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A fractional integration framework and a relationship between the variability of
innovations in real stock prices and real dividends implied by the present value model
are used to examine the issue of stock market volatility raised by Shiller (1981) and
LeRoy and Porter (1981). It is found that both stock price and dividend data are neither
trend stationary nor difference stationary; they are fractionally integrated. The data also
show that low interest rates and investors’ myopic behaviour only have a limited role in
explaining excessive market volatility. On the other hand, the evidence for excess
market volatility seems substantial even after controlling for sampling uncertainty.
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SUMMARY

In their seminal papers, Shiller (1981) and LeRoy
and Porter (1981) report that variations in stock
prices appear too large to be explained by changes
in the fundamental value constructed from the
dividend stream. The finding of excess market
volatility contradicts the notion that the stock
market is efficient and the price reflects the true
value of the underlying stock. In fact, results
reported by Shiller and LeRoy-Porter are usually
interpreted as evidence against the rational or
efficient market hypothesis and as indirect evi-
dence that stock prices are also driven by ‘fads” and
‘fashions.’

Since these authors published their papers, the
excess market volatility result has been re-evalu-
ated using different methodologies. Marsh and
Merton (1986) provide, perhaps, the most forceful
argument against the excess market volatility
result. Marsh and Merton show that the original
Shiller’s result is driven by the model Shiller used
to describe the behaviour of dividend data.
Specifically, there is no evidence of excess market
volatility if a different model is used to describe
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dividend data. Therefore, whether the market is too
volatile or not depends on the characterization of
dividend dynamics. If Shiller’s original character-
ization is correct, the stock market is too volatile
and not efficient. If Marsh and Merton's claim is
right, then there is no evidence against market
efficiency.

In this study we use a stochastic process, called a
fractionally integrated autoregressive and moving
average (ARFIMA) process, to model dividend
dynamics. One advantage of using the ARFIMA
process is that it can describe a wide range of data
dynamics. In particular, the processes adopted by
both Shiller and Marsh-Merton to characterize
dividend data are special cases of this general
stochastic process. Therefore, the use of ARFIMA
processes allows us to discriminate effectively
between the two previous views on dividend
dynamics and provides a more accurate descrip-
tion of dividend data.

In contrast to the existing results, we find both
the real stock price and the real dividend data are
fractionally integrated, a property that is different
from the characterizations adopted by either Shiller-
or Marsh and Merton. We use a relation between
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the variability of innovations in real stock prices
and real dividends, which is derived under the
fractional integration framework, to evaluate stock
price volatility. Overall, there is substantial evi-
dence for excess market volatility when the real
interest rate is higher than 3%. Our findings
support the view that the market is excessively
volatile unless the market uses a low real interest
rate to discount future dividend payments. This
implies that price movements may not correspond
to changes in the fundamental value of the under-
lying stock. This study, however, does not address
the question of whether this mispricing behaviour
represents some exploitable profit opportunities.

INTRODUCTION

In their seminal papers, Shiller (1981) and LeRoy
and Porter (1981) report that variations in stock
prices appear too large to be explained by changes
in the fundamental value constructed from the
dividend stream. Their results are based on
variance bounds tests derived from the present
value model. The finding of excess market volati-
lity is interpreted as evidence against the rational
or efficient market hypothesis and as indirect
evidence that stock prices are also driven by ‘fads’
and ‘fashions’ (Shiller, 1984).! Recent studies such
as Mankiw et al. (1991) and LeRoy and Steigerwald
(1992) also report evidence of excess market
volatility. LeRoy (1989) and Shiller (1989) provide
an excellent review on the variance bounds test
literature.

Marsh and Merton (1986) provide, perhaps, the
~most forceful argument against Shiller’s original
variance bounds test result.> These authors show
that Shiller’s (1981) result is driven by the
assumption of trend stationary dividends. They
argue that the dividend process is better described
as difference stationary (that is, the dividend data
contain a unit root and are integrated of order one)
when firm managers smooth dividend payments
over time. When dividend data are difference
stationary, the observed stock market volatility is
no longer excessive. Kleidon (1986) also attributes
the observed excess volatility to the presence of a
unit root but not to market inefficiency. That is, the
validity of the market inefficiency interpretation
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depends on the assumed temporal dynamics of
dividends; the presence of long- term persistence in
dividends, as implied by difference stationarity,
does not favour the excess volatility interpretation.

However, the issue of whether dividends are
trend stationary or integrated is still unsettled.
DeJong and Whiteman (1991) find that the unit root
hypothesis for dividend data is rejected in three
studies and not rejected in eight. However, the
failure to reject the unit root hypothesis is some-
times attributed to the low power of standard unit

_ root tests. Using Bayesian techniques both DeJong

and Whiteman (1991) and Koop (1991) find little

~ evidence for unit roots in the dividend data.

In this study we examine the stochastic process
generating dividends and its implications for the
relationship between stock price and dividend
variations from a- different perspective. Temporal
dynamics are modelled by long memory, fraction-
ally integrated autoregressive and moving average
(ARFIMA) processes. The ARFIMA process is a
generalized ARMA process and can describe a
wide range of data persistence. For instance, a
fractional process includes trend stationary and
difference stationary ARMA processes as special
cases. That is, the use of fractional time series
models can avoid the potential bias caused by the
stringent classification of trend stationarity or
difference stationarity adopted in the previous
studies. This aspect of fractional models is im-
portant for studying market volatility because of -
the crucial role played by dividend dynamics.

For instance, in the short run, dividend smooth-
ing can introduce persistence and give rise to
temporal properties not associated with sustainable
earnings. Also, smoothed dividend payments may
add extra noise to stock prices as they distort the
true underlying present value relationship. How-
ever, in a longer horizon, dividend smoothing
mechanisms will be affected by the dynamics of
sustainable earnings. Thus, although firm man-
agers can smooth dividends and induce persistence
over time, it would be interesting to know if such
dividend-setting behaviour implies a unit root
persistence, a weaker than unit root persistence,
or a stronger than unit root persistence in the data.
The ARFIMA model can provide a flexible way to
model data persistence induced by the dividend
setting behaviour without imposing a strong prior.

The remainder of the paper is organized as
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follows. The ARFIMA process is introduced in the
following section. In the section after we derive a
relation between the variability of innovations in
real stock prices and real dividends implied by the
present value model. The relation holds when the
data follow a trend stationary, difference stationary,
or a fractionally integrated process. Preliminary
data analysis and estimates of fractional models are
then presented. In contrast to results reported in
previous studies, both stock price and dividend
data are found to be neither trend stationary nor
difference stationary; they are fractionally inte-
grated. When we use the sample information to
evaluate the variability relationship derived, we
find substantial evidence of excess market volatility
even after controlling for data persistence and
sampling uncertainty.

ARFIMA MODEL

An ARFIMA(p, d, q) representation for a time series
(x,) is

O(B)(1 — B'X, = O(B)e,, 1)

where B is the backward-shift operator, ®(B) =
1-¢B—---—¢,8, OB)=1+6,B+---+0,B7,
all roots of ®(B) and ©(B) are outside the unit
circle, & ~iid. (0, ¢®), and (1 — B)? is the fractio-
nal differencing operator defined by (1 —B)’ =
Y reo Tk — d)B*/[T(k + DNI'(—d)] with T'(.) being the
Gamma function. {X,} is stationary and has an MA
representation if d < 0.5. This property of fractional
processes will be used in the next section. When d
is an integer or zero, an ARFIMA process becomes
a conventional ARIMA process.’

The ability of fractional time series models to
describe long-term persistence can be seen from the
autocorrelation function, p(.). Hosking (1981)
shows that the p(.) of an ARFIMA process declines
hyperbolically; p(k) < k*=!, k— oo. This is in
contrast with the p(.) of a stationary ARMA process
which decays exponentially; p(k) 7, 0<r<1,
k — oo. By allowing the degree of integration d to
assume non-integer values, the ARFIMA process
can be used to model data dependence that is
stronger than allowed in stationary ARMA pro-
cesses and weaker than implied by unit root
processes. Further, we can transfer a non-stationary
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ARFIMA process (i.e. with d >0.5) to a stationary
process by appropriate differencing.

Examples of applying fractional models to
economic issues include Cheung (1993), Cheung
and Lai (1993), Cheung and Lai (1995a), Diebold
and Rudebusch (1989), and Diebold et al. (1991).
Sowell (1992b) also points out that, in addition to
its flexibility in capturing low-frequency dynamics,
the ARFIMA model can be used to nest the
conventional trend stationary and difference sta-
tionary models and, hence, avoid the possible bias
caused by the stringent classification of data as
either trend stationary or unit root processes.
Consider a trend stationary model; that is, d is
zero and X; has a time trend. Then (1 — B)X; has
d =—1. For an integrated process, d equals one. The
first differenced series (1 — B)X; has d=0. This
suggests one can discriminate between these two
models by testing if the estimate of d from the first
differenced series is around —1 or 0.

THE PRESENT VALUE MODEL

Following Shiller (1981), we work with the present
value model

o0
P, = kgoEtDHk/(l + r)k+1’ ¥))

where P, is the real stock price at the beginning of
time period ¢, D; is the real dividend distributed at,
say, the end of period ¢, E; is the expectations
operator conditional on information available at ¢,
and r is the constant real discount rate.* We will
consider different values of r in the next section. In
the literature, the variance bounds tests are usually
based on the sample variances of the (detrended) P;
and P}, where

Pl =3 D1+ 3
k=0

is the perfect foresight or ex post rational price.
Here we examine the issue from a different
perspective. The set-up of Diebold and Rudebusch
(1991a) is adopted to account for the importance of
persistence in dividend data. An advantage of this
approach is that it explicitly incorporates the effect
of the integration property of dividend data on
market volatility. We can derive the relationship
between the variability of the innovations in P, and
D; that is valid under a wide range of dividend
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dynamics. In addition to trend stationary and
difference stationary specifications, the derived
relationship also holds when the data follow a
fractionally integrated process.’

Let u; be the innovation in the price in response
to news arriving between t — 1 and t. Then, we
have

o0
u =P —E,_ P = kgo(ErDHk —E_ D)/l + ")k+1~

@
The unpredictable component of the price is related
to the revision in the expected and discounted
income stream made in response to the incoming
news. Suppose the real dividend series follows an
ARFIMA(p, d, q) process defined by Equation (1).
From earlier we know that when d is assumed to be
less than 1.5, the first differenced real dividend
series is stationary and has the following infinite-
order moving average representation:

(1 _B)Dt = ‘P(B)’h = (1 +¢1B +eet ‘/’kBk +-- ‘)’Tt,

)
where ¥(B) = (1 — B)'®~'(B)®(B) and n,~iid.
(0, »?) is the innovation in the dividend series. For
notational simplicity, we have omitted the constant

term in the changes in real dividends. Given
Equation (5), we can show that

k
EDy —E, Dy = z(:)"’#% Yo=1, k=0,1,...
=

Q]
Combining Equations (4) and (6), we obtain

u, = [2 v/ + r)'] (n,/7)

= C(r’ OO)?],, @)

where C(r, k) = [ZLO ¥;/(1 +7r))/r is the cumula-
tive impulse response function, which measures
the persistence in the real dividend series, dis-
counted by the interest rate factor (1 -+ 7). Under
the present value model, innovations in real stock
prices are proportional to current innovations in
real dividends. The constant of proportionality
depends on both the persistence in the real
dividend series and the discount factor as repre-
sented by the discounted infinite cumulative
impulse response.

Before we derive the relationship between the
variability of u; and 7, from Equation (7), we would
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like to establish the convergence property of the
discounted infinite cumulative response C(r, o).
Since the sum of coefficients in ®~'(B)®(B) is finite,
the convergence of C(r, «0) depends on the con-
vergence of

3 Tk + (d — 1)B/[C(k + DI — 1)1 + 1)
k=0

valuated evaluated at B=1. It can be shown that
(1—B)'™ = 3" Tk + (d — 1)B*/[T(k + 1)T(d — 1)]
k=0

=Fd-1,1,1;B),
(®)

where F(.) is the hypergeometric function defined
by F(a, B, v; 2)

= 3" Tk + 0Tk + AL @7/ [C(@I'(B)

k=0
x I'(k + p)T'(k + 1)]. ©)

Thus,
S Tk + (d — 1)BY/[C(k + DI — 1 + )]
k=0

=Fd-1,1,1;B/(1 +r)). (10)

From Gradshteyn and Ryzhik (1980, pp. 1039-
1040), we know that F(d —1,1,1;1/(1 +r)) con-
verges and, hence, C(r, o0) is finite if r > 0.°
Therefore, assuming the real discount rate r is
positive, Equation (7) implies the relationship

v = C(r, o0)w, (1)

where v and o are the standard deviations of u; and
ne. That is, the variability of real stock price
innovations is a function of three elements: the
variability of real dividend innovations, the persis-
tence in the real dividend series, and the discount
factor. A similar relationship between income and
consumption volatility has been examined by
Diebold and Rudebusch (1991a) using the frac-
tional integration technique. Note that Equation
(11) holds when the real dividend series is either
trend stationary or integrated of order one. In
either case, Equation (11) can be used to evaluate
whether the stock price is too volatile. In addition
to its ability to accommodate fractionally integrated
dividend data, Equation (11) also provides a
convenient way to encompass the two opposing
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views on dividend dynamics discussed in the
literature. ‘
Relation (11) cannot be used directly to investi-
gate if the stock market is too volatile as the
variables on both sides of (11) are not known a
priori. However, we can use the sample information
on v, ¢, and the discounted cumulative response
C(r, k) function to examine the relative variability of
these two innovations. Further the confidence
intervals of the estimates can be used to assess
the uncertainty associated with the estimation
procedure. This is done in the following section.

EMPIRICAL RESULTS

Preliminary data analysis

Annual stock price and dividend data from 1871-
1987 were obtained from Shiller (1989, Chapter 26).
The price series is the Standard & Poor’s Monthly
Composite Stock Index for January and the
dividend series is the total annual dividend
accruing to the portfolio represented by the Index.
These two series are converted to real data series
using the January Producer Price Index and the
annual average Producer Price Index available
from the same source. See Shiller (1989) for more
details.

The real stock price and real dividend series and
their differences are plotted in Figures 1 and 2. One
striking, if not surprising, feature is that real
dividends are not that smooth. The pattern of
variation in real dividends is similar to that of real
stock prices, although the magnitude of fluctua-
tions in the latter series is larger. The changes in
real stock prices have a higher variability in the
20th century while the changes in real dividends
are more volatile around World Wars I and II. We
should point out that these graphs have different
scales and cannot be used directly to compare the
sample variances of these data. In fact, the sample
variance of changes in real stock prices is higher
than that of changes in real dividends.

Table 1(a) reports the descriptive statistics. The
sample average of real stock prices, in both levels
and first differences, is larger than the correspond-
ing sample average of real dividends. According to
the sample coefficients of variation, which is a unit-
free measure of variability relative to the mean, real
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stock prices and real dividends have a similar
degree of volatility. The level and difference of real
stock prices are, respectively, 1.50 and 1.22 times
more volatile than those of real dividends. How-
ever, the standard errors (not reported in the table)
of the level and difference of real stock prices are
33.94 and 41.64 times larger than those of real
dividends. The sample correlation coefficient of
0.92 for the levels and 0.55 for the differences
suggest movements in these two real series are
closely related. Overall, these descriptive statistics
are in accordance with the graphs presented in
Figures 1 and 2.

The sample autocorrelation and partial autocor-
relation coefficients given in Table 1(b) indicate a
large autoregressive root in both the real stock price
and real dividend series. The results of testing for a
unit root in these data are then presented in Table
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Figure 1. (a) Annual real stock price index: 1871-1987. (b)
Annual real dividend series: 1871-1987.
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Figure 2. (a) Changes in annual real stock prices: 1872-
1987. (b) Changes in annual real dividends: 1872-1987.

1(c). The test results are based on a 4-lag model
specification. Because the standard augmented
Dickey-Fuller (ADF) test can misinterpret a time
series with structural changes as a unit root process
(Perron, 1989), we also consider the recursive and
sequential unit root tests proposed by Banerjee et al.
(1992). An advantage of the Banerjee et al.
procedure is that their tests treat the break point
as unknown a priori. This makes their procedure
not subject to the data-mining problem inherent in
tests that are conditional on a pre-assigned break
point.

In Table 1(c), 7 is the standard augmented ADF
statistic that allows for both a mean and a time
trend under the stationary alternative. 1y and 1
are the recursive unit root statistics given by the
smallest and by the range of the ADF statistics
computed from subsamples. Fa mx, Ta(F) and t AMN

with
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are the sequential statistics for the alternative of a
shift in the trend during the sample period. Fa mx is
the largest of the F-statistics for the no-shift null
hypothesis obtained under different shift-point
specifications, t4(F) is the ADF statistic from the
specification that yields Faymx, and taomn is the
smallest of the ADF statistics obtained from
different shift point specifications. The definitions
of the sequential statistics Fg nx, 78(F) and 7y are
similar to those of Fanmx, Ta(F) and 74 mn. How-
ever, these statistics are for the alternative of a
break, instead of a shift, in the trend. |fx| is the
maximal t-statistic for the no- break-in-trend
hypothesis computed under the null of a unit root
and no time trend. See Banerjee et al. (1992) for
more details on these test statistics and their critical.
values.”

For all the sample test statistics reported in Table
1(c), only the tr statistic for the price series is
significant. Both the ADF and Banerjee et al. tests
yield little evidence against the unit root hypoth-
esis. Further, the unit root result is not likely to be
explained by structural changes in the data. Based
on these conventional unit root tests, one tends to
agree that the real dividend process is better
described as an integrated process, and the excess
volatility result reported in, say, Shiller (1981) may
be the consequence of assuming a trend stationary
dividend series, as argued by Marsh and Merton
(1986). However, there is a caveat. As pointed out
by Diebold and Rudebusch (1991b) and Sowell
(1990), the conventional unit root tests have low
power against fractional integration alternatives.

Estimates of ARFIMA models

Based on the sample size and efficiency considera-
tions, we use the time domain exact maximum
likelihood (ML) estimation procedure to estimate
jointly the parameters of an ARFIMA model. In
general, the time domain exact ML method is more
efficient under correct model specification. This
procedure amounts to maximizing the hkehhood
function

2X1) = 2n) TPEI P exp(-X'E=1X/2)  (12)

respect to the parameter vector
E=(d, ¢/'s, 0/'s, 6), where X = (X,,...,Xy) is the
vector of sample observations, ¥ is the T x T
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Table 1. Descriptive statistics and results.of unit root tests.

1(a) Descriptive statistic

MEAN (GAYA MIN MAX CORR
1(a) 1 Levels
PRICE 0.3456 0.6595 0.9687 0.9783 0.922
DIVIDEND 0.0152 0.4398 0.0051 0.0299
1(a) 2 Differences
PRICE 0.0067 10.354 —0.2955 0.2050 0.545
DIVIDEND 0.0002 8.507 —0.0069 0.0060 :
1(b) Correlation

p(1)  p(?) p3) p4) p(5) (1) «(2) «(3) a(4) (5)

1(b) 1 Levels
PRICE 0.925 0.859 0.824 0.777 0.719 0.925 0.027 0.178 -0.076 —-0.076
DIVIDEND 0.944 0.877 0.825 0.780 0.740 0.944 -0.125 0.110 0.010 0.033
1(b) 2 Differences
PRICE 0.090 -0.217 0.131 0.180 —-0.030 0.090 —-0.227 0.187 0.099 0.033
DIVIDEND 0.221 —-0.149 —0.063 —0.069 -0.007 0.221 —0.208 0.026 —0.099 . 0.030
1(c) Unit Root Test

T T™MN TR FaMmx Ta(F) TAMN Fgmx w8(F) TBMN [ |
PRICE —2.807 -3.201 3.725 4.381 —-3.480 —-3.482 9.903 —4.288 —4.288 1.208
DIVIDEND —2.995 -3.276 2.446 3.126 -3.497 -3.497 8.055 —4.180 —4.180 1.156

The mean (MEAN), coefficient of variation (C.V.), minimum (MIN), maximum (MAX), and the correlation coefficient of the annual real
stock prices (PRICE) and real dividends (DIVIDEND), both in levels and first differences, are reported in Panel 1(a). The sample period
is 1871-1987. The sample autocorrelation and partial autocorrelation at lag k (p(k) and a(k)) for both the original and first differenced
series are given in Panel 1(b). The unit root test results are reported in Panel 1(c). 7 is the standard augmented ADF statistic that allows
for both a mean and a time trend under the stationary alternative. tmn and tg are the recursive unit root statistics. Famx. ta(F) and
Tamn are the sequential statistics for the alternative of a shift in the trend during the sample period. Fpmx, 8(F) and 7g My are the
sequential statistics for the alternative of a break, instead of a shift, in the trend. |t\x| is the maximal ¢-statistic for the no- break-in-trend
hypothesis computed under the null of a unit root and no time trend. See Banerjee ef al. (1992) for a more detailed discussion on these
test statistics and their critical values. Critical values for the standard augmented ADF test are taken from Cheung and Lai (1995b). The
unit root statistics are all based on a 4-lag specification and are not significant, except the tr for the real stock price series, at the 5% level.

covariance matrix of X and is a function of the
parameter vector ¢ Sowell (1992a) provides a
detailed discussion of the ML estimation proce-

mation criterion (AIC) and the Schwartz
information criterion (SIC) are used to select the
model specification. For the real stock price series,

dure. The performance of this ML procedure in
small samples is investigated in, for example,
Cheung and Diebold (1994) and Sowell (1992a).
For each of the real stock price and real dividend
series, ARFIMA(p, d, ) models with both p and g
less than four are considered. First differenced
series are used in the estimation process to ensure
stationarity. Estimates are obtained via the Davi-
don-Fletcher-Powell algorithm. The Akaike infor-

the AIC chooses an ARFIMA (3, d, 0) model and the
SIC selects a more parsimonious ARFIMA(O, 4, 1)
model. Both information criteria select an ARFI-
MA(0, d, 1) for the real dividend data.

ML estimates of the models selected by the AIC
and SIC are reported in Table 2. The ML estimates
of the differencing parameter d are of special
interest. The point estimates of d are all signifi-
cantly different from both zero and one. Both the
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Table 2. Parameter estimates of ARFIMA models.

Real stock price Real dividend
AIC SIC AIC & SIC
d 0.4713 0.7296 0.7040
(0.1977) (0.1044) (0.1157)
¢ 0.6331
(0.1921)
b2 -0.2158
(0.1067)
3 0.3267
(0.0883)
0 0.4563 0.5157
(0.1238) (0.0950)
c 0.0645 0.0670 0.0016
(0.0042) (0.0044) (0.0001)

Parameter estimates of ARFIMA(p, d, 4) models of the annual
real stock prices and real dividends from 18711987, selected by
the Akaike information criterion (AIC) and Schwartz
information criterion (SIC), are reported. The estimated model
is ®(B)(1 - B)’X, = ©(B),, where ®(B)=1—¢,B—... — 6,5,
OB)=1+0,B+---+ 6,87, and the standard deviation of & is o.

real stock price and the real dividend series are
fractionally integrated with d between zero and
one. They are neither integrated of order one nor
trend stationary as reported in previous studies.
The persistence in these data is stronger than that
allowed for by stationary processes and weaker
than that implied by unit root models.

The point estimates of d are in the range of 0.47 to
0.73. These estimates imply that the data are either
covariance non-stationary or near covariance non-
stationary in levels but are covariance stationary in
first differences. This result is another indication of
the low power of the conventional unit root tests
against fractional alternatives. In contrast to the
conventional knife-edged d=0 or d=1 classifica-
tion, the uncertainty of long-term persistence in
data can be assessed using the (asymptotic)
standard error of the d estimate. Comparing the
two ARFIMA models for the real stock price series,
we find that the ARFIMA(0, d, 1) selected by the
SIC implies a stronger long- term persistence in
price data than the ARFIMA(3, d, 0) model selected
by the AIC.

The estimates of the ARMA parameters also
provide useful information on the short-term
temporal dynamics. The two ARFIMA(0, d,1) mod-

1s: ggest the short-term effect of a shock will last
Iy two periods. For both real stock prices and
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‘real dividehds, the persistence beyond two years is

driven by the fractional differencing component.
The largest AR root in the estimated ARFI-
MAG3, d, 0) is 0.83. That is, in contrast to the model
selected by the SIC, the model based on AIC
suggests a substantial short-term persistence.

Excessive variability

The parameter estimates reported in the previous
subsection allow us to compute C(r,00)5, the
sample estimate of the standard deviation of real
stock price innovations implied by the present
value model. Theoretically, the implied standard
deviation is derived from an infinite horizon
model. For real world investors, however, decisions
are likely to be based on a shorter horizon
consideration. In a recent study Kothari and
Shanken (1992) find that, after controlling for
measurement errors, dividend growth rates in the
current and the next three years can account for
72% of the total variation in the current annual
return on the CRSP equal-weight portfolio from
1927-1985. Further it is interesting to see if the
investor’s myopic behaviour can explain market
volatility. Therefore we calculate C(r,00)5 for
k=1,2,...,120. For the discount rate factor, we
consider r=0.02 to 0.10. This covers the typical
range examined in the literature. For example,
Shiller (1981) and Mankiw et al. (1985, 1991)
considered real interest rates in the range of 0.04
to 0.10.

Since C(r,k)o is only a point estimate of the
implied standard deviation, it is difficult to inter-
pret the difference between this point estimate and
the sample standard deviation computed from real
stock price data. Since the parameters are jointly
estimated, we can assess thAe uncertainty associated
with the point estimate C(r, c0)6 that is due to
sampling variability as follows. For a given k and r,
C(r, k)o is a function of the parameter vector ¢
Hence, the asymptotic variance of C(r, k)6 is given
by VIC(r, b)s]QVIC(r, k)o]", where V[C(r,k)a] is
o[C(r, k)a]/d¢, the superscript-T denotes transpose,
and Q is the variance-covariance matrix of ¢
(Campbell and Mankiw, 1987, Appendix). Given
the sample information on ¢ and Q, we can
evaluate the sampling uncertainty of the point
estimate C(r, k) accordingly.
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Table 3. Standard errors of innovations in real stock prices implied by the present value model.
Horizon r
K= 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
1 0.0943+ 0.0628+ 0.0470% 0.0375 0.0312 0.0267 0.0234 0.0207 0.0186
0.0153 0.0101 0.0076 0.0060 0.0050 0.0043 0.0037 0.0033 0.0030
2 0.0752+ 0.0503F 0.0378 0.0303 0.0253 0.0218 0.0191 0.0170 0.0153
0.0183 0.0121 0.0090 0.0072 0.0059 0.0050 0.0044 0.0039 0.0035
3 0.0669+ 0.0449% 0.0339 0.0273 0.0229 0.0197 0.0173 0.0155 0.0140
0.0194 0.0128 . 0.0095 0.0076 0.0062 0.0053 0.0046 0.0041 0.0036
4 0.0619+ 0.0417F 0.0316 0.0255 0.0214 0.0185 0.0163 0.0146 0.0133
0.0199 0.0132 0.0098 0.0077 0.0064 0.0054 0.0047 0.0041 0.0037
5 0.0583% 0.0394+ 0.0300 0.0243 0.0205 0.0177 0.0157 0.0141 0.0128
0.0202 0.0133 0.0099 0.0078 0.0065 0.0055 0.0047 0.0042 0.0037
10 0.0493+ 0.0338+ 0.0260 0.0214 0.0182  0.0159 0.0142 0.0128 0.0118
0.0205 0.0135 0.0100 0.0079 0.0065 0.0055 0.0048 0.0042 0.0037
20 0.04291 0.0301 0.0236 0.0197 0.0170 0.0150 0.0135 0.0123 0.0113
0.0203 0.0134 0.0099 0.0079 0.0065 0.0055 0.0048 0.0042 0.0037
30 0.0403t 0.0288 0.0228 0.0192 0.0166 0.0148 0.0133 0.0122 0.0112
0.0201 0.0133 0.0098 0.0078 0.0064 0.0055 0.0047 0.0042 ° 0.0037
60 0.0376% 0.0276 0.0222 0.0188 0.0165 0.0147 0.0133 0.0121 0.0112
0.0197 0.0131 0.0098 0.0078 0.0064 0.0055 0.0047 0.0042 0.0037
120 0.036771 0.0273 0.0221 0.0188 0.0164 0.0147 0.0133 0.0121 0.0112
0.0195 0.0130 0.0097 0.0078 0.0064 0.0055 0.0047 0.0042 0.0037

In each cell, the first entry is C(r, k)5, the point estimate of the standard deviation of innovations in real stock prices implied by the
present value model, and the second is its asymptotic standard error. K is the time horizon in years and 7 is the real discount rate.
1 indicates no statistically significant evidence of excess market volatility as the 95% confidence interval of C(r, k) overlaps that of the
sample standard deviation of innovations in real stock prices reported in Table 2 (also, see Endnote 8). However, in other cases, there is
substantial evidence of excess market volatlhty as the 95% confidence interval of C(r, k)5 lies below and does not overlap that of the
sample standard deviation of innovations in real stock prices.

The implied standard errors C(r, k)6 based on
various r and k combinations and their associated

The result changes slightly when we compare the
95% confidence intervals of the implied and sample

asymptotic standard errors are reported in Table 3.
As expected, the C(r k)6 decreases when r (or k)
increases. The discounted cumulated impulse
response appears very close to the convergence
value at k=120.

In general, the observed variation in real stock
price innovations is larger than that implied by the
present value model. The point estimate of C(r, k)o
is smaller than 0.0645 or 0.0670, the sample
standard errors of the real stock price innovation
reported in Table 2, with the exceptional cases
given by r=0.02 and k<3. Only when the real
discount rate is 2% and the relevant horizon for
investors is three years, is the stock market not
excessively volatile. Although the investor’s plan-
ning horizon seems plausible given the Kothari and
Shanken (1992) study, the real discount rate of 0.02
appears too small.

standard deviations of real stock price
innovations.® When r=0.02, the confidence inter-
vals of the implied and sample standard deviations
overlap for k <120. That is, the two point estimates
are not statistically different from each other and
there is no significant excess market volatility. The
no-excess-market-volatility result is also observed
for r=0.03 and k<10 and r=0.04 and k=1.
However, the evidence of excessive market volati-
lity is still very strong. For instance, the estimated
variability obtained from real stock pnce data is
significantly larger than C(r, k)5 when r is larger
than 4%. Even after allowing for sampling un-
certainty, the variation in stock price innovations is
significantly larger than that implied by the present
value model in 73 out of 90 cases reported in the
table and in no cases is this result reversed. It
appears that the no-excess-market-volatility result
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relies heavily on either a very low interest rate
factor or a very short horizon for investors.

CONCLUSIONS

The issue of stock market volatility raised by Shiller
(1981) and LeRoy and Porter (1981) is re-examined.

Previous studies suggest that market volatility test

results can depend on the temporal dynamics of
the dividend process. If one assumes the dividend
data are trend stationary, the stock market is
excessively volatile. The result is reversed if the
dividend = data are assumed to be difference
stationary. In order to encompass the two opposing
views on dividend dynamics, the fractional inte-
gration time series model, which is more general
than standard time series models, is used to
describe the temporal behaviour. In contrast to
the existing results, we find both the real stock
price and the real dividend data are fractionally
integrated with an order between zero and one.
They are neither trend stationary nor difference
stationary.

We use a relation between the variability of
innovations in real stock prices and real dividends,
which is derived under the fractional integration
framework, to investigate if the stock market is
excessively volatile. This relation is valid when the
dividend data are trend stationary, difference
stationary, or fractionally integrated. Overall, we
find substantial evidence for excess market volati-
lity even after controlling for sampling uncertainty
and long-term persistence represented by fractional
integration. Low interest rates and investors’
myopic behaviour have only a limited role in
explaining excess market volatility.
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ENDNOTES

1. Studies such as Fama and French (1988), Lo and
MacKinlay (1988), and Poterba and Summers (1988) also
cast doubt on the efficient market hypothesis by showing
that stock returns over long holding horizons have
predictable components.

2. For instance, Flavin (1983) shows that the original
Shiller test is biased toward finding excessive volatility.
Cochrane (1991) argues that excess market volatility is a
description of the behaviour of discount factors in an
efficient market and not an evidence against market
efficiency.

3. See Granger and Joyeux (1980) and Hosking (1981) for
a detailed discussion on ARFIMA processes.

4. Some studies use the discount factor (1 + r)* instead of
a+ r)’”". However, such modification does not affect the
results reported below qualitatively.

5. Compared with Diebold and Rudebusch (1991a), we
directly derive the relationship between the variability in
innovations using the fractional time series representa-
tion. This approach gives the range of d values in which
the derived relationship is valid. Also, a joint estimation
method, instead of a two-stage procedure, is used. In
addition to efficiency, the joint estimation method also
facilitates the computation of the standard error of the
implied volatility.

6. In fact, C(r, o0) is finite if d <2 and r> 0. Since we
assumed d <1.5 to write down Equation (5), the first
condition is satisfied by assumption.

7. The trimming parameters used to compute the
recursive and sequential statistics are the same as those
used in Banerjee et al. (1992).

8. For the ARFIMA model selected by the AIC reported
in Table 2, the 95% confidence interval of the standard
error of innovations in real stock -prices is (0.05627,
0.0727). The 95% confidence interval computed for the
model selected by the SIC is (0.0674, 0.0846).
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