitness. Parasitoids born with all their eggs face an obvious
trade-off: an egg used now is not available later. That is, a parasitoid trades
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current reproduction directly for future reproduction (such parasitoids have been
modeled in Iwasa et al. 1984; Parker and Courtney 1984; Mangel 1987a,b). For the
case of parasitoids that mature eggs sequentially, Charnov and Stephens assumed
that egg production increases mortality. Thus, the trade-off is current reproduc-
tion versus future survival (and thus expected future reproduction). This assump-
tion—that egg production increases mortality—is essential to the argument of
Charnov and Stephens, and I maintain this assumption throughout the paper.

In the next section, I summarize the ‘‘randomly distributed’’ host model of
Charnov and Stephens and the predictions that they derived from the theory. The
third section contains a brief discussion of the hypotheses underlying the use of
rate maximization in behavioral ecology. The fourth section contains analytic
results using a state-variable approach to exactly the same problem as formulated
by Charnov and Stephens, and the fifth section contains numerical results. On the
one hand, a limitation of the dynamic state-variable approach is that it is difficult
to obtain simple formulas as summaries of phenomena. On the other hand,
numerical results are easily obtained, and in the fifth section I show how insight
can be gained from such numerical results. The sixth section contains a discussion
and conclusions.

THE MODEL OF CHARNOV AND STEPHENS

Charnov and Stephens considered the following situation. A parasitoid may
encounter H different hosts. Encounters with hosts occur randomly and are
characterized by encounter rate \;, defined as follows:

Pr{parasitoid encounters a host of type i in an interval of length dr}

= \dt + o(dt). )

Here, o(dt) denotes terms that go to 0 faster than dt as dt approaches 0. That is,
o(dt)/dt — 0 as dt — 0. (See the Appendix for a fuller discussion.) If a host of type
i is encountered, then the parasitoid may choose to oviposit. Oviposition requires
a “‘handling time’’ A; and provides an increment in lifetime fitness E;. (Charnov
and Skinner [1984, 1985] discussed ways in which the increments in fitness can be
computed; see also Mangel 1987a,b.) The fitness increment E; from a host of type i
is a function of the biology of the host (e.g., volume, growth rate, defenses) and of
the parasitoid (e.g., chance for superparasitism). Here, it is taken as fixed.

The parasitoid considered here produces eggs during the course of her life, with
mortality affected by the rate at which her eggs mature. In particular, assume that

Pr{parasitoid dies in the next dr units of time, given that )
@
her egg production rate is r} = zo(1 + @r)dt.

That is, the ‘‘base’’ mortality rate of the parasitoid is z,, in the sense that, when
r = 0, she will survive to time ¢ with the probability exp(—zof). Egg production
introduces an additional mortality factor, measured by ¢.

Charnov and Stephens argued as follows. Represent the lifetime fitness of the
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parasitoid as

W = jﬁf exp(—Zidt, 3)
T

where wyis the ‘‘fitness gained from the offspring on a single average host’’ and 7
is the ‘‘time required to find (search for) and handle a single average host’’ (p.
708). A somewhat better interpretation would be to replace w//7 by w(f), the rate
at which fitness is gained through oviposition at time ¢. Note that, in principle, the
mortality rate Z is also a function of time. It actually does not affect the analysis
because the next step by Charnov and Stephens (going from their eq. 1 to their eq.
2) is to assume that wy, 7, and Z are not functions of time (although Z, since it is a
decision variable, must in some sense depend on time). Then, the lifetime fitness
is simply W = w,/7Z. This assumption is equivalent to assuming that both the rate
of fitness gain and the rate of mortality are constant throughout the life of the
parasitoid; hence, it is an assumption that the behavior is static. If this assumption
is accepted, the procedure for the computation of lifetime fitness is relatively
straightforward.

Step 1.—Apply standard renewal theory to compute we/7. This gives wy/t =
SNEP I + 2NAP), where P, = 1 if the ith host type is accepted and 0
otherwise.

Step 2.—Observe that the rate of egg production is the rate at which eggs are
used. That is, the rate of egg production is simply Z\,P,/(1 + ZNAP)).

Step 3.—Use the formulas W = wy/tZ and Z = zo[1 + ¢(rate of egg produc-
tion)]. Simplifying gives W « I NE;P;/[1 + IN(h; + @)P;].

The “‘optimal’’ rule for host acceptance is now determined by choosing the set
{%;} that maximizes W. This is formally a problem in classical diet-selection
theory in which k; + ¢ plays the role of handling time. Application of that theory
leads to three predictions. First, by a zero/one rule, hosts are either always
accepted or always rejected by the insect. Second, hosts are ranked by E;/(h; +
¢). And third, under the inclusion rule, the acceptance of a given host type does
not depend on its own encounter rate. (The derivation of these comes straight
from optimal-diet theory; see, e.g., Stephens and Krebs 1986.)

These three rules show why rate maximization is so popular in behavioral
ecology—it is easy to use. Yet, the assumption that all elements of the integral in
equation (3) are constant is a great leap of faith. In the next three sections, I study
the consequences of not making that leap. Even so, at this point notice some of
the troublesome features of the rate-maximization approach.

1. Lack of time dependence.—By the way in which it is formulated, the rate-
maximization approach is independent of physical time. Old insects and young
insects, in this formulation, should behave in the same way. Host deprivation can
be treated only in an ad hoc manner (e.g., by changing the \; after the period of
deprivation).

2. Egg production never appears.—The model of Charnov and Stephens ex-
plicitly incorporates egg production into mortality; but in the end, decisions are
completely independent of optimal egg production, which is buried in the mortal-
ity factor through encounter rates.

3. Basic mortality never appears.—The result of rate maximization is that
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decisions are independent of z;, the basic mortality rate. Insects with lifetimes of
2 days should, according to the theory of rate maximization, make the same de-
cisions as insects with lifetimes of 2 months.

4. Closeness of rankings.—The prediction of rate maximization is that deci-
sions should be binary (i.e., either always or never accept a certain type of host),
regardless of how close the members of the actual set of rankings [E;/(h; + ¢)] are
to each other. One response would be that when rankings are close, of course, the
binary decisions will be smoothed. The problem is that rate maximization pro-
vides no means for assessing when parameter sets are ‘‘close’’ to each other.

The fourth and fifth sections contain a state-variable model for this problem.
Clearly, the decisions based on rate maximization and the decisions based on
state-variable approaches overlap for some parameter ranges. The question is,
then, if rate maximization is a special case of the state-variable approach (as it
must be), what is the range of its validity? Before addressing the oviposition
problem, it is worth considering the general assumptions underlying rate maximi-
zation.

RATE MAXIMIZATION IN A STOCHASTIC SETTING AND ITS UNDERLYING ASSUMPTIONS

The use of rate maximization is common in behavioral ecology because of its
conceptual clarity and remarkable success (although its success is often disputed).
It is based on an application of the renewal theorem to behavioral processes
(Paloheimo 1971; Charnov 1973). A careful examination of the premises (Charnov
1973; Stephens and Krebs 1986; Charnov and Stephens 1988) reveals four implicit
assumptions about rate maximization.

1. Anorganism is assumed to behave in a way that maximizes its fitness over an
interval [0, T].

2. The fitness, assessed at time 7, is assumed to be given by the product of T
and the rate at which fitness accumulates.

3. T is sufficiently large that the renewal theorem can be used to compute the
rate at which fitness accumulates, and only the first term in the renewal theorem
(i.e., the mean) is used. (The actual renewal theorem provides an asymptotic
expansion—in powers of 1/T—of the rate at which fitness accumulates. That is,
the rate of gain in fitness is the sum of the mean and 3;/T’, where the ;s are
asymptotically normally distributed random variables. Thus, as T increases, only
the mean matters; but for finite T, correction terms always exist. See Karlin and
Taylor 1977 for further details.)

4. Behavior is fixed over the interval [0, T'], determined at the beginning and not
changed regardless of what happens for intermediate times.

The conflicting assumptions are 3 and 4, that the interval is sufficiently long for
only means to matter and that behavior is fixed over this interval. In light of these
assumptions, the truly remarkable feature of rate maximization in behavioral
ecology is that it works as well as it does, for example, with energy-budget rules
(see Houston and McNamara 1985). It may be that there is an intermediate time
scale on which both assumptions are valid, or it may be that the decisions ob-
tained using rate maximization are the same as decisions obtained using more-
complete models. What happens if these assumptions are dropped?
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FORMULATION, DERIVATION, AND ANALYSIS OF THE STATE-VARIABLE MODEL

The insect-oviposition problem studied in this paper is a problem in stochastic-
optimization theory. In particular, methods of stochastic-dynamic programming
(Mangel and Clark 1986, 1988; McNamara and Houston 1986) can be used to
obtain optimal decisions. In this section, I show how to derive the appropriate
dynamic-programming equations and describe certain analytic results. The model
developed in this section is the exact analogue of the model of Charnov and
Stephens (1985). Such dynamic-programming equations are not hard to derive,
once one sees the logic of the procedure. Since understanding the origin of the
equation is so important for ensuing discussions, I ask the reader to bear with me
during the derivation.

To begin, introduce a state variable X(¢), which is the insect’s egg complement
at time ¢. Let r denote the rate of egg production and ¢ denote the rate at which
eggs are laid. Then, the dynamics of the state variable are

X(t + d) = min{X(®) + (r — ¢)dt, cap}, 4

where cap denotes the insect’s egg-load capacity, that is, the maximum number of
eggs that she can hold.

Next, use the assumptions embodied in equations (1) and (2). In particular, the
exponential form for the mortality function implies that

Pri{insect is alive at time ¢ + h|alive at time ¢} = exp(—2Zh). ©)

(This is simply the memoryless property of the exponential distribution.)
Introduce a lifetime-fitness function W(x, r) defined as

Wi(x, ) = max${fitness obtained through oviposition decisions ©

from time ¢ onward, given that X(¢) = x}.

In this equation, the maximum is taken over all behavioral decisions: these are the
rate of egg production and oviposition decisions upon encountering a host. €
denotes the expectation over stochastic host encounters.

The dynamic-programming equation characterizes the dynamics of the lifetime-
fitness function W(x, f). It is based on two premises: (1) with probability 1,
something will happen (in this case, the insect either does not encounter any host
or encounters one of the hosts in the interval of time dr); and (2) whatever
happens, act optimally (in this case, make the optimal oviposition decisions).

The only remaining assumption concerns the interplay of host encounters and
the rate of egg production. Charnov and Stephens implicitly assumed that the rate
of egg production is determined before host encounter occurs, and I do the same.
Thus, W(x, ¢) satisfies the equation

W(x, t) = max,((1 — SN dDexp[—zo(1 + @r)dtlW(x', t + df)
+ IN;dtmax{exp[—zo(1 + @r)df]W(x', t + di); @)
E; + expl—zo(1 + @r)(h; + dOIW(x/, t + h; + df)}).
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In this equation, x’ = min(x + rdt, cap) and x; = min[x + r(h; + df) — 1, cap].
The terms on the right-hand side of equation (7) have the following interpreta-
tions. The expression max, denotes that the maximum is taken over all biologi-
cally possible choices of the rate of egg production. The first term on the right-
hand side is the expected lifetime fitness if no host is encountered during the
interval from ¢ to ¢ + dt; this occurs with probability 1 — 2 \;dt. When no host is
encountered, the parasitoid survives from time ¢ to time # + dt with probability
expl[—2zo(1 + ¢r)dt] and holds x + rdt eggs at time ¢t + dt. The second term
represents the expected fitness if a host is encountered. A host of type i is
encountered with probability \;d¢. The terms inside the second max compare
lifetime fitnesses if the host is rejected and if the host is accepted. If the host is
rejected, then fitness is identical to the situation in which no host is encountered.
If the host is accepted, the parasitoid receives an immediate increment in fitness,
E;, but uses up an additional 4; units of time handling the host. The probability that
she survives h; + dt units of time into the future is exp[ —zo(1 + ¢r)(h; + db)]. If
she does survive, she starts time t + h; + dt with egg complement x + r(h; + dt)
— 1; the —1 comes from using an egg.

The remainder of the derivation of the continuous-time dynamic-programming
equation is given in the Appendix. The final equation is (the subscripts on W
denote partial derivatives):

- W, = max,(rW, — [EN; + z20(1 + @] W(x, 1) + SN;max{W(x, ?);
E,‘ + exp[—zo(l + cpr)h;] W(X + rh,- — 1,1 + h,)})

The solution of this equation, and corresponding decisions, are functions of both
state and time and are thus dynamic. As ¢ increases, however, the solution of
equation (8) often approaches a stationary or steady-state solution, in which
fitness and decisions are functions of state only. It is these stationary decisions
that should be compared with the decisions derived from the rate-maximizing
approach. In the steady state, the left-hand side of the equation is 0. Then, fitness
is a function of x only and satisfies the equation

0 = max,(rW, — [EN; + zo(1 + eNIW(x) + SN;max{W(x);
E,' + CXp[_Zo(l + <pr)h,] W(x + rh,- - 1)}).

®)

®)

Note the following properties of this equation (which can be compared to and
contrasted with the properties of the rate-maximization approach).

1. The rate of egg production explicitly enters into the determination of W(x).
In principle, this can be ‘‘removed’’ by solving for the r that maximizes the
right-hand side of equation (9). This gives an optimal egg production rate, r*
= R(W, W,). The optimal rate can then be substituted back into equation (9),
leading to a nonlinear partial differential-difference equation (Mangel 1985 con-
tains some worked examples of this procedure). In this particular case, the
resulting equation is quite intractable.

2. Hosts are no longer ranked according to the simple procedure described in
the preceding sections. Instead, the decision to accept a host requires that

E; + exp[—zo(1 + en)hi]W(x + rh; — 1) > W(x). (10)
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Note that host acceptance now depends not only on E;, ¢, and A; but also on the
basic mortality rate (zg), the current egg complement (x), and the egg production
rate (r). This is encouraging and makes good biological sense. Iwasa et al.
presented a similar acceptance rule (1984, p. 214, eq. 16).

Equation (10) can be interpreted as a marginal-value rule as well. The easiest
way to see this is to use the Taylor expansion of W(x + rh; — 1) around x and keep
just the first and second terms of the expansion. This gives the acceptance rule:

E; + exp[—zo(1 + @r)h;l(rh; — DW, > W(x){1 — expl—z0(1 + er)h]}. (11)
Rearranging terms yields
expl—zo(l + enhl(rh; — DW, > W){l — expl—zo(l + ¢nhil} — E;.

Note the nice interpretation of this equation: the left-hand side is the marginal rate
of gain in fitness when the host is accepted times the net number of eggs produced
during the handling period. The right-hand side is a measure of the difference in
fitnesses if the host is rejected or accepted.

3. The decision rule (10) indicates that acceptance or rejection of a host does
not explicitly depend on its encounter rate; this is similar to the conclusion based
on rate maximization. The reason is easy to see from the full state-variable
formulation: host-acceptance decisions are made only after the parasitoid encoun-
ters the host. At that point, the encounter rate enters the decision only implicitly
in the determination of fitness W(x). (See also the Discussion and Conclusions.)

The dynamic-programming equation is analytically complicated and difficult to
solve. However, much can be learned by considering careful numerical compari-
sons, which is done in the next section.

NUMERICAL RESULTS

The numerical solution of the dynamic-programming equation allows one to
study the effects of a variety of biological parameters on host-acceptance deci-
sions. In this section, I derive the dynamic-programming equation using discrete
time and the state space and then study the effects of capacity, basic mortality
rate, closeness of rankings, egg production rate, host-encounter rate, and ap-
proach to stationary decisions for host acceptance.

The limitation of numerical studies is that specific parameter values must be
used in computations, but the objective of the study is obtaining general conclu-
sions. Here, I present numerical results and then a relatively general conclusion.
The stated conclusion has been tested over a wide range of parameter values.

It is possible to obtain the numerical solution of the dynamic-programming
equation (7) directly, by choosing appropriate discrete values of time and the state
variable. It is easier, however, to simply recast the equation in a discrete-time
setting from the outset. This is done simply by setting dt = 1 in equation (7) if no
host is found or if a host is encountered but rejected and dt = 0 if a host is
encountered and accepted. It also helps to think of fitness as a function of egg
complement and the time that the insect has left to live, denoted by s and called
the time to go (to the end of life). If W(x, s) denotes its lifetime fitness from time s,
then using one unit of time reduces its future time to live by 1. The discrete-time
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dynamic-programming equation is thus
W(x, s) = max,((1 — 2Z\)exp[—zo(1 + eP)IW(x', s — 1)
+ N max{exp[—zo(1 + ¢)IW(K', s — 1); (12)
E; + expl—zo(1 + er)hIW(x{, s — h)}).

Again, x’ = min(x + r, cap) and x; = min(x + rh; — 1, cap); if s — h; <0, then it
is set equal to 0. Note that the encounter rates \; may require some reinterpreta-
tion, since 2\; = 1.

In order to solve this equation, an initial condition (which corresponds to the
end of the insect’s life; see Mangel and Clark 1986, 1988) is needed. Since any eggs
remaining at the end of the parasitoid’s life are valueless, we impose W(x, 0) = 0
and solve the equation forward in time (i.e., for increasing s).

The solution of the dynamic-programming equation is thus obtained by iterat-
ing until some stopping criterion is reached. A suitable stopping rule is that
3 W(x, s) — W(x, s — 1)] < &, where ¢ is an appropriately chosen ‘‘cutoff
parameter.”’ The interpretation of this condition is that the total difference be-
tween W(x, s) and W(x, s — 1) is less than the cutoff. This corresponds, when ¢ is
small, to an approximately stationary solution of the dynamic-programming equa-
tion. In the numerical results reported below, the value of € was chosen such that
behavioral decisions are essentially constant by the time of the cutoff. Most of
these results involve comparisons of stationary decisions.

An alternative approach is to consider the stationary version of the dynamic-
programming equation. This stationary version is

W(x) = max,((1 — Zn)exp[—z(l + ¢n)] W(x")
+ Znmax{exp[—zo(1 + ¢n]W(x'); (13)
E; + expl—zo(1 + ¢nNh]W(xi)}).

Its solution can be found by a process of iteration. We begin with a guess W°(x)
and then iterate for & = 1 according to

W (x) = max,((1 — SA)expl—zo(1 + o] W< 1(x")
+ Snmax{exp[—zo(1 + @] W ™ 1(x); (14)
E; + exp[—zo(1 + enhIW*~'(x})}).

The iteration procedure is followed until a predetermined stopping rule is reached.
An effective rule, as in the truly dynamic version, is that 3| Wk(x) — Wk~ l(x)l <
e. If all handling times are equal to one period, then the iteration of the stationary
version of the equation and the solution of the time-dependent version are identi-
cal procedures. If some handling times are greater than one period, the procedures
differ, although the solutions should be nearly identical for cutoff parameters that
are small enough. In the results reported here, I used the iterative solution of the
stationary equation for all computations except for the computations in which the
approach to stationary decisions was studied. This has the effect of ignoring any
time dependences in the lifetime-fitness function from the outset and letting time
introduce itself only into the survival functions.
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The number of iterations needed to reach stationary decisions, as defined by the
condition after equation (14), depends on the value of €. When this parameter is
small, the number of iterations to stationary decisions often greatly exceed the
expected lifetime of the parasitoid. Stationary decisions, however, are often
achieved in just a few periods (see below). The fairest comparisons with rate
maximization are ones in which decisions associated with the stationary fitness
functions are used.

For the results that follow, three host types are used, and parameter values are
changed according to the effect being studied. In general, only two values of egg
production rate are allowed: r = 0 (no eggs produced during the next interval),
and r > 0. In general, this is written r = {0, r, }, where r is the positive rate of egg
production.

The objective of the analysis that follows is to understand when the rate-
maximization approach is valid. This understanding is summarized in terms of
predictions about biological conditions and rate maximization.

Effects of Capacity

The capacity constraint affects the number of eggs that the parasitoid can hold,
and thus egg production rate, and thus mortality. The following parameter values
were used:

Host type A E h
1 0.45 1.0 1
2 0.25 0.5 2
3 0.25 0.1 2

and zo = 0.05, ¢ = 2, r = {0, 1}. According to rate maximization, only the first
host should be taken. Three values of capacity were used: cap = 5, 10, 20. The
following results emerge. When cap = 5 or 10, the stationary decisions corre-
spond to rate maximization. When cap = 20, the stationary decision is to accept
host 1 only if x < 13 but to accept both hosts 1 and 2 if x = 13. This makes intuitive
sense: insects with a smaller holding capacity for eggs cannot take into account
the effects of state variables. ‘

Conclusion 1.—Parasitoids with small holding capacities are more likely to
function as rate maximizers than are parasitoids with large capabilities for holding
mature eggs.

Effects of Basic Mortality

In this case, a value of cap = 5 was used, along with encounter and egg-
production parameters given above. A number of different host parameters were
used and the basic mortality rate varied. With the host parameters given above,
the following results emerge:

Basic mortality rate, zg Decision W(cap)/W(1)
0.05 Type 1 only 1.32
0.15 Type 1; type 2if x = 1,4, 5 1.68
0.25 Types 1 and 2 1.79

0.50 Types 1 and 2 1.71.
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A second set of encounter parameters was also used:

Host type N E h
1 0.45 1.0 1
2 0.25 0.8 2
3 0.25 0.6 2.

According to rate maximization, hosts 1 and 2 should be accepted. For zo = 0.01
or 0.05, this is indeed the case; but for zo = 0.15, all hosts are accepted in the
stationary regime except that when x = 2 only types 1 and 2 are accepted.

Another result emerging from these computations is that as z, decreases,
W(cap)/W(1) approaches one; that is, there is little difference in lifetime fitness for
a full or nearly depleted initial egg complement.

Conclusion 2.—Long-lived parasitoids, with a low basic mortality rate, are
more likely to be rate maximizers than are short-lived parasitoids, with a high
basic mortality rate.

Closeness of Rankings

The closeness of rankings, measured by the effect on the overall rate of
accumulation of fitness, does not enter into the rate-maximization decisions.
Consequently, rate maximization provides no systematic way of assessing the
effects of closeness of rankings on deviations from rate-maximizing behavior.

For example, for the first set of host-encounter parameters given above, the rate
of fitness increase is 0.19 if only host type 1 is accepted and 0.17 if host types 1 and
2 are accepted. For zo = 0.05, r = {0, 1}, ¢ = 2, and cap = 5, the state-variable
model gives the same decisions. But consider a small change in handling times:

Host type A E h
1 0.45 1.0 1
2 0.25 0.5 1
3 0.25 0.1 1

and let all other parameters remain the same. In this case, the rates of fitness
increase are 0.1915 if only host type 1 is accepted and 0.1855 if both host types 1
and 2 are accepted. Thus, the method of rate maximization leads to the prediction
that only host type 1 will be accepted. Solution of the dynamic-programming
equation shows that, in the regime of stationary decisions, both host types 1 and 2
are accepted. If parameters are changed slightly, such that the rates of gain in
fitness are 0.19 and 0.17, then the stationary decision is to accept host type 1
always and type 2 when x = 5. (Note that this is also an example of ‘‘partial
preferences’’; see below.)

Conclusion 3.—If rankings are close, rate maximization may fail as a predictor
of oviposition decisions. In addition, the formalism of rate maximization does not
allow one to determine when the decisions based on rate maximization will
optimize accumulated lifetime fitness from ovipositions. The state-variable ap-
proach allows this determination.

Effect of Egg Production Rate

The egg production rate affects the decisions through mortality. Since the rate
of egg production enters into mortality as the factor ¢r, it is not necessary to
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consider the effects of r and ¢ separately. Thus, only the effects of r are discussed.
Higher egg production implies higher mortality rates. Consider the following host
parameters:

Host type A E h
1 0.45 1.0 1
2 0.25 0.5 1
3 0.25 0.1 1

with zo = 0.05, ¢ = 2, cap = 5, and varying values of nonzero egg production.
The decision based on rate maximization is to accept only host type 1.

What does the stationary version of the dynamic-programming equation lead
to? When r = {0, 1}, the stationary decision is to accept host types 1 and 2 and
produce eggs when x = 1. When r = {0, 0.5}, the stationary decision is to accept
host type 1 always and host type 2 when x = 3 and to produce eggs when x < 3.
When r = {0, 0.2}, the stationary decision is to accept host type 1 always and host
type 2 when x = 5 and to produce eggs when x < 4.

Conclusion 4.—If egg production increases mortality, then insects with low egg
production rates are more likely to be rate maximizers. The effects of decreasing
egg production rates or decreasing basic mortality rates are fundamentally the
same.

Dependence on Encounter Rates

The approach based on rate maximization predicts that the acceptance of a host
is independent of its encounter rate. The state-variable approach predicts that
acceptance of a host depends only implicitly on the encounter rate with that host,
through the value of the fitness function. Numerical experimentation confirms
this. The following host parameters were used:

Host type E h
1 1.2 1.0
2 0.9 2.0
3 0.6 2.5.

The values of \; and A\, were both fixed at 0.2. According to rate maximization,
host types 1 and 2 should be accepted. As the value of A5 varies from 0.05 to 0.6,
the stationary decisions do not change at all and are to take types 1 and 2 always
and to take type 3 if x = 1.

Approach to Stationary Decisions

Since the approach based on rate maximization is a static theory, it can shed
little insight into the dynamics of host acceptance and the rate at which stationary
decisions are approached. The full dynamic model is ideal for the study of this
property. For example, consider the following host-encounter parameters:

Host type N E h
1 0.45 1.0 1
2 0.25 0.5 2
3 0.25 0.1 2
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with z5 = 0.05, » = {0, 1}, and ¢ = 2. According to rate maximization, only host
type 1 should be accepted. The following computational results emerge when cap
= 10 (recall that s is the number of periods remaining in the parasitoid’s life):
at s = 1, accept all hosts;
at s = 2, accept only type 1;
as s increases from s = 3tos = 35, accept types 1 and 2 depending on the value
of x;
for s > 35, the stationary decision is the same as for the case of rate maximiza-
tion.
How are these results interpreted? When s = 1, the insect is at the last period of
her life and should accept any host that she encounters. When s = 2, the
parasitoid appears to maximize rate; but what is happening is that hosts 2 and 3
are rejected. Since they have a two-period handling time, accepting them pre-
cludes the chance of encountering a host of type 1 in the last period, and they are
therefore rejected. As s ranges from 3 to 35, host types 1 and 2 are accepted, with
the acceptance of host type 2 depending on both time and the value of the egg
complement (as suggested in eq. 12).
Similar results emerge for other parameter values. For example, if the host
parameters are

Host type N E h
1 0.45 1.0 1
2 0.25 0.3 1
3 0.25 0.1 1

and zo = 0.05, r = {0, 1}, and ¢ = 2, then according to rate maximization only
host type 1 should be taken. For cap = 35, the following results emerge from the
solution of the dynamic-programming equation:

for 1 = s < 4, accept all hosts, regardless of x;

for 4 = s = 8, accept hosts 1 and 2 for all values of x and host 3 depending on x;

for 9 = s = 13, accept hosts 1 and 2 only, for all values of x;

for 14 = 5 < 24, accept host 1 for all values of x and host 2 depending on x;

for s = 25, the stationary-decision regime is reached. In this limit, host type 1 is

always accepted and host type 2 is accepted if x = 5.
Finally, consider a slight variation of the last parameter set in which E, is
increased from 0.3 to 0.5. The decision according to rate maximization is to take
only host type 1. The following results emerge from the dynamic-programming
equation:

for 1 = s = 4, accept all three hosts;

for 5 = s = 8, accept types 1 and 2 and type 3 depending on the value of x;

from period 9 on, stationary decisions are reached, in which host types 1 and 2

are accepted for all values of x.

Conclusion 5.—Host-acceptance decisions based on the premise of maximizing
accumulated lifetime fitness are truly dynamic phenomena, in which the approach
to stationary decisions depends on time, encounter and fitness parameters, and
basic mortality rate. The analysis of rate maximization cannot be used to assess
the approach to stationary decisions.

This conclusion is noteworthy because of considerable empirical evidence that
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host-acceptance decisions by ovipositing insects change over time (see the exam-
ples of boll weevils attacking cotton, Cate et al. 1979; apple maggot flies attacking
apples and hawthorn, Stanek et al. 1987). The approach based on rate maximiza-
tion predicts that such time dependence does not occur.

Partial Preferences

According to the theory of rate maximization, host acceptance follows a ‘‘zero/
one”’ rule: hosts are either always accepted by the parasitoid or never accepted
by the parasitoid. With the full dynamic, state-variable model, however, ‘‘partial
preferences’” may occur, in which hosts are sometimes accepted and, at other
times, not accepted. The simplest—and most easily understood—example fol-
lows from the dynamic results just presented. In that case, depending on time
(i.e., age of the parasitoid), a host is sometimes accepted and sometimes not. This
is a simple time effect: when s is small (the parasitoid is close to the end of her
life), it is optimal to accept hosts (and thus gain fitness) that would be unaccept-
able if her expected future lifetime were large.

A more interesting case arises when the stationary decisions appear to exhibit
partial preferences in the sense that, by ignoring the state of the parasitoid, one
would observe partial preferences. (Naturally, in the full state-variable model,
decisions are still binary but in a larger space encompassing both host parameters
and parasitoid state; for a discussion of partial preferences in diet selection, see
McNamara and Houston 1987.) Some examples of apparent partial preferences
have already appeared. Another is the following. For the parameters

Host type A E h
1 0.45 1.0 1
2 0.25 0.5 2
3 0.25 0.1 2

and zo = 0.05, r = {0, 1}, ¢ = 2, and cap = 20, the optimal decision based on rate
maximization is to accept only host type 1. The stationary decision for the state-
variable model, however, is to accept host type 2 as well, as long as x = 13. Thus,
a stationary partial preference exists. This is due to the capacity effect. When the
value of x is large, the parasitoid should accept host type 2 because she has a large
number of eggs, which will provide some fitness, certainly more than the zero
fitness provided by not accepting the second host. The interplay of capacity and
survival probability causes partial preferences. Partial preferences are also ob-
served for many other values of host encounter and biological parameters.

Stephens (1985) has argued that absolute preferences are most likely not ob-
servable, even if they occur. However, the existence of absolute preferences is
usually cited as one of the main predictions of theories based on rate maximiza-
tion. The state-variable approach shows that such simple absolute preferences
need not occur.

Does Any of This Matter? A Comparison of Fitness Functions

The preceding comparisons all involve the differences between behavioral
decisions, but evolutionary pressure is determined by the values of the fitness
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Fic. 1.—Expected fitnesses (and variances in parentheses) for simulated parasitoids fol-
lowing the optimal decisions of rate-maximization (RM) and state-variable (SV) approaches.
Parameters are the last set of values in the text (subsection ‘‘Does Any of This Matter?’’).
Parasitoids using RM decisions have an expected fitness of about 80% that of parasitoids
using SV decisions.

functions. It might be, for example, that although oviposition decisions differ, the
actual fitness functions do not. For example, consider the following parameter set:

Host type N E h
1 0.45 1.0 1
2 0.25 0.5 1
3 0.25 0.1 1

and zo = 0.05, r = {0, 1}, cap = 5, and ¢ = 2. In this case, the optimal decision
according to rate maximization is to accept only host type 1, whereas the optimal
stationary decision from the dynamic model is to accept host types 1 and 2.
The expected fitness associated with either the rate-maximizing or state-
variable decisions can be computed by the method of forward iteration (Mangel
and Clark 1988) or by a Monte Carlo simulation. Figure 1 shows the expected
fitnesses obtained by the simulation of 5000 parasitoids following either rate-
maximization or state-variable decisions. The ultimate, steady-state values of
fitness are 5.4 (for the rate-maximizing decisions) and 6.7 (for the state-variable
decisions), a factor of 5.4/6.7 = 0.81, which suggests that there are strong
evolutionary pressures to follow the optimal state-variable decisions.

DISCUSSION AND CONCLUSIONS

The comparison of rate-maximization and dynamic state-variable approaches to
parasitoid oviposition decisions allows us to ascertain when the approach of rate
maximization is valid and when its predictions should apply. In summary, the
following results emerge. Insects with small holding capacities for mature eggs or
low basic mortality rate, zo, are more likely to follow the predictions of rate
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Fic. 2.—Expected survivorship curves for the situations depicted in figure 1.

maximization. When the rankings used in the rate-maximization approach are
close to each other or the egg production rate of the insect is low, the decisions
based on rate maximization are likely to differ from the ones based on the state-
variable approach. The decision to accept a host for oviposition, based on either
approach, depends only weakly on the encounter rate with that host. (For gregari-
ous or clutch-laying parasitoids, this may not be the case; see Mangel 19874 for an
example.) Host-acceptance decisions based on rate maximization are stationary
and independent of time, but those based on the state-variable approach may be
truly dynamic. Partial preferences may occur in decisions based on the state-
variable approach. The total lifetime fitnesses computed using the rate-maximi-
zation approach and the state-variable approach may differ considerably. Finally,
in some situations, the decisions based on the rate-maximizing approach and the
decisions based on the state-variable approach agree. Thus, the predictions from
the rate-maximizing approach of both the all-or-none acceptance decision and the
ranking by E;/(h; + ¢) are not well borne out, but the prediction of inclusion of a
host independent of its own encounter rate is generally upheld. In addition, the
results presented here show the importance of basic mortality, capacity, and
actual rate of egg production in the optimal oviposition decisions.

Part of the underlying difference between the two approaches involves survival
probabilities. The rate-maximization approach assumes that a steady state is
reached instantaneously and that, in this steady state, eggs are produced at a
constant rate (about 0.31 eggs per period for the last set of parameters given
above). The state-variable approach, however, assumes that eggs are produced
only when needed. This has the effect of providing greater survival for consider-
able amounts of time. Figure 2 shows the expected survivorship curves for each of
the decisions for the last set of parameters given. Under rate maximization, the
egg production rate leads to a single-period survival of 0.92; the probability of
being alive after ¢ periods is thus 0.92°. With the state-variable approach, eggs are
produced only when needed. An insect starting her life with a full egg complement
will thus not produce eggs until the expected number of eggs used exceeds its
initial complement, approximately when ¢ satisfies (\; + \y)t > 5.
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The corresponding survival values are 0.95 when no eggs are produced and 0.86
when one egg is produced per period. Thus, if # < 5/(\; + \,), survival is 0.95". If
t > 5/(\y + \,), survival is (0.95)>/ M+ 86)' ~>/®1+\)  The results shown in
figure 2 indicate that the state-variable decisions lead to considerably higher
survival (and thus expected fitness) for the first 12 periods; the crossover point is
at about 30% survival. The state-variable approach is ‘‘optimal’’ because the
parasitoid produces eggs only when she needs them, rather than at a lower but
constant rate.

Other factors could have been included in the state-variable models. For ex-
ample, encounter rates and mortality might be functions of the egg complement, x,
with encounter rates decreasing as the egg complement increases and mortality
rate increasing as the egg complement increases. The effect of each of these would
be to drive the state-variable decisions away from the rate-maximizing decisions.

Unlike the approach of rate maximization, a full dynamic, state-variable model
allows us to understand the effects of biological parameters that are ‘‘averaged
out’’ of the rate-maximization approach. For this particular problem, the biolog-
ical parameters of the parasitoid that do not appear in the rate-maximization
approach include effects of capacity constraints, basic mortality rates, closeness
of rankings of hosts in the rate of fitness computation, and actual rate of egg
production. The state-variable approach also allows us to compute the rate of
approach to stationary decisions. The state-variable approach, to paraphrase
Wellington, puts the parasitoid back into parasitoid decision making. Similar
kinds of understanding have been obtained by a state-variable analysis of diet-
selection problems (Houston and McNamara 1985), whereby it is optimal to
accept any food type when energy reserves are low, because otherwise starvation
is more likely. In the present situation, it is optimal to accept inferior hosts when
egg complements are high, since inferior hosts provide at least some fitness to the
parasitoid.

The main disadvantages of the dynamic state-variable approach are that the
analytic results are typically complicated and that numerical work is often re-
quired to obtain biological insights. The main advantage is that much more
biological realism can be added and understanding gained. It appears that the
trade-off is well worth it and that the state of the parasitoid is indeed important for
parasitoid decisions.

SUMMARY

A state-variable theory for parasitoid host-acceptance decisions is developed.
In this theory, the state variable is the egg complement at any particular time.
Decisions are determined by the maximization of Darwinian fitness, which in-
volves both survival and reproduction in a stochastic world. The state-variable
theory is compared with simpler theories based on rate maximization. In some
circumstances, both theories predict the same host-acceptance patterns; but for
wide ranges of biologically meaningful parameters, the predictions of the two
theories differ.
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APPENDIX

In this appendix, I complete the derivation from equation (7) to equation (8). The starting
point is equation (7), which is reproduced here, assuming that the capacity constraint is not
binding:

W(x, 1)

= max,((1 — INdnexp[—zo(l + er)dflW(x + rdt, t + di)
+ 3N dtmax{exp[—zo(1 + er)dt]W(x + rdt, t + dt); (A1)
E; + expl—z0(1 + @) (h; + dDIWx + r(h; + di) — 1,t + h; + dtl}).

Assume that W(x, ¢) is smooth enough to be differentiated, and use the expansion exp(x) =
1 + x + (x%2). Finally, introduce the notation O(df) and o(df): O(dr) denotes a term
proportional to dt, such that O(dt)/dt approaches a constant as dt approaches zero; o(dt)
denotes a term proportional to a power of dt greater than one, such that o(dt)/dt ap-
proaches zero as dt approaches zero. In particular, this shorthand allows us to write
dtOo(dt) = o(dr).

A Taylor expansion of the right-hand side of equation (A1) and using subscripts on
W(x, 1) to denote partial derivatives leads to

W(x, t)

= max,((l — INdD[1 —zo(1 + @er)dt + o(d)][W(x, t) + rW,dt + W,dt + o(d?)]
+ Ihdrmax{[l + O@)][W(x, t) + O@dD]; (A2)
E; + exp[—zo(1 + on)h][l + OWDI[W(x + rh; — 1,t + h) + O(dt)]}).

On the right-hand side, now collect terms according to powers of dt: dt°, dt, and o(dt). This
gives

W(x, t)
= max,[W(x, ) + di(GW, + W, — SN + 20(1 + eI W(x, 1) + SN drmax{W(x, 1);
E; + exp[—zo(1 + ehIW(x + rh; — 1,1 + h)}) + o(dn]. (A3)

Now subtract W(x, t) from both sides, divide by dt, and let dt approach zero. Since o(dt)/dt
— 0 as dt — 0, equation (A3) becomes

-W, = max,(er — BN + 201 + eI W(x, 1) + ZN;max{W(x, 1);
E: + exp[—zo(1 + eNh]W(x + rh; — 1, + h)}),
and this is equation (8) in the body of the text.

(A4)
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The situation analyzed by Charnov and Stephens (1988), and most often considered in
the literature, includes two hosts, with host 1 superior to host 2 in the ranking based on rate
maximization. It is worthwhile considering equation (A4) in that case. The first type of host
will always be accepted. In addition, there will exist a switching or boundary curve x,(¢)
such that the plane of egg complement (x) versus time (¢) is divided into two regions. In
region «, hosts of type 2 are also accepted for oviposition; and in region R, hosts of type 2
are rejected. The analytic problem then becomes one of determining the boundary curve,
xp(#), such that in region ¢ equation (A4) is satisfied, that in region R

-W, = max,(rWX — [\ + z0(1 + eNIW(x, ) + N\ymax{W(x, ©);
Ei + expl—z0(1 + ¢ IWx + rh; — 1,1 + hy)})

is satisfied, and that on the boundary of the two regions Wg[x,(1), t] = Wylx,(?), t], where
We(x, t) denotes the solution of the appropriate equation (eq. A4 or eq. AS) in region .

(AS)
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