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Abstract
Transactional memory represents an attractive conceptual
model for programming concurrent applications. Unfortu-
nately, high transaction abort rates can cause significant
performance degradation. Conventional transactional mem-
ory realizations not only pessimistically abort transactions
on every read-write conflict but also because of false shar-
ing, cache evictions, TLB misses, page faults and interrupts.
Consequently, the use of transactions needs to be restricted
to a very small number of operations to achieve predictable
performance, thereby, limiting its benefit to programming
simplification. In this paper, we investigate snapshot isola-
tion transactional memory in which transactions operate on
memory snapshots that always guarantee consistent reads.
By exploiting snapshots, an established database model of
transactions, transactions can ignore read-write conflicts and
only need to abort on write-write conflicts. Our implementa-
tion utilizes a memory controller that supports multiversion
memory, to efficiently support snapshotting in hardware. We
show that snapshot isolation can reduce the number of aborts
in some cases by three orders of magnitude and improve per-
formance by up to 20x.

Categories and Subject Descriptors B.3.1 [Memory Struc-
tures]: Semiconductor Memories

Keywords Transactional Memory; Snapshot Isolation; Mul-
tiversion Concurrency; Abort Rate
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1. Introduction
Twenty years after Herlihy and Moss [26] introduced the ar-
chitectural concept of transactional memory (TM), IBM [12]
and Intel [58] have finally released processors that provide
a restricted form of hardware TM (HTM). These products
are reflective of a substantial body of prior research [19,
21, 25, 31, 40, 45, 50, 52] which all share the property
of implementing a consistency mechanism that is equiva-
lent to 2-phase locking (2PL). 2PL restricts performance
in that it pessimistically aborts transactions on every read-
write and write-write conflict. Contemporary HTM realiza-
tions are also restricted in the size of transactions they can
support. The isolation principle enforced by 2PL semantics
requires storing uncommitted writes in a version buffer re-
alized as the L1 cache. Consequently, if this version buffer
overflows, the associated transaction is forced to abort. The
transaction then needs to be re-executed, leading to unpre-
dictable performance and reduced concurrency.

In this paper, we investigate an HTM that utilizes snap-
shot isolation (SI) [6] that we refer to as SI-TM. The snap-
shot isolation model has been successfully deployed by
transactional databases as a means of improving concur-
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Figure 1: Read-Write and Write-Write Aborts in 2PL
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Figure 2: Example Transaction Schedule

rency and is used in most systems including PostgreSQL,
Oracle, and SAP HANA. SI provides some attractive fea-
tures by allowing concurrent reads and writes to the same
data item and by always, even in the presence of a conflict,
presenting a transaction-consistent state of shared memory
to the application. Reducing transaction aborts to write-write
conflicts holds the potential of significantly improving per-
formance, because, as illustrated in Figure 1, 75%-99% of
all transaction aborts in applications as the STAMP [39]
benchmark suite are caused by read-write conflicts.

SI has received little attention in TM research despite its
prospect of eliminating read-write conflicts. Implementing
a TM mechanism based on SI is challenging as it requires
a cheap and efficient mechanism for creating snapshots of
main memory state. Therefore, we introduce a new mem-
ory subsystem that incorporates the notion of time to store
multiple versions of the same data item. By utilizing a copy-
on-write mechanism, our memory system supports genera-
tion of new data versions on the fly, minimizing the cost of
snapshot generation. Enabling multiple versions of the same
datum to coexist in the same memory space solves the is-
sue of version buffer overflows and avoids aborts otherwise
inflicted by interrupts and context switches.

SI suffers from the well-known write skew anomaly
which increases programming complexity. Under certain sit-
uations, SI permits transaction schedules that are impossible
in a serializable TM system and that can lead to unexpected
program behavior. Although write skew anomalies are rare,
programmers need to be aware of the relaxed SI consistency
model or rely on programming language and tool support.
Recent advancements [11] made by the database commu-
nity yielded a methodology that can detect and resolve those
consistency anomalies. In this paper, we analyze how these
techniques can be applied to transactional memory and fur-
thermore present a tool that helps to remove write skew
anomalies from transactional memory programs.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses snapshot isolation and compares it to other
concurrency mechanisms. Section 3 introduces our multi-
versioned memory system. Section 4 introduces SI-TM, a
novel TM proposal that aborts transactions only on write-
write conflicts. Section 5 addresses the write skew anomaly.
Section 6 evaluates our technique. Section 7 provides an
overview of related work, before we conclude in Section 8.

2. Concurrency in TM systems
In TM applications, concurrency is reduced by threads that
either stall or abort due to conflicting accesses. In both cases
the threads do not perform useful work. 2PL implementa-
tions provide linearizability but limit performance by abort-
ing transactions on every read-write or write-write conflict.
As shown in Figure 2, in 2PL systems the commit of trans-
action TX0 forces all other three transactions to abort which
is unnecessarily pessimistic, as committing TX1 after TX0
does not violate serializability.

Conflict serializability (CS) relaxes 2PL by allowing con-
flicting accesses as long as a valid ordering of the transac-
tions can be found that matches the order of conflicting ac-
cesses. Therefore, CS implementations as SONTM [4] do
not abort on every conflict but rather track dependencies be-
tween the involved transactions whose direction depends on
the order of the conflicting actions. In the example, under
CS TX0 and TX1 commit, however, TX2 and TX3 need to
abort as there exists a cyclic dependency between T0 and T2
involving the accesses to variables A and B.

In SI, transactions always read data from a snapshot of
committed data valid as of the time the transaction started.
Updates of other transactions that started at a later point in
time are not visible to the transaction. If a transaction com-
mits, for each item in its write set, it checks that no overlap-
ping transaction that previously committed has written the
same data item. Serving reads from a transaction-specific
snapshot isolates the updates of TX0. Therefore, TX2 and
TX1 can safely commit under SI. Only TX3 has to abort un-
der SI, because of the write-write conflict.

SI-TM utilizes lazy conflict detection, performing valida-
tion at commit time in contrast to eager conflict detection
schemes that check for conflicts on every transactional mem-
ory access. Lazy conflict detection is preferable as it guar-
antees forward progress and mitigates the impact of certain
conflicts [10], whereas eager conflict detection is prone to
livelock due to repeating mutual aborts. Previous works in-
cluding TCC [25], Bulk [13] and FlexTM [54] have shown
that lazy implementations are able to outperform eager sys-
tems. SI-TM further improves on existing lazy systems by
introducing a new validation technique based on timestamps.
Our technique enables local commits, as transactions can
validate their write set by comparing it against the state of
main memory instead of broadcasting it to the other cores in
the system.

3. Multiversioned Memory Architecture
SI-TM requires a mechanism to generate snapshots of main
memory to serve transactional read operations. This is chal-
lenging as, in general, the read set of a transaction is un-
known at transaction begin. To avoid creating a copy of
the process’s entire memory space to form a snapshot, our
memory system generates new data versions on the fly using
copy-on-write. Each time a data item, in our implementation
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Figure 3: Multiversioned Memory Architecture

a cache line, is transactionally written, instead of modifying
it in-place, a copy is created incorporating the modifications.
This makes shared data immutable which guarantees that
every read operation accessing shared data always returns
a consistent value. To support multiple versions of a cache
line, our memory system introduces an indirection layer
called version list. Lines in memory are accessed by retriev-
ing a pointer from the version list using both an address and
timestamp. The pointer is then dereferenced to access the
data in memory. Figure 3 shows how memory is accessed us-
ing the indirection layer. Timestamps are transparent to soft-
ware and hence do not require changes to the ISA or load/-
store API. In SI-TM, every transaction obtains unique start
and end timestamps which are used by the MVM to locate
the correct version. On a non-transactional read access, the
MVM returns the newest version. Non-transactional writes
modify the most current version in place. SI-TM provides ar-
chitectural support for version management and allocation of
shared data. Therefore, main memory is partitioned into con-
ventional memory and multiversion memory. Multiversion
memory exposes the same interface as conventional memory
to the OS, however, on allocation e.g. through malloc(),
only the mapping between physical address and version list
entry is installed. Physical memory on the other hand is al-
located on the first write. Both the version list as well as
multiversioned data is stored in the MVM partition.

3.1 Garbage Collection
There exists a variable number of versions for each ad-
dress in the MVM depending on the number of transactional
writes to the address as well as on the age of the active trans-
actions. Thus, the oldest active transaction determines the
number of versions that need to be retained. SI-TM, there-
fore, stores all start timestamps in a priority queue whose
head represents the oldest in flight transaction. Instead of
searching the entire indirection matrix for obsolete versions
on every commit, we delete unneeded versions of an address
on every write to that address by analyzing the timestamp
of the oldest existing version. While this maintains obso-
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lete versions longer than required, it significantly reduces
garbage collection overhead.

In principle, the number of versions is unlimited as one
thread might commit an arbitrary number of modifications
while another thread is executing a long running transaction.
To limit the number of existing versions we implement ver-
sion coalescing. The key idea is that only the most current
state older than the start timestamp of a particular transac-
tion needs to be provided. The number of active transac-
tions, respectively hardware threads, therefore, bounds the
number of versions. We implement coalescing by checking
every time a new version is generated whether a start times-
tamp exists that is older than the version to be created and
newer than the previous version. Only in this case a new ver-
sion is created, otherwise the previous version is overwritten.
Figure 4 shows an example schedule of five transactions that
update a shared datum in memory. Each time a transaction
commits, it generates a new version of A tagged with its end
timestamp (TS). As no new transaction starts in between the
commit points of TX0 and TX1 as well as in between TX3
and TX4, versions 1 and 3 as well as versions 6 and 8 can
be coalesced into single versions. After applying coalesc-
ing, the number of existing versions is in fact much smaller
than the number of hardware threads. As an example, when
using 32 threads running the STAMP applications, in less
than 1% of the cases there exist more than 4 versions of the
same address (see Appendix A). While this might not apply
to all applications, there exist three reasons why the number
of versions in general is limited. (1) the number of concur-
rent transactions is usually less than the number of threads,
(2) consecutive writes to the same cache line in a short pe-
riod of time are rare and (3) if there exists write contention
on a cache line, transactions have to abort due to write-write
conflicts anyway. We, therefore, decided to restrict the num-
ber of versions to 4 and simply abort a transaction if it tries to
create a fifth version. An alternative approach is to discard
the oldest version on each write and to keep a limited his-
tory. In this case, transactions abort on reads, if they cannot
find a version older than their timestamp. Both implementa-
tions affect the abort rates and performance by less than 1%.
Yet another alternative is to revert to using the conventional
virtual memory page-level copy-on-write at this point.



3.2 Overheads
The indirection layer of the MVM architecture consumes
extra memory capacity. Our current implementation utilizes
32 bit pointers to support a maximum of 232 cache lines,
or 256 GByte of shared multiversioned memory. For each
cache line address, the version list needs to store four 32 bit
references as well as four 32 bit timestamps. Hence, if there
exist four versions per address, the overhead is 2 · 32/512 =
12.5% per line. In the worst case there exists only one active
line resulting in an overhead of 50% per allocated MVM
line. These overheads can be addressed by increasing the
version granularity, e.g. by combining 8 lines into a bundle,
the worst case overhead is reduced by a factor of 8 to 6%.
This solution trades memory capacity for write overheads as
the copy-on-write operation now requires copying an entire
bundle on the first write. However, writes are usually not
on the latency critical path and the cost is amortized in
the existence of writes that exhibit spatial locality. It can
be further reduced by techniques such as Rowclone [30].
Finally, HICAMP [15] introduced a deduplication technique
for increasing memory capacity which can be implemented
utilizing MVM’s indirection layer.

Writing to the MVM does not simply update data in
place but requires allocating a new line in memory, storing
the cache line at this location and modifying the version
list accordingly. Providing dedicated hardware support to
compare timestamps in parallel, allocate a cache line from
the free list and install the reference to the indirection layer
addresses these overheads. Furthermore, writes are not on
the critical path and usually less latency sensitive than reads.

Memory reads incur a latency penalty, as on a load the
entry needs to be obtained from the indirection layer before
the correct data version determined by the timestamp can be
retrieved from main memory. In our architecture we assume
per core private L1 and L2 data caches and hence, multiple
versions of the same data only exist in shared memory, re-
spectively the L3 cache and DRAM. Placing the MVM con-
troller at the L3 level leaves L1 and L2 latency unaffected.
Version list entries can be cached in the L3 and by provid-
ing hardware support, we expect read access of multiversion
data to be less costly than two full round trip times. As in-
direction level entries are much smaller than the referenced
data cache lines, a small translation cache accessed in par-
allel to L2 can compensate for most of the extra latency.
The bandwidth overhead introduced by the MVM depends
on data locality and access patterns. As a single cache line
contains eight version references, a single cache line access
fetches multiple indirection references, resulting in a best
case bandwidth increase of 12.5%.

3.3 Indirection Layer
The indirection layer introduced by the MVM represents a
powerful mechanism that can be exploited for other pur-
poses. While a detailed analysis of the following techniques

is out of the scope of this paper they provide further motiva-
tion for our multiversioned memory system. As described in
HICAMP [15] an indirection layer can be used for memory
deduplication by mapping multiple addresses to the same
data cache line, if their content is identical. The mechanism
works particularly well for common cases like the zero cache
line that only consists of zeros. Snapshots can be applied not
only to multiversion concurrency control but also to provide
an efficient checkpointing mechanism that can be utilized by
speculation techniques or for resiliency by allowing rollback
to a consistent state in response to an error. Furthermore,
the indirection layer provides bit steering capability to redi-
rect traffic in heterogeneous memory systems transparently
to software and it enables fine grain chipkill to deactivate de-
fect memory cells on a per line basis to improve reliability
and yield. Finally, the indirection layer can reduce fragmen-
tation due to fine-grained memory line mapping.

4. SI-TM
SI-TM increases concurrency in multithreaded applications
by reducing transaction aborts in four ways: (1) Transactions
can commit in the presence of read-write conflicts, SI-TM
only aborts on write-write conflicts. (2) Read-only transac-
tions are guaranteed to commit. (3) SI-TM enables a unique
lazy conflict detection mechanism which reduces aborts over
eager conflict detection and (4) SI-TM supports unbounded
transactions and hence transactions do not need to abort in
the case of a versions buffer (L1 cache) overflow. SI-TM
achieves these properties by presenting the software process
with the illusion of a snapshot of memory taken at transac-
tion begin. Concurrent writes are isolated to the transaction
that issued the writes, guaranteeing that reads always return
consistent data.

SI-TM is based on multiversion concurrency control
which guarantees that writes are not only isolated from other
transactions until a transaction commits, but even beyond if
the other transactions started beforehand. Adding multiver-
sion awareness to the memory hierarchy not only allows
maintaining older versions for a virtually unlimited time
but also enables transactions to exceed the size of the L1
cache by just spilling over to memory. SI-TM does not re-
quire tracking read sets as on commit SI-TM only checks for
write-write conflicts.

4.1 Hardware Components
To implement SI-TM we extend a typical processor archi-
tecture with the components shown in Figure 5. Write sets
are added to the cores to track the memory addresses that
are transactionally written. One additional tag bit per cache
line is added to the L1 and L2 cache to denote whether the
cache line has been accessed transactionally. An optional
translation cache can be added to the core that holds recently
used translation lines. It can be accessed in parallel to the L2
cache to mitigate the access penalty of the indirection layer
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in the case of a L2 miss. The multiversion memory controller
is located within the uncore part of the system. On a transac-
tional memory access, it reads the corresponding entry from
the version list and compares the versions to the start times-
tamp of the calling transaction. It then issues the data cache
line read. It furthermore manages allocation of shared mem-
ory lines and garbage collection of obsolete entries from the
version list. Additional components in the uncore part of the
system are the vectors for start and end timestamps as well as
the global timestamp counter. In the rare case of a timestamp
counter overflow, all active transactions are aborted and an
interrupt is thrown to handle the overflow in software.

4.2 Transactional Actions
Transactional actions are implemented in SI-TM as follows.

TM BEGIN: A logical snapshot for the transaction is gen-
erated by obtaining a unique timestamp using an atomic in-
crement to the global timestamp counter.

TM WRITE: The affected memory address is inserted into
the write set, the data is written into the L1 cache and the
cache line is marked as transactionally written. As we im-
plement lazy conflict detection no coherency messages are
emitted. If the cache line is evicted to the shared L3 cache,
the MVM creates a new version for this cache line, allocates
a memory line and updates the version list. Modified lines
which are not yet committed can be evicted as they do not
overwrite data in place. For uncommitted lines, the commit
timestamp is yet unknown, hence a temporary ID is used in
place of a timestamp to mark the line as transient, making
it only visible to the owning transaction. Therefore, the N
largest timestamps are reserved for temporary IDs, where N
represents the number of threads.

TM READ: Transactional reads need to be served by the
corresponding snapshot. Therefore, on an L3 read access, the
MVM compares the start timestamp of the calling thread’s
transaction and compares it to the timestamps in the version
list. If the version list entry is not contained in the L3, it
needs to be fetched from main memory. The most current

version older than the start timestamp of the calling transac-
tion is then returned to the processor either from L3 or in the
case of a miss from main memory. No read-set validation is
necessary for loads (e.g. by broadcasting via the cache co-
herency protocol) as the isolation provided by SI supports
invisible readers.

TM COMMIT: Read-only transactions commit with zero
overhead. They neither obtain an end timestamp, nor per-
form any checks. All other transactions start the commit
phase by obtaining an end timestamp from the global times-
tamp counter. The transaction then traverses its write set
and writes back the corresponding lines which might still
be buffered in the private caches to the MVM. For each line,
the MVM creates a new version assigned with the obtained
end timestamp. It also determines for each line whether the
timestamp of the most recent corresponding entry in the ver-
sion list is greater than the begin timestamp of the commit-
ting transaction. If a newer version exists for one of the writ-
ten elements a write-write conflict exists and the transaction
needs to abort. As an optimization, in the case of a write-
write conflict, the two lines can be compared to the snapshot
version on a word granularity to eliminate false sharing [56]
and silent store [34] conflicts. This approach combines the
performance of a fine grain (word based) conflict detection
scheme with low overhead, as all meta data including times-
tamps and write set entries are tracked per cache line only.
In the case of a true conflict, the transaction iterates over its
write set again, removes all written lines from the MVM,
empties its write set and performs rollback in software. In
the absence of write-write conflicts, the transaction can now
safely commit.

We refer to our commit technique as timestamp-based
conflict detection. Timestamping of transactions has been
applied in TinySTM [23] among others, whereas HTMs
have primarily used it for guaranteeing fairness and forward
progress [2, 40, 47]. The benefits of timestamp-based con-
flict detection over write/read set validation based techniques
are twofold: (1) No nested loop is required to compare the
two read/write sets or alternatively no false positives occur as
in bloom filter [7] based approaches. In fact, due to SI, read
sets do not have to be analyzed at all. (2) It enables lazy con-
flict detection by comparing against a history of committed
writes at once using a single operation. For example, in the
presence of a long running transaction and many concurrent
short update transactions we do not perform conflict detec-
tion against all short update transactions but only against the
committed state at the end of the long running transaction.
In timestamp-based conflict detection a new version of the
accessed data is created on every write while in value-based
conflict detection as used in JudoSTM [41], NOrec [18] and
KILO-TM [24], a copy of the original data version needs
to be generated on each read. As writes are generally less
common than reads, timestamp-based conflict detection in-
troduces less overheads.



Lazy conflict detection schemes reduce overheads of
transactional memory accesses, by coalescing the opera-
tions and performing bulk validation at commit time. How-
ever, serializing bulk commits can become a performance
bottleneck [44]. Commit generally needs to be performed
atomically, as otherwise races can occur between transac-
tion validation and actual commit, leaving existing conflicts
undetected and overwriting data in-place. To address this
problem, BulkSC [13, 44], Scalable TCC [14] and SRC [43]
use a variant of partitioning the shared memory space and
allowing concurrent validation to independent regions. The
mechanisms usually obtain a lock for each line in their write
set, then perform conflict detection and then update those
lines. In the case of disjoint write sets the validation process
can be performed in parallel. All those techniques require
modifications of the cache coherency protocol, directory
structure and need to apply complex mechanisms to guar-
antee forward progress and fairness.

SI-TM avoids the problem altogether by never overwrit-
ing data in-place. As a result, to perform conflict detection
a transaction does not need to acquire locks for each line in
its write set. Instead, it optimistically creates a new version
and only in the case of a conflict rolls back its newly created
versions, making the validation process itself transactional.
There exists a possible race condition in the case new trans-
actions start while a commit is performed. Consider a write
set of values A and B that is being committed. It is possi-
ble that a newly started transaction reads A and B whereas
only A has been made visible by the committing transaction.
We address this issue by obtaining an end timestamp that is
equal to current global timestamp + ∆, in addition we
increment the current value by one. New transactions, there-
fore, obtain start timestamps smaller than the end timestamp
of the commit being processed and hence cannot see the new
values. In the case ∆ + 1 transactions start during a commit,
the starting transaction needs to stall until the commit is pro-
cessed. This case is rare as the commit process is usually of
short duration. On a commit the global timestamp is set to
the end timestamp of the committing transaction.

4.3 Unbounded Transactional Memory
Ideally, HTM systems should support transactions of arbi-
trary size and duration with predictable performance. SI-TM
provides unbounded transactions in hardware as it does not
rely on the processor caches to act as version buffers. Mul-
tiversioned memory effectively enables transactions to ea-
gerly update data in memory without overwriting the orig-
inal state. On abort, no time-consuming undo needs to be
performed as the previous version still exists. Readers never
wait or stall on a conflicting access by accessing their con-
sistent snapshot. Deleting aborted versions is off the critical
path and can be performed as a background process. There-
fore, SI-TM represents a more feasible and easier to verify
implementation as there exist no complex interactions and
races between hardware and software.

In contrast, conventional TM approaches that utilize the
L1 cache as a version buffer only support bounded transac-
tions. For example, Intel’s Haswell may abort transactions
that contain only 9 write operations because of associativity
conflicts and it aborts every transaction that accesses more
than 16KByte of data due to version buffer overflows [33].
LogTM [40] addresses this problem by performing eager
version management and updating memory in place. To en-
able rollback on abort, LogTM creates an undo log in thread
local virtual memory. While this approach enables fast com-
mits, transaction abort is complex and needs to be handled
by software. Also, while abort is handled in software the re-
questing transaction has to wait. VTM [46], PTM [16] and
UTM [2] apply similar techniques by storing state for small
transactions in hardware and by overflowing into virtual-
ized per thread memory. Relying on software and virtual-
ized memory introduces significant overheads and impairs
predictability.

4.4 System Implications
Many contemporary HTM implementations utilize the cache
coherency protocol to perform eager conflict detection. SI-
TM does not require emitting coherency messages on trans-
actional loads and stores due to lazy conflict detection. A
written cache line is simply marked as transactionally ac-
cessed and remains unversioned in the private caches until
it reaches the shared LLC, either due to eviction or because
of transaction commit. On a transactional read, the appropri-
ate version is fetched from the MVM, stored into the cache
and marked as transactional. Snapshots need to be invali-
dated during commit to force update to the current state in
subsequent transactions.

Multiversioned memory is allocated as a new memory re-
gion next to the heap and thread local data as the stack. It
can be administered by a conventional heap manager with
the only difference that it spans a different memory region.
Usually physical memory is allocated in page sized chunks,
the allocator then hands out smaller portion to the applica-
tion. In SI-TM, on page allocation, a consecutive range of
physical addresses is mapped to the page. For each address
an entry in the version list is created, however, only on the
first write to a cache line, the entry is populated and a data
line is allocated. This process is transparent to the allocator
and to the virtual memory system, as the MVM exposes a
consecutive range of physical memory to software.

Our prototype implementation supports dynamically al-
located multiversioned memory utilizing a mvmalloc()

API. Applications can either replace their malloc() calls
with our version or link against our library to replace all
malloc() calls within the application. The STAMP [39]
benchmark suite which we use in our evaluation already
contains macros for allocating shared memory and hence
required minimal code changes to support MVM. We as-
sume that upcoming TM APIs [1, 53] and compilers support
means to manage transactionally accessed memory.



Listing 1: Withdraw code exhibiting write skew.

1 void Withdraw ( bool accoun t , i n t v a l u e ){
2 i f ( c h e c k i n g + sav ing>v a l u e )
3 i f ( a c c o u n t )
4 check ing−=v a l u e ;
5 e l s e
6 sav ing−=v a l u e ;
7 }

5. Write Skew Anomaly
Snapshot isolation is non-serializable as it permits the write
skew anomaly. Write skew occurs if there exists an invariant
whose component variables span multiple concurrent trans-
actions and the transactions have disjoint write sets. One ex-
ample write skew is shown in Listing 1 describing the with-
draw function of a banking application. If one thread trans-
actionally withdraws money from the credit account while
a concurrent thread withdraws money from the savings ac-
count using snapshot transactions, the resulting sum of the
accounts can be smaller than zero which is impossible in
a serializable TM system. In the example, both writes re-
quire that the invariant checking + saving > value holds,
however, one transaction can invalidate the invariant without
notifying the other transaction thereof.

A study of the STAMP benchmark’s source code showed
that none of the applications comprises a single write skew
anomaly, however, there exist anomalies in the data structure
library utilized by said applications.

One example is the linked-list container, shown in List-
ing 2. If two concurrent threads remove adjacent elements
from the list using snapshot transactions, elements might be
dropped from the list turning it into an inconsistent state. The
anomaly can be avoided by setting the next pointer to Null

when removing an element, as shown in line 10 of Listing 2,
enforcing a write-write conflict in the respective scenario.
While data structure anomalies can be resolved by the li-
brary developer and application anomalies appear to be rare,
programmers need to assure application correctness. Data
races within parallel programs are notoriously hard to de-
tect. However, as shown above, write skew anomalies only
occur under certain well known conditions. Based on this
knowledge we developed a methodology for detecting and
resolving write skew in transactional memory programs.

5.1 Write Skew Detection and Prevention
Cahill et al. have proposed a technique [11] to reliably detect
write skew using dependency graph analysis. A write skew
dependency graph is a directed graph whose vertices rep-
resent transactions and whose edges define read-write de-
pendencies between those transactions. A cycle within the
dependency graph represents the necessary condition for a
write skew. Determining write skews based on dangerous
situations is safe but might introduce false positives. Appli-
cations that suffer from write skew can be corrected by de-

Listing 2: Linked list code exhibiting write skew

1 void remove ( i n t v a l u e ){
2 Node prev = head ;
3 Node n e x t = p rev . g e t N e x t ( ) ;
4 whi le ( n e x t . g e t V a l u e ()< v a l u e ){
5 p rev = n e x t ;
6 n e x t = p rev . g e t N e x t ( ) ;
7 }
8 i f ( n e x t . g e t V a l u e ( )== v a l u e ){
9 p rev . s e t N e x t ( n e x t . g e t N e x t ( ) ) ;

10 / / n e x t . s e t N e x t ( n u l l ) ;
11 f r e e ( n e x t ) ;
12 }
13 }

termining all read operations that are part of a dependency
cycle and by including them in the transaction’s validation
process. We refer to this technique as read promotion as it
selectively promotes read operations to be treated as writes
for conflict detection.

Read promotion can be applied by the programmer to re-
solve write skew comparable as to adding fences and locks
to avoid data races. However, because reasoning about de-
pendency cycles is difficult, Dias et al. [20] proposed to au-
tomatically generate the dependency graph of transactional
memory programs using static code analysis, based on sep-
aration logic. While the approach is sound, it is compute in-
tensive and hence can only be applied to small kernels.

To address this issue, we developed a best-effort tech-
nique based on dynamic code analysis which resulted in a
tool that is able to handle large applications. The tool is
implemented using PIN [36] and instruments transactional
memory applications at runtime. In particular, it intercepts
transactional operations and generates a trace of globally or-
dered TM BEGIN, TM READ, TM WRITE and TM COMMIT op-
erations. In addition, for each read and write operation it
backtraces the callstack to determine the line in the source
code which called the transactional memory access. When
the application terminates, the trace is post-processed, build-
ing a dependency graph for determining write skews and
their location in the source code. We chose to defer the main
work into the post-processing phase to minimize the effect
of our tool on the application’s execution behavior and con-
currency.

The tool works with all applications that either support
the C++ STM [1] or RSTM [37] APIs and only requires
the applications to disable inlining of the TM * calls and to
be compiled with symbol information. Subsequently, write
skews found by the tool can be either resolved by the pro-
grammer or fully automatically by our tool. The tool applies
read promotion for every transactional read that is part of a
write skew. Promoted reads are inserted into the write set to
trigger an abort in the case of a write skew. However, a pro-
moted read is not treated as a write in that they do not create
new data versions in the MVM.
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We applied our tool to all applications of STAMP and
to several microbenchmarks. The results are consistent with
our previous study, showing anomalies exclusively in trans-
actional data structures including the aforementioned linked
list, a doubly-linked list as well as multiple write skews in a
Red-Black Tree implementation.

The tool represents a best-efforts approach because it uti-
lizes dynamic analysis to detect write skew. In particular, it
does not provide full soundness in the sense of guaranteeing
the detection of all write skews. The quality of the results,
thereby, depends on the number of tested transaction sched-
ules and input vector combinations. Only a sufficiently large
test coverage leads to meaningful results while the required
execution time of the tool increases proportionally with the
size of the analyzed source code or more precisely with the
number of critical sections defined in the source code.

From a practical perspective, the tool has proven success-
ful. The tool detected anomalies within minutes of runtime
and corrected applications never showed inconsistent behav-
ior even after extensive testing. We are currently extend-
ing our methodology to provide information on test cover-
age which is particularly interesting in cases where the tool
achieves coverage of all schedules for a given input vector.
In addition, programmers can always enforce serializability
by enforcing read-write conflict detection for all or a subset
of transactions. In this case SI-TM still provides the benefit
of committing all read-only transactions safely even in the
case of a read-write conflict. Finally, SI-TM can be extended
to incorporate dependency checking in hardware to provide
full serializability, as described next.

5.2 Serializable Snapshot Isolation
A simplified version of the graph based write skew detection
scheme can be implemented in hardware and performed
at runtime to make SI-TM fully serializable. We sketch a
possible implementation, leaving the details to future work.

As dynamic dependency graphs are unbounded in size,
their analysis in hardware is unfeasible. We, therefore, de-
fine a dangerous situation as the case where a transaction
exhibits an incoming as well as an outgoing read-write de-
pendency because this represents the minimum requirement
to form a cycle and respectively a write skew. Aborting trans-
actions in the presence of dangerous situations is safe. It only

introduces false positives. To implement serializable snap-
shot isolation (SSI-TM) it is sufficient to track read sets in
addition to the write sets and to perform conflict detection
for those as well. On the first read-write conflict we record
either an incoming or outgoing dependency by setting a flag
bit. If another conflict arises that has the opposite direction,
we abort the transaction.

It is important to note that cyclic dependencies in SI-TM
are different from cyclic dependencies in conflict serializ-
able approaches. In particular, SI-TM defines type based de-
pendencies, whereas CS uses temporal dependencies. This
difference is depicted in Figure 6. In this schedule TX0 ac-
cesses A before TX1 modifies A and commits, while D is
accessed after its committed modification by TX1. This re-
sults in a cyclic dependency for CS and subsequently leads
to an abort. SSI-TM on the other hand records two incom-
ing dependencies as in both cases TX0 reads and TX1 writes
but no outgoing dependencies. A common example for the
described schedule is the concurrent execution of a long run-
ning transaction that iterates over a vector or linked list and
short update transactions to the same data structure.

6. Evaluation
We evaluated our SI-TM implementation using the ZSim [51]
x86 simulator, a fast, multithreaded and cycle accurate sim-
ulator built on PIN [36]. We chose ZSim for its performance
and ability to accurately model load-store operations, a mul-
tilevel memory hierarchy with pipelined caches, contention
and precise DDR3 memory controller timings.

To implement SI-TM and our two TM baselines, we ex-
tended the memory subsystem of ZSim, in particular the L3
shared cache, the cache coherency protocol and the memory
controller. We added new instructions to offer allocation of
version controlled memory, snapshot generation as well as
transaction commit. In addition to timing models we imple-
ment functional models for the different TM algorithms for
example by instrumenting load and store instructions within
PIN to redirect memory accesses to the version controlled
memory.

The additional, non x86 instructions provided by the sim-
ulator are made accessible to software through a lightweight
API integrated into the Rochester Software Transactional
Memory (RSTM) framework [37]. Integrating our architec-
ture into the RSTM framework enables SI-TM to utilize the
entire STM ecosystem including tests, benchmarks as well
as Intel’s proposed Transactional Language Constructs for
C++ [1] which are supported by both GCC and the Intel C++
STM Compiler. The latter allows execution of all specifica-
tion compliant TM applications with our simulator.

The platform we have chosen to simulate SI-TM is shown
in Table 1. Most parameters resemble a state-of-the-art In-
tel Nehalem-like processor. We use an increased core count
of 32 to evaluate the scalability of the different TM mecha-
nisms.



CPU Cores 32
CPU Type 4-way Out-of-Order
CPU Clock 3 GHz
L1D cache size 32KByte
L1I cache size 32KByte
L1 cache associativity 4-way
L1 cache latency 4 cycles
L2 cache size 256KByte
L2 cache associativity 8-way
L2 cache latency 8 cycles
L3 cache size 32MByte
L3 cache MVM partition 8MByte
L3 cache associativity 16-way
L3 cache latency 30 cycles
Memory controllers 4
Aggregate memory bandwidth 10 GByte/s
Memory latency 100 cycles

Table 1: Simulated Architecture

6.1 Baseline
We compare SI-TM against two transactional memory base-
lines. The 2-phase locking baseline resembles a state of the
art TM system similar to that described in [10]. It imple-
ments eager conflict detection with a “requester wins” pol-
icy and lazy version management. Conflicts are detected by
broadcasting the address of a transactional access using the
cache coherency mechanism. On a transactional read, cores
receive a get-shared message which is handled by comparing
the corresponding address to the entries in their write set and
abort on a conflict. Consequently, on a write, cores receive a
get-exclusive message handled by checking the associated
address against their read and write set. Conflicts are de-
tected on a cache line granularity and read and write sets are
modeled using perfect bloom filters [7] with no false posi-
tives. On transaction abort, read and write logs are discarded
and the transaction is restarted in software. Implementing
compiler supported rollback in software significantly simpli-
fies the functional model of the simulator and in our experi-
ence does not introduce perceptible overheads which would
justify providing hardware support for saving and restoring
processor state. On commit, the corresponding thread ob-
tains a commit token, iterates over its write log and commits
the speculative writes to main memory.

We also compare against a conflict serializable consis-
tency mechanism by implementing the SONTM architecture
as described in [4]. SONTM determines the transactions that
may commit in presence of conflicting accesses by using se-
rializability order numbers (SONs). Each transaction main-
tains a SON range defined by an upper and a lower bound.
If at the end of a transaction the range is not empty, it may
commit. Part of a successful commit is the broadcast of the

transaction’s SON to all other concurrent transactions allow-
ing them to adjust their own SON range.

SONTM needs to tag all committed transactional writes
with their corresponding SON. Hence, SONTM maintains a
global write numbers hashtable in main memory with an en-
try per transactionally written cache line. Transferring spec-
ulative writes to main memory on commit, therefore, intro-
duces overheads in terms of hashing and additional memory
write operations. To serialize writer transactions after com-
mitted readers each core maintains a local read-history ta-
ble. Each entry in the read-history table holds the readset
of a committed transaction. Every time a transaction tries to
commit, it broadcasts its write set to each core to compare it
against every readset in the read-history table. We model an
optimisitic but non-practical read-history with infinite size.
This, in fact, represents a weak point of SONTM as the over-
heads of maintaining and checking conflicts against this ta-
ble are high. Lastly, each core in SONTM maintains a set
of conflict flags which are set on an conflicting access and
evaluated during commit.

Note that although SI-TM supports word based conflict
detection, in the following evaluation, we perform conflict
detection on a per cache line granularity for both SI-TM and
the two baselines approaches to exclude the effects of false
sharing. The performance results we present for SI-TM can,
therefore, be regarded as a lower bound.

6.2 Benchmarks
We evaluated SI-TM against the two baseline approaches
using three microbenchmarks from the RSTM framework
as well as seven applications from STAMP [39]. The mi-
crobenchmarks simulate concurrent access to transactional
data structures which are commonly used in many parallel
applications. Array implements an array structure with fixed
size of 30K entries and allows concurrent conflict free access
to disjoint cells. For the benchmark we utilize two types of
transactions. Long running read transactions that iterate over
the entire array as well as short update transactions that up-
date two random elements within the array. We execute 1000
transactions per thread using a ratio of 20% long running
read and 80% update transactions. List implements a single
linked list initialized to a size of 1000 elements. We execute
1000 transactions per thread using a ratio of 40% insert, 40%
remove and 20% lookup operations. We chose a small ratio
of lookup transactions to show that SI-TM not only performs
well in the presence of read-only transactions but also for
transactions that show many reads and few writes. The Red
Black Tree data structure is initialized with 100 elements and
the benchmark executes a ratio of 50:25:25 lookup, insert,
delete operations.

In addition, we evaluated seven applications from the
STAMP benchmark suite: Bayes an algorithm for learn-
ing the structure of Bayesian networks from observed data,
Genome a genome sequencing and segment matching appli-
cation, Intruder which performs signature based network in-
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trusion detection, Kmeans a clustering algorithm, Labyrinth
which performs path routing in a 3D grid used in CAD ap-
plications, Scalable Synthetic Compact Applications (ssca2)
which contains four kernels that operate on a large, directed,
weighted multi-graph and finally Vacation, an online trans-
action processing system. For all applications we utilized the
standard configuration as suggested by the STAMP authors
for simulated systems. Each benchmark we run using 1, 2,
4, 8, 16 and 32 threads and we average each run over 5 mea-
surements which we obtain using different random seeds.
We note that the standard deviation for all measurements
is below 5%. We measure the abort rate and application
speedup of every benchmark for 2PL, CS, and SI-TM.

6.3 Abort Rate
The abort rate of the evaluated applications is presented in
Figure 7. Array utilizes transactions that iterate over the en-
tire array in the presence of many update transactions. Hence
for 2PL, a sufficiently long running iteration transaction con-
tains many values in its read set, such that any concurrent
update transaction causes its abort. In fact, 2PL aborts ev-
ery long running transaction as long as update transactions
are present which essentially leads to livelock. The CS pol-
icy reduces the probability of abort as it requires at least
two conflicting writes (a transaction with a single write con-
flict and no read dependencies can always be serialized be-
fore or after the long running transaction) and one read-write
conflict needs to occur before the commit point and another

one thereafter. SI-TM in contrast, allows multiple concurrent
read and write accesses to the same elements enabling all
long running read-only transactions to commit. Write-write
conflicts are rare due to the large size of the array. In this mi-
crobenchmark SI-TM reduces the aborts by 3000x over 2PL
and by 1000x over CS. List represents another well suited
benchmark for SI-TM due to its read heaviness. Each in-
sert, delete and lookup operation requires iteration over the
list starting from the first element until the seeked element is
found, but at most modifies a single element. The probability
for write-write conflicts is, therefore, significantly smaller
than for read-write conflicts which reduces aborts in the case
of SI-TM for 32 threads by over 30x over 2PL and 10x over
CS. In Red Black Tree implementations a single update op-
eration can lead to many transactional writes due to rebal-
ancing. SI-TM benefits from the fact that lookup operations
are read-only and hence do not conflict, however, for insert
and delete operations only, the three TM implementations
perform similar. For all STAMP transactions, SI-TM shows
the least number of aborts, although the characteristics differ
significantly for each benchmark. In Genome, both CS and
SI-TM significantly reduce aborts over 2 PL and perform
almost on par, whereas in Intruder SI-TM reduces aborts
over CS significantly. Intruder only utilizes transactions to
perform concurrent access to data structures including a list
and a tree which as we have seen perform well under SI. In
intruder, for 32 threads, SI-TM reduces aborts by 50x over
2PL and by 40x over CS. Kmeans performs a series of read-
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modify-write operations within each transaction and there-
fore, each accessed value is both contained in the read as
well as in the write set. Both CS and SI-TM cannot signifi-
cantly reduce aborts over 2PL in this case. Labyrinth shows
improvements for CS and SI-TM. However, Labyrinth in
general has very low abort rates such that the absolute im-
provement is less significant. Vacation exhibits long running
transactions with a high read ratio, which makes it an ideal
candidate for SI-TM. In fact, SI-TM shows less than 1% of
the aborts of 2PL in this benchmark. SSCA2 represents an-
other read heavy kernel, however, the absolute abort rates are
already low under 2PL (less than 5%), so we do not expect
high performance improvements for SI-TM. Bayes exhibits
few, but long and costly transactions with a read-only trans-
action ratio of 25% enabling SI-TM to reduce aborts by 20x
over 2PL.

In summary, SI-TM performs well in all benchmarks that
exhibit a high read:write ratio. Being able to avoid aborts on
read-write conflicts is particularly compelling for applica-
tions that utilize long running transactions as these transac-
tions increase the probability of conflicts and are also more
costly to reexecute. In these cases SI-TM can reduce aborts
by multiple orders of magnitude over existing approaches.

6.4 Speedup
Reducing the abort rate leads to improved performance, as
shown in Figure 8. SI-TM shows a linear scaling, 20x for 32
threads in the Array and 14x in the List benchmarks whereas

2PL shows a negative speedup for both in the case more
than two threads access the data structure concurrently. For
the Red Black Tree, performance improvements are not as
significant with SI-TM showing a 2x increase over the two
baselines. In Genome, both CS and SI-TM reduced the abort
rate which translates to a speedup of 3.8x for both tech-
niques over 2PL. In Kmeans, all three systems show simi-
lar abort rates and performance characteristics. In Labyrinth
and SSCA2, the obtained speedups are similar for all three
implementations which is explained by the fact that 2PL al-
ready shows low abort rates and hence scalability is not lim-
ited by the transactional memory policy. Vacation benefits
significantly from the low abort rate of SI-TM and scales lin-
early to 32 threads and possibly beyond. CS also shows nice
scalability for low thread count but drops off for more than
8 threads. Finally, bayes shows improved scalability for SI-
TM leading to a speedup of 10x for 32 threads, whereas CS
and 2PL do not scale beyond 8 threads. It is worth noticing
that the two eager mechanisms utilize exponential backoff to
avoid livelock in situations where transactions consecutively
abort each other which particularly occurs in Genome. As
the impact of this technique can be significant, we profiled
the applications and tuned the mechanism such that perfor-
mance and not the abort rate is optimized. Without exponen-
tial backoff 2PL and CS show even higher abort rates and
consequently lower performance.



7. Related Work
The importance of reducing aborts in transactional mem-
ory systems has been emphasized before and addressed us-
ing different approaches. Bobba et al. [10] determine cer-
tain pathologies that can lead to high abort rates. Blundell
et al. [8] propose to commit transactions even in the case
of read-write conflicts by repairing (re-executing reads to
obtain the current version) transactions instead of replay-
ing transactions entirely. Their approach does not apply to
arbitrary conflicts but only to “non critical conflicts” occur-
ring on auxiliary or bookkeeping data. Waliullah et al. [56]
propose to detect and ignore non critical conflicts including
false sharing, silent stores and write-write conflicts without
intermittent reads. Improving TM performance by reducing
the number of aborts has been addressed by Ansari et al. us-
ing transaction reordering [3]. Finally, Ramadan et al. [48]
and Aydonat et al. [4, 5] propose conflict serializability to
reduce aborts by relaxing concurrency control. While all ap-
proaches reduce abort rates in certain cases, none provides
the capability of tolerating read-write conflicts entirely.

Reducing transactional overheads while maintaining un-
bounded transactions has been the goal of Tokentm [9],
LiteTM [28] and EazyHTM [55]. While reducing over-
heads, the approaches are complex and introduce a signifi-
cant amount of state that needs to be kept in main memory.
In contrast, our multi-version memory controller provides
all properties using a simple hardware indirection structure.

Yan et al. [57] propose a TM system that manages multi-
ple data versions in main memory concurrently and decides
during commit which version should be made visible to the
other threads. The approach enables isolation similar to SI-
TM, however, it does not avoid read-write conflicts.

Exploiting snapshot isolation as a means of concurrent
programming has been extensively used in the database do-
main [22], in distributed systems including Google’s Span-
ner [17], as a Middleware for clusters [35] as well as in high
level programming languages like Clojure [27]. Riegel et
al. propose to utilize snapshot isolation [49] for STM sys-
tems, however, the system is unable to support efficient snap-
shot generation in software and hence only supports Lazy-
SI, a consistency model that is relaxed over SI. Write skew
has been addressed in the scope of SI based database sys-
tems including the works for InnoDB [11], PostgreSQL [42],
MySQL [29] and Hekaton [32]. Cheriton et al. propose HI-
CAMP [15], a segment-based memory system that also sup-
ports multiversion concurrency control. However, the de-
scribed architecture appears to require a significantly differ-
ent processor architecture, while our approach only requires
changes to the memory system. Merrifield et al. present Con-
version, a multiversion concurrency control mechanism [38]
based on the virtual memory system. Conversion supports
creation of snapshots. However, it uses a repository-like
commit-update API without being able to handle conflicts
and hence does not provide transactional semantics.

8. Conclusions
Snapshot isolation transactional memory (SI-TM) provides
significant benefit in reducing the abort rate of transactions.
This allows applications to use larger-scale transactions and
provides higher degrees of concurrency without the concern
of poor and unpredictable performance that arises with con-
ventional TM approaches.

We showed that SI-TM reduces aborts significantly ex-
cept for applications with already low abort rates, in particu-
lar, by up to 1000x for microbenchmarks and by up to 100x
for applications of the STAMP benchmark suite. We also
show that SI-TM can provide speedups of up to 20x with
higher degrees of concurrency over conventional two phase
locking based TM approaches. Thus, the performance bene-
fits appear to be significant on top of the fact that read-only
transactions never need to abort in SI-TM.

Our implementation efficiently supports snapshots by
leveraging a multi-version memory controller at the hard-
ware level. Writes are implemented by creating a new ver-
sion of the modified data item using copy-on-write which
enables threads to operate in isolation and to concurrently
access shared data without interfering on read operations.
To reduce the cost of copy-on-write, we present a feasible
hardware implementation of a multi-version memory con-
troller. We evaluate our design using detailed microarchi-
tectural analysis and show that a small number of versions,
i.e. 4, are adequate for highly concurrent transactional en-
vironments. We plan to further evaluate the benefits of our
hardware implementation versus a software multi-version
virtual memory system as part of future work.

Overall, we believe that the SI-TM model with its signif-
icantly lower abort rates and better scalability has the po-
tential to deliver on the original promise and hope for TM,
namely to provide a simple concurrent programming model
that offers good performance at a low implementation cost.
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Appendices
A. Active Versions
To investigate the number of data versions that are actually
needed within the MVM, we configured the SI-TM system
to support an unbounded number of versions. We then ran
the benchmarks using 32 threads and counted the number of
transactional accesses to each version. We do not include
non transactional accesses which always target the most
current snapshot. Table 2 lists the number of accesses to
the five most recent versions. Accesses to older versions
are summed up and shown as tail. As it can be seen, most
accesses target the most current version and less than 1%
of the accesses target versions older than the 4th. Thus, an
MVM supporting up to 4 versions would be adequate to
avoid aborts due to excessive versions with this level of
concurrency.

Ver. Array List RBTree Genome
1st 20410450 6909 44187 964624
2nd 1152514 10 30198 8256
3rd 30659 1 12231 553
4th 1344 1 3188 96
5th 0 1 562 36
tail 0 1 300 20
Ver. Kmeans Bayes SSCA2 Labyrinth
1st 382768 6944 46018 3922
2nd 143171 107 400 2413
3rd 9121 12 1 306
4th 1553 9 1 27
5th 1465 1 0 2
tail 3000 0 9 0
Ver. Vacation Intruder
1st 61962 26369635
2nd 614 481590
3rd 4 348473
4th 2 26142
5th 0 31169
tail 0 7000

Table 2: Number of accesses to specific MVM Versions


