More Examples of Solutions to Differential Equations

(1) Solve $\frac{dy}{dx} = xy^2$. when $y(0) = 1$

Solution:

$$\int \frac{1}{y^2} dy = \int x dx$$

so we get

$$-\frac{1}{y} = \frac{x^2}{2} + c$$

so

$$y = \frac{-1}{\frac{1}{2}x^2 + c}.$$

Also, $y = 0$ is also a solution.

(2) (Logistic Equation) This equation describes the change in population size in which the growth rate depends on the density of the population. It satisfies the following differential equation

$$\frac{dN}{dt} = rN(1 - \frac{N}{K})$$

where r, K are positive constants, r is the per capita growth rate at time $t = 0$ and K the carrying capacity of the population.

Solution: If $N \neq 0$ and $N \neq K$ we have

$$\int \frac{dN}{(1 - \frac{N}{K})N} = \int r dt$$

Note that

$$\frac{1}{(1 - \frac{N}{K})N} = \frac{K}{N(K - N)}$$

using partial fractions we get

$$\frac{K}{N(K - N)} = \frac{1}{N} + \frac{1}{K - N}$$

1
Integrating this, we get

$$\ln|N| - \ln|K - N| = rt + C_1$$

$$\ln\left|\frac{N}{K - N}\right| = rt + C_1 - \ln\left|\frac{K - N}{N}\right| = rt + C_1$$

$$\ln|\frac{K - N}{N}| = -rt - C_1$$

$$\left|\frac{K - N}{N}\right| = e^{-rt-C_1}$$

$$\frac{K - N}{N} = Ce^{-rt}$$

Then we get

$$N = \frac{K}{1 + Ce^{-rt}}$$

Note that $N = 0$ and $N = K$ are also solutions.

(3) (von Bertalanffy growth equation) Consider a growing organism, such as a fish, and let $L(t)$ be its length at time t in cm. We can think of t as the age of the fish. Let L_∞ be the maximum size of the fish, its asymptotic length. Suppose the growth rate of the fish depends on the difference $L_\infty - L$ so we have

$$\frac{dL}{dt} = k(L_\infty - L)$$

where k is some constant. Find the family of solutions of this then find the solution that has initial length $L(0) = 3$

Solution: $L = L_\infty - Ce^{-kt}$.

(4) (Allometric growth) Allometric growth is how different parts of an organism grow dependent on another. For example, a crab’s body width and the claw length. In general, The growth rates are proportional to the sizes. Let L_1 and L_2 be the size of two body parts, then

$$\frac{dL_1}{dt} = k \frac{L_1}{L_2}$$

(5) For example, consider the crab claw problem. Let L be the claw length and B the body length. We have

$$\frac{dL}{dt} \frac{1}{L} = 1.57 \frac{dB}{dt} \frac{1}{B}$$

Solution: $L = kB^{1.57}$
(6) (Solution Mixing Problems)

These problems typically have a tank with a solution coming in at a fixed rate, and the tank is evenly mixed, and leaves the tank at a fixed rate. These problems we usually suppose the inflow and outflow rates are the same. Let \(r \) be the flow rates, "b" be the solution concentration coming in, \(V \) the volume of the tank, and \(y(t) \) is the amount of substance in the tank. Then \(\frac{dy}{dt} = \) (rate in)-(rate out), or more precisely with this model,

\[
\frac{dy}{dt} = rb - \frac{ry}{V}
\]

Let’s try a problem. (Problem 45 in 7.4) A tank contains 1000 L of brine with 15 kg of dissolved salt. Pure water enters the tank at a rate of 10 L/m. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank (a) after \(t \) minutes? (b) after 20 minutes?

Solution:

Let \(S(t) \) be the amount of salt in the tank.

\[
\frac{dS(t)}{dt} = 10(0) - (10) \left(\frac{S(t)}{1000} \right)
\]

solving this part way we get,

\[
\ln|S| = -\frac{1}{100} t + c
\]

Using the initial condition that \(S(0) = 15 \) kg, we get that \(c = \ln|15| \)

\[
S = e^{c}e^{-\frac{1}{100}t}
\]

so the solution is

\[
S(t) = 15e^{-\frac{1}{100}t}
\]

so after 20 minutes,

\[
S(20) = 15e^{-2/10}
\]

which is about 12.3 kg.