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We propose and test a simple belief learning model. We find considerable
heterogeneity across individual players; some players are well described by ficti-

Ž . Ž .tious play long memory learning, other players by Cournot short memory
learning, and some players are in between. Representative agent versions of the
model fit significantly less well and sometimes point to incorrect inferences. The
model tracks players’ behavior well across a variety of payoff matrices and informa-
tion conditions. Journal of Economic Literature Classification Numbers: C72, C73,
C92, D83. Q 1997 Academic Press

1. INTRODUCTION

Ž .Cournot 1838 introduced the first explicit model of learning in games.
He assumed that players choose a best response to what they most recently

Ž .observed. The fictitious play model of Brown 1951 and others makes the
somewhat more appealing assumption that players choose a best response
to the average of all previous observations, not just the most recent. Both
of these learning models have leading roles in recent theoretical treat-

Ž .ments of learning in games e.g., Fudenberg and Levine, 1995 . Empirical
examination of the two models therefore is in order, whether or not the
original authors ever intended to describe behavior literally.

Ž .Boylan and El-Gamal 1993 showcase their Bayesian methodology by
comparing the two learning models in nine laboratory game sessions. They

U ŽFirst draft, April 1993. We are grateful to the U.S. National Science Foundation Grant
.SES-9023945 for funding the experiments reported here and to Carl Plat for excellent

research assistance. Tim Kolar wrote the key computer programs, Thanh Lim helped revise
them, and Nicole Bouchez helped with the final data analysis. Audiences at Caltech, UC
Irvine, University of Minnesota, University of Pittsburgh, University of Texas, and the 1994
Public Choice Society meetings provided many useful comments. We are indebted to two
patient and careful referees and an associate editor of this journal for helping us improve the
exposition. E-mail: dan@cash.ucsc.edu.
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conclude that, although the Cournot model does better in a few sessions,
the fictitious play model overall offers a far better explanation of the data.

The Boylan and El-Gamal results raise a host of new questions. Do
Ž .some payoff matrices encourage players to take a short Cournot view

Ž .while other matrices encourage a longer fictitious play view? Or are we
seeing individual player differences at work, the majority usually favoring
longer views? Are institutional details important, such as what players can
observe of other players’ strategies? Such questions are important if we
want to make serious empirical use of learning models. Answers will
require an extension of the Cournot and fictitious play models to allow for
a wider range of learning behavior, for possible responses to institutional
details, and for possible individual differences across players.

In this paper we offer an extended three-parameter learning model and
confront it with a variety of laboratory environments. All games are in
normal form with binary action sets, but we look at several types of 2 = 2

Ž .payoff matrix or bimatrix and vary the number of players, the matching
procedure, and the amount of feedback information.

The next section develops a conceptual framework and a three-parame-
ter model for learning processes in normal form games. It explains the
need for a simple model that deals explicitly with beliefs and that tracks
the distribution of players’ behavior across a variety of environments. It
also shows where the three-parameter model fits into the recent empirical
literature. The more intricate mathematical arguments are sketched in the
Appendix. Section 3 introduces the data, which are described more fully in

Ž .Friedman 1996, henceforth F96 and in our working paper Cheung and
Ž .Friedman 1994, henceforth CF94 . Section 4 collects the main empirical

results. On the whole, the distributions of fitted parameters behave sensi-
bly. Key structural parameters remain essentially unchanged when the
payoff matrix changes, but move in the appropriate direction when the
information conditions change. Perhaps the most striking conclusion is
that players are quite heterogeneous in crucial dimensions such as effec-
tive memory length and responsiveness to evidence. We show that the
heterogeneity can affect basic inferences as well as explanatory power.
A brief summary and discussion appear in the last section.

2. LEARNING MODELS

Figure 1 presents a framework for discussing learning models. Proceed-
ing clockwise from the top, we are given a stage game with payoff function
g. The stage game produces a current outcome x g X for each combina-
tion of feasible current actions a g A chosen by players i s 1, . . . , N. Ini

Ž .particular, the payoff to player i is a function g a , s of her own action ai i i
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FIG. 1. Conceptual framework for learning in games.

and the payoff relevant state s created by other players’ actions. Player ii
observes a portion of the current outcome, perhaps only her own payoff or
perhaps the entire action combination and payoff vector, depending on the
institutional arrangements of the game. To the extent that the observed
outcome is not fully anticipated, the player revised her beliefs s g B usingî

Žsome learning rule. The last leg of the diagram is a decision rule possibly
.stochastic that determines an action for each player given her current

beliefs.
The stage game is repeated many times. Beliefs typically will change as

experience accumulates. Changes in beliefs typically will induce changes in
actions and outcomes, hence further changes in beliefs. The process may
or may not eventually settle down. Theoretical literature shows under
rather general conditions that if beliefs, actions, and outcomes do settle
down, then the actions are mutually consistent best responses, i.e., are a
Nash equilibrium of the stage game.1 Whether the process converges to

1 Ž .We refer here to normal form game results such as Proposition 3.3 of Friedman 1991 or
Ž .several propositions of Fudenberg and Levine 1995 . With extensive form stage games,

behavior can settle down into self-confirming actions and beliefs that do not quite constitute
Ž .a Nash equilibrium e.g., Fudenberg and Levine, 1993 .
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Ž .equilibrium quickly or slowly or not at all depends on players’ learning
and decision rules and on the institution through which they interact.

2.1. Empirical Learning Rules

Empirical learning models must deal with the fact that beliefs are not
directly observable. Hence in empirical work we must postulate a set B of
possible beliefs and estimate the decision rule jointly with the learning
rule. A natural specification for B is the set of action distributions the

Ž .player could face, i.e., opponents’ mixed strategies. Boylan and El-Gamal
use this specification to compare two venerable learning rules. The Cournot
rule takes current beliefs to be the most recently observed action distribu-
tion. The fictitious play rule takes current beliefs to be the simple average

Žof all previously observed action distributions possibly also averaging in
.some unobserved prior .

We want to construct a one-parameter class of learning rules that
includes Cournot and fictitious play as special cases. Fictitious play as-
sumes that players have long memories and consider all previous observa-
tions, a not unreasonable assumption for the 10]16 period repeated trial
experiments we shall examine. Cournot assumes that players pay much
more attention to recent observations than to older observations. To some
extent this also is reasonable, because if other players are learning then
the action distribution changes over time and the more recent evidence
indeed is more representative of the current state. We shall assume that
each player i uses some discount factor g on the older evidence. Specifi-i

Ž .cally, a player who has observed the historical states h s s , . . . , s byi t i1 i t
the end of period t will begin the next period with beliefs

ty1
us q g sÝi t i i tyu

us1s s . 2.1Ž .î tq1 ty1
u1 q gÝ i

us1

Ž .As noted in CF94, Eq. 2.1 is a slight variant on the standard partial
Ž .adjustment or adaptive model, and the denominator simply renormalizes

so that the weights on historical observations sum to 1. We apply the
Žlearning rule beginning at t s 1 and to reduce the number of free

.parameters we neglect any beliefs held prior to period 1.
Ž .Setting g s 0 in Eq. 2.1 yields the Cournot learning rule, and setting

g s 1 yields fictitious play. We have adaptive learning when 0 - g - 1; in
this case all observations influence the expected state but the more recent
observations have greater weight. There are, of course, two other logical
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possibilities. Values of g ) 1 imply that older observations have greater
weight. Such values would characterize a player who relies on first impres-

Ž .sions or like one of Konrad Lorenz’ famous ducklings is susceptible to
imprinting. Values of g - 0 are highly counterintuitive in that they imply
that the influence of a given observation changes sign each period.

Ž .The data we will examine come from binary choice games i.e., aA s 2
in which each player faces a single strategically homogeneous population

Ž .of n opponents. In this case the historical observations in Eq. 2.1 are just
y1 n w xreal numbers s s n Ý a g 0, 1 , where a s 1 if player j choosesi t js1 jt jt

the first action in period t and s 0 if he chooses the other action. The
current belief s , the expected fraction of opponents who will choose theirî t
first action, is a weighted average of the historically observed fractions.

2.2. Empirical Decision Rules

The decision rules we consider are based on differences in expected
ŽŽ ..payoffs. A player with 2 = 2 payoff matrix M s m who believesi j

her opponent will choose his first action with probability s has expected
Ž . Ž .X Ž .payoff 1, 0 M s, 1 y s for her first action 1, 0 and expected payoff

Ž . Ž .X Ž .0, 1 M s, 1 y s for her other action action 0, 1 . The difference in
Ž .expected payoffs i.e., the perceived advantage to the first action therefore

is
X

R s s 1, y1 M s, 1 y s s b q cs, 2.2Ž . Ž . Ž . Ž .
Ž . Ž .X Ž . Ž .Xwhere b s 1, y1 M 0, 1 and c s 1, y1 M 1, y1 s m q m y11 22

m y m .12 21
Note for later reference that 2 = 2 matrices come in three major types,

U Ž .depending on the sign of c and the solution s to 0 s R s s b q cs:

Ž . U U1 c - 0 and 0 - s - 1, in which case s is the unique Nash
Ž .equilibrium NE of the symmetric game where all players face the same

matrix M;
Ž . U2 c ) 0 and 0 - s - 1, in which case the NE of the symmetric

game are s s 0, 1, and sU ; and
Ž . U Ž .3 there is no solution s g 0, 1 , in which case either s s 0 or

s s 1 is a dominant strategy and hence the unique NE of the symmetric
game.

There is also the trivial case that c s 0 and b s 0, in which case a
player is always indifferent between her actions.2

2 The classification has a fairly long tradition and can be extended to nonsymmetric
Ž .bimatrix or population games; see, e.g., Zeeman 1980 or F96 for a recent discussion. For

present purposes it does not matter whether the population game is symmetric; all that
matters are the given player’s payoff matrix M and her beliefs s regarding potentialî t
opponents, whether or not they face the same payoff matrix.
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The input to the decision rule of player i at time t is the expected
Ž .advantage of the first action r s R s , given current beliefs s from Eq.ˆ ˆ ˆi t i t i t

Ž . Ž .2.1 and given the payoff matrix M defining R in Eq. 2.2 . The first
decision rule that occurs to most game theorists is deterministic best
response, but stochastic decision rules are more natural in empirical work.
Boylan and El-Gamal’s decision rule is noisy best response, with noise

w xparameter « g 0, 1 . For binary choice their decision rule is to choose
action 1 with probability 1 y «r2 if its expected advantage r is positive,î t
with probability «r2 if r is negative, and with probability 1r2 if r s 0.ˆ ˆi t i t

We propose a stochastic decision rule that is continuous in the expected
payoff difference r and that allows for some persistent individual idiosyn-î t

Ž .cracies. Let F be a convenient cumulative distribution function on y`, `
Ž . Ž yx .y1centered at 0, such as the logistic function F x s 1 q e or the unit

normal CDF. Then according to our decision rule the first action will be
chosen with probability

P a s 1 N r ; a , b s F a q b r . 2.3Ž .Ž . Ž .ˆ ˆi t i t i i i i i t

Each player i has her own degree of responsiveness b to the perceivedi
payoff advantage r and her own idiosyncratic tendency a to favor theî t i
first action. The larger positive value of b she uses, the more likely she is

Ž .to best respond, i.e., to choose action 1 action 0 when the perceived
Ž .advantage r of action 1 is positive negative . Her a will be positiveˆ

Ž . Ž .negative if she is more likely to pick action 1 action 0 when she expects
both actions to give the same payoff.

The responsiveness parameter b is crucial. A fully rational player
completely confident in her estimate s would choose the best responseˆ
with certainty, and therefore would have an infinitely large positive b.
Large values of b can create convergence problems, however. When all
players face the same type 1 payoff matrix M with interior Nash equilib-
rium sU , then r and s y sU have opposite sign. With large b s mosti t ty1
players will best respond and the state s will overshoot sU , producingt
unstable oscillations. The Appendix shows that the inequalities 0 -

X' < < Ž . Ž .b - 2p r c , where again c is 1, y1 M 1, y1 , eliminate such over-
shooting for nonnegative values of the learning parameter g when F is the

Ž .unit normal CDF. Finite but positive estimates of b permit trembles, or
Ž .‘‘experiments’’ in the sense of Fudenberg and Kreps 1993 , possibly

reflecting a lack of confidence in the estimate of the expected state.
Negative values can be interpreted either as perverse behavior or as

Ž .anticipatory behavior in the sense of Selten 1991b . A player who antici-
Ž . Ž .pates that other players will use 2.1 ] 2.3 with sufficiently high positive
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b s will find it advantageous near a unique, interior NE to use a negative
b. We see no rationalization for negative b when the state converges to a
corner NE.

The decision parameter a is a catch-all intercept coefficient. It would,
for example, pick up an average impact of prior beliefs.3 We believe that
the main influence on a is a player’s idiosyncratic response to the payoff
matrix. In the Hawk]Dove game described in the next section, for exam-
ple, some players just like to be Hawkish and others like to be Dovish to
some degree. Such idiosyncracies are especially important in the neighbor-
hood of an interior NE sU. Here both actions are best responses and so at

U Ž . Ž .s s s we have r s 0 and F a q b r s F a . Hence convergence toˆ ˆ ˆi tq1
U Ž . Uan interior NE s implies that F a reproduces the mixing probability s

on average. We will test the hypothesis that players’ idiosyncratic prefer-
ences adapt to a payoff matrix with an interior NE in a manner that allows
convergence to the NE.4

2.3. The Three-Parameter Model

Ž . Ž .Equations 2.1 ] 2.3 define an empirical model whose three parameters
Ž .a , b , and g can be estimated for each player from trial-by-trial decisions
in binary choice games. For a we can test the point null hypotheses a s 0ˆ

y1Ž U .of unbiased choice and a s F s of mixed Nash strategies. For b weˆ
ˆ Žhave the null hypotheses b s 0 of unsystematic choice neither responsive

'. < <to expected payoff nor anticipatory and b s 2p r c of borderline stabil-
Ž . Žity. More importantly, for g we have g s 0 Cournot and g s 1 fictitiousˆ ˆ

.play .
Unlike many authors, we allow for the possibility that players may differ.

Ž .Perhaps the Harsanyi doctrine e.g., Kreps, 1990, p. 110 is correct in that
all players use the same learning rule and the same decision rule and have
the same prior beliefs at birth. Even so, people have different experiences
in life and therefore bring different priors to an experiment. As players,

Žthen, they may well differ in their discount factor or effective memory
. Ž .length g , their responsiveness to or confidence in the perceived payoff

advantage b , and their idiosyncratic preference a for the first action.

3Suppose that s is the initial prior in a sequence of periods of duration T. Then a wouldo
T Ž . Ž . Ž .contain a term of the form bg R s , where R s s b q cs as in Eq. 2.2 .o o o

4 y1Ž U .That is, we will compare the empirical distribution of a with F s for matrices withi
U Ž .various mixed strategy NE s . We do not attempt to model or test an adaptation process

per se for a . Our intuition is that if there are initially too many Hawks, say, then low payoffs
will quickly discourage this idiosyncratic preference and enough of them will turn Dovish to
allow closer approach to the NE. See F96 for a related discussion on persistent idiosyncratic
preferences.
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Our main concern in empirical work will be to track the distribution of
parameter estimates across institutions or environments. The reason is
twofold. First, as economists we are interested in individual differences
mainly for their outcome consequences, e.g., their effect on convergence to
equilibrium. The consequences depend only on the population distribu-
tion; e.g., the stability of an interior NE depends on the group mean of
Ž .F a and the bounds on the b s. The outcomes do not depend on detailsi i

that might interest psychologists such as what sort of life experiences lead
to a low b . Second, as applied theorists we are interested in laboratoryi
games mainly for the insight they provide into actual or possible field
institutions. If changes in the institution produce unpredictable changes in
the distribution of learning and decision parameters, then even good fits of
laboratory data will offer little insight into field environments. For the
model to be useful in practical applications, we need to be able to say
something about how its parameters change as we change the payoff
matrix, the information conditions, and other environmental variables.

According to the model, the payoff matrix should affect behavior only
Ž .through a and the b and c coefficients in Eq. 2.2 , i.e., only through a

player’s idiosyncratic action preferences and through the way the payoff
matrix connects the expected payoff difference r s b q cs to beliefs s. Theˆ ˆ ˆ
model does not allow for systematic effects of the payoff matrix on
estimates of the structural parameters b and g .

We can think of two a priori reasons why, contrary to the model’s
predictions, there might be an empirical relation between the payoff
matrix M and the structural parameter b. First, there may be a selection
bias in the data. We just noted that large positive values of b destabilize
interior NE. Convergence to a corner NE sU , by contrast, implies that b is

Ž Ž U . .large relative to a and the payoff differential R s at the corner NE
and positive.5 Consequently b estimates may tend to be larger when the
state converges to a corner NE than when it converges to an interior NE.
Second, the model does not allow for anticipatory players in the sense of

Ž .Selten 1991b . Such players may use negative b s when the payoff matrix
has an interior NE. With these considerations in mind, the empirical
prediction is that b as measured might be larger for matrices that promote

Ž .convergence to corner equilibria type 2 than in matrices that promote
Ž .convergence to interior equilibria type 1 , but that g will be unaffected by

any matrix that allows for nontrivial payoff differences r.
Perhaps the most important predictions are for information conditions.

We predict that g will decrease and b will increase when the institution

5 UFor example, if you regard s - 0.05 as representing convergence to the NE s s 0 and
Ž .use the unit normal CDF for F in 2.3 , then for convergence you need the joint restriction

U U Ž U . Ua q b r - y1.96, where r s R s F 0 since s s 0 is a NE.
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provides better information on outcomes. The intuition on b is simply that
people will respond more strongly to evidence when they know the
evidence is higher quality. The intuition on g is that when contemporane-
ous evidence is weak, people will rely more heavily on older evidence. The
Appendix contains a simple theoretical sketch to support the intuition.

2.4. Other Learning Models

In the present paper we do not test the three-parameter model against
nonnested alternatives, but a brief discussion of alternative learning mod-
els will provide some useful perspectives. In the terminology of Simon
Ž . Ž .1957 and Selten 1991a , we so far have dealt entirely with belief learning.
The alternative is rote learning, in which experience affects behavior

Ž .directly as, for example, in Roth and Erev 1995 . In a formal sense, belief
learning and rote learning are equivalent. Given a belief learning model as
in Fig. 1, you can construct an observationally equivalent rote learning
model by composing the decision rule with the learning rule, i.e., mapping

Ž . Ž .outcomes directly to decisions by decision rule ( learning rule . Con-
versely, given a rote learning model you can construct an observationally
equivalent belief learning model by defining the set B of beliefs as
accumulated experience, so the ‘‘learning rule’’ is simply experience updat-
ing and the ‘‘decision rule’’ is simply the rote action mapping.

The point of belief learning may be clearer after discussing Mookherjee
Ž . Žand Sopher 1994 , who investigate a two-player repeated game ‘‘matching

.pennies’’ using both rote and belief learning models. Their belief learning
model is similar to ours, except that it imposes the representative agent
restrictions a s a and b s b and the fictitious play restriction g s 1i o i o i
for all i. For the stochastic decision rule they use the logit function
Ž . Ž yx .y1 Ž .F x s 1 q e , while we will use the probit function F x s

Žcumulative unit normal distribution function. Their empirical results con-
.firmed in our data support a natural symmetry in the coefficients that

Ž Ž . Ž ..allows their main rote learning model their Eqs. 2.1 and 2.2 to be
expressed as

w xPr a s 1 s F a q b r , 2.4Ž .Ž .˜i t t

where r is not the difference in expected payoff, but rather the difference˜
in average payoff actually experienced so far. Mookherhjee and Sopher

Ž Ž . Ž ..recognize that a different version of rote learning their Eqs. 2.3 ] 2.6 is
Ž .equivalent to belief learning. To see that 2.4 above also is a special case

Žof our belief learning model, assume for the moment very counterfactu-
.ally! that the player somehow managed to play both strategies each
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period. Then
ty1

Xy1Er s t y 1 1, y1 M s , 1 y sŽ . Ž . Ž .˜ Ýt i tyu ityu
us1

Xs 1, y1 M s , 1 y s s r , 2.5Ž . Ž .ˆ ˆ ˆŽ .i t i t i t

Ž .y1 ty1where s s t y 1 Ý s is the expected state under fictitious play.î t us1 i tyu
Now drop the counterfactual and note that the player i’s choice of action 0

� 4or 1 each period defines two disjoint subsamples of s : u s 1, . . . , t y 1tyu
from which she estimates r, but the iid assumption underlying fictitious˜
play implies that the subsamples and the estimates are unbiased. Hence we

Ž .still have Er s r so up to some noise which can be absorbed into F Eq.˜ ˆt i t
Ž . Ž .2.4 above reduces to our Eq. 2.3 . With a bit more work, the conclusion
extends to values of g other than 1.0. The underlying reason is the
invertible linear relation r s b q cs between expected states and payoff

Ž . Ž .Xdifferences, assuming 0 / c s 1, y1 M 1, y1 s m q m y m y11 22 12
m . In this case, forming beliefs about states is equivalent to forming21
beliefs about payoff differences directly.6

Rote learning and belief learning part company following any change in
the institution. Suppose, for example, that action 0 is a dominant strategy
before a change in the payoff matrix and action 1 is dominant after the
change. Then a researcher using a rote model faces an acute dilemma. If
he sticks with the old parameter estimates, then he has a parsimonious but
probably grossly inaccurate prediction of postchange human behavior.
Ž .Perhaps the prediction will be accurate for ants. If he drops the old
estimates, then he has no prediction at all until sufficient data accumu-
lates. By contrast, a researcher who has properly specified beliefs B in a

Žbelief learning model has predictions that are just as sharp and one
.hopes just as accurate after the switch as before. In our three-parameter

model, for example, beliefs s refer to the fraction of players expected toi t
Ž . Ž .choose say the dominant action, and the coefficients b and c in Eq. 2.2

can pick up any more subtle changes in the payoff matrix. The structural
parameters b and g remain unchanged.7

6 Ž .Roth and Erev 1995 and many other rote learning models are based on payoff levels
rather than payoff differences, in which case an equivalent belief learning model will look
quite different than ours. Rote learning models based on payoff levels implicitly assert that
nonsalient changes in payoffs can substantially affect behavior. For example, if each player
always receives an extra dollar each period, independent of actual decisions, then such

Ž .models predict noisier behavior closer to uniform random over the action set .
7The intercept parameter a also remains unchanged in this example, because there is no

interior NE before or after the switch. In general, the natural null hypotheses are as stated in
Ž U .the beginning of the last subsection: a s 0 or if there is an interior NE s then also

y1 Ž U .a s F s . Using the second hypothesis, we predict a shift in a when the interior NE
shifts.
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To make the same point a different way, belief learning models seek
‘‘deep parameters’’ that remain invariant under institutional change. Rote
learning models seek only convenient reduced forms.8 Hence, for the
reasons discussed in the previous subsection, the applied economist who
wants to predict behavior in field environments will find belief learning
models more useful than rote learning models.

Ž .McKelvey and Palfrey 1995 independently develop a rather different
empirical model with a parametrization similar to our belief learning
model. For binary choice their model can be written

w x UP a s 1 s F b r , 2.6Ž . Ž .i t t

U Ž . Ž w x w x.X w xwhere r s 1, y1 M P a s 1 , 1 y P a s 1 s b q cP a s 1 is thet i t i t i t
rational expectation of the payoff difference given the choice technology
Ž .2.6 . In empirical work, they take the distribution F to be the logistic

Ž . Ž yx .y1function, F x s 1 q e for the two-action case. Obviously the intent
here is not to explain how players learn to acquire mutually consistent
beliefs, but rather to fit laboratory data to an equilibrium model incorpo-
rating noisy rational expectations.

Despite its different purposes, the McKelvey]Palfrey model does imply
some parametric restrictions for our model, namely that there is only a
single free parameter b s b and that a s 0 for all i. The payoffo i i
difference rU is not estimated from historical data, but rather is the

Ž .solution to the transcendental equation r s b q cF b r . Using the valueso
Žb s 4 and c s y6 from the standard Hawk]Dove matrix presented in

. U Ž .the next section , one can verify that the implicit function r b is strictly
U Ž . U Ž . U Ž .decreasing, that r 0 s 1 and that b r b ª ln 2 as b ª ` so r ` s 0.

Ž . Ž .Our Eqs. 2.1 and 2.2 therefore do not apply but, given the iid fluctua-
tions the model envisions around equilibrium, the most efficient estimator

Ž .in 2.1 is g s 1. Thus their model suggests the representative agent
fictitious play restriction g s 1 for all i.9i

McKelvey and Palfrey use their model on games with more than two
alternative actions. Their decision rule is essentially the standard logit

Ž .model. Stahl and Wilson 1995 use the same decision rule in their study of

8Of course, sometimes a reduced form is well suited for one’s purpose. For example, Roth
and Erev’s rote learning model is quite effective in driving home their point that payoffs to
strategies not used in equilibrium can affect convergence.

9 In their concluding remarks, McKelvey and Palfrey suggest dropping the representative
agent restriction and allowing ‘‘learning,’’ defined as an increase over time in the parameter b
Ž . Ž .or l in their notation . In our terminology a specification such as b s b exp yd t is nott o
even rote learning because it is not responsive to experience, just to clock time. This dynamic

Ž .stochastic equilibrium model reminiscent of the model in McKelvey and Palfrey, 1992 still
has no direct role for our a or g parameters, although it seems that efficient estimates of the
state using historical data would involve g a bit less than 1.0.
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individual differences in initial beliefs. It is beyond the scope of the
present paper to consider larger actions sets, but the natural generaliza-
tion of our decision rule would be based on expected payoffs r for actionji t
j assessed by player i at time t relative to some baseline payoff and would

Ž . Žassign to each action j g A the probability F a q b r rÝ F a qji i ji t k g A k i
.b r .i k i t

Ž .Finally, Crawford 1995 uses a belief learning model to investigate a
class of coordination games with an ordered action set. Decisions are
myopically optimal, i.e., they maximize expected current period payoff
given current beliefs. Beliefs are adaptive and characterized by a parame-
ter b similar to our g . This parameter is assumed identical across individu-
als, up to idiosyncratic error with mean zero and a variance that declines
over time. Crawford shows that in his setting beliefs and actions converge
to one of the multiple equilibria, and that the model tracks convergence
rather well across changes in the payoff matrix.

3. THE DATA

A proper test of the three-parameter learning model requires a variety
of information conditions and a variety of payoff matrices. Table Ia
displays the main matrices we use. The first two entries define symmetric
or single population games in which all players face the same 2 = 2 matrix

Ž . Ž .M, of type 1 ‘‘Hawk]Dove’’ or HD and type 2 ‘‘Coordination’’ or Co .
HD has a unique NE that calls for 2r3 of the players to choose Hawk and
the other 1r3 to choose Dove in each period. Co is a bit special in that its

Žtwo pure strategy NE satisfy conflicting selection criteria Harsanyi and
. ŽSelten, 1988 : s s 1 is payoff dominant all players get 5 per period versus

. Ž1 per period in the other pure NE , while s s 0 is risk-dominant an
opponent’s deviation actually increases a player’s payoff by 3 versus a

.decrease by 6 in the first NE . The third entry, which defines a single
population game of type 3, is shown for completeness but it will not be
used in the data analysis because players with a dominant strategy provide
little evidence on their beliefs about their opponents’ actions.

The other two entries in Table Ia are two population games: players in
one population have a payoff matrix M 1 that may differ from the payoff
matrix M 2 for players in the other population. Equally important, players’

Žopponents always come from the other population, never their own. Think
of the two populations as row players and column players in the bimatrix

Ž 1 2X. . Ž .game M ; M . Buyer]Seller B]S is analogous to Hawk]Dove in that
it has a single NE in mixed strategies; the first population has mixing
probability p s 1r4 and the second has mixing probability q s 1r2. We
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TABLE Ia
Some Payoff Matrices

Name Matrix Type NE EE

1. Hawk]Dove y2 8 1 s s 2r3 s s 2r3
Ž .HD 0 4

2. Coordination 5 y1 2 s s 2r3, 0, 1 s s 0, 1
Ž .Co 4 1

3. Weak Prisoners’ 4 0 3 s s 0 s s 0
Ž .dilemma WPD 5 1

1 2M M
Ž . Ž . Ž . Ž .4. Buyer]Seller 2 0 2 3 1a p, q s 1r4, 1r2 p, q s 1r4, 1r2

Ž .B-S 3 y1 y1 4

1 2M M
Ž . Ž . Ž . Ž .5. Battle of the Sexes 1 y1 3 y1 2a p, q s 1r3, 3r5 , p, q s 1, 0 ,

Ž . Ž . Ž . Ž .BoS y1 2 y1 1 1, 0 , 0, 1 0, 1

Note. Matrix types are defined in the text. The NE column lists all Nash equilibria for the
symmetric two-player game using that matrix. The EE column lists the NE to which

Ž .convergence is supposed to be possible see F96 . The data from the third entry, a variant of
the standard Prisoner’s dilemma, are not analyzed in the present paper.

Ž .also examine a type 2 analogue, Battle of the Sexes BoS , with two pure
strategy NE and one mixed strategy NE. As noted in the results section
below, we sometimes consider minor variants on the matrix entries listed
in Table Ia.10

3.1. Laboratory Procedures

Ž .Variety in the information conditions or the institution is achieved via
two alternative matching procedures and two alternative computer screen

Ž .displays for the players. Under the random pairwise RP matching proce-
dure, the computer randomly picks a matching scheme independently in
each period, each admissible scheme being equally likely. For example, in

Ž .a 2 = 6 Buyer]Seller game, population 1 players the Buyers with identi-
fication numbers 0, 1, 2, 3, 4, and 5 might be matched respectively with

Ž .population 2 players the Sellers numbered 4, 0, 2, 1, 5, and 3 in the first

10 The working paper CF94 also examines several other two population payoff matrices of
various types. The results are omitted here to conserve space.
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period and with Sellers numbered 2, 5, 0, 3, 4, and 1 in the second period.
In a 1 = 12 Hawk]Dove game, the single population of players might be

� 4 � 4 � 4 � 4 � 4 � 4paired 0, 2 , 1, 9 , 3, 11 , 4, 5 , 6, 10 , and 7, 8 in the third period.
Under random pairwise matching, a player with payoff matrix M has

Ž . Ž .Xexpected payoff advantage 1, y1 M s, 1 y s for the first action if the
Ž .distribution of actions by potential opponents is s, 1 y s . However, the

actual payoff depends on the action taken by the actual opponent, and so
has some variance around its expectation. The variance is eliminated in

Ž .the alternative matching procedure, called mean matching MM . Here
each player is matched once against each possible opponent in each round

Ž .and receives the average mean payoff. For example, if 6 of 12 players in
Ž .Hawk]Dove the first entry of Table I choose the first action then the

Ž . Ž . Ž .state is s, 1 y s s 0.5, 0.5 and the payoff differential is 1, y1 ?
Ž .XM 0.5, 0.5 s 3.0 y 2.0 s 1.0.
The other information variable is the amount of historical data that

Ž .appears on each player’s screen. In the No History NH condition, the
player receives no historical information other than what she could tabu-
late herself: her own action and actual payoff in previous periods. In the

Ž .alternative condition, History H , the screen displays a list of the actual
states of the relevant population in previous periods. For example, the
player in period 4 might see that 9 of 12 players took the first action in
period 1, then 8 in period 2, and 6 in period 3. Of course, the payoffs in
mean matching implicitly reveal this historical information, but in random
matching the information is entirely new.

Two other procedures deserve brief mention. The number of players
varies across sessions}e.g., perhaps 12 players in one session and 16 in
another. Some sessions employ split groups in some periods}e.g., all 16
players belong to a single population in the first 40 periods, then are

Ždivided into two separate 8-player groups no pairing or mean-matching
.across the two groups for the next 80 periods and reunited into a single

group for the last 40 periods of a 160 period session.
Each session consists of several runs, sequences of periods in which the

institution is held constant in order to give players the opportunity to
learn. Runs are separated by obvious changes in the player population, the
information and matching conditions, andror the payoff matrix. The
history screen also is restarted at the beginning of a new run. If runs are
too short then there will not be enough observations to fit a learning
model, but if runs are too long then players may respond to boredom
rather than to payoffs. Typical run lengths are 10 or 16 periods.

A more complete description of experimental procedures can be found
in F96 and CF94. Instructions to subjects and detailed lists of treatments
employed in each session are available on request.
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3.2. Estimation Procedures

The raw data consist of the actions chosen by each player in each period
of each run, together with the treatments employed in the run. Commer-
cial statistical packages applied to these data can easily estimate the
decision parameters a and b in a representative agent version of our

Ž . Ž . Ž .parametric model 2.1 ] 2.3 . The probit or, if you prefer, the logit
regression procedures applied to any run or set of runs will generate the
desired estimates once the anticipated payoff differentials r are specified.ˆ
We modified the standard probit procedures for two reasons. First, for

Ž .each game type payoff matrix we estimate a separate learning model for
each subject in each session. That is, we impose the restriction that the
decision and learning parameters are identical across runs within a session
but may vary across individual subjects.

Ž .A second modification required more work. In Eq. 2.1 the learning
parameter g enters in a recursive and nonlinear fashion in each run. One

Ž .can exploit the linearity of 2.2 to take exponential averages of r ’s instead
of s’s, and we did so to reduce computation times. We wrote a FORTRAN
program that, in combination with the optimization routines in the GQOPT
package, provided the necessary point estimates and standard errors, and
used grid search results as well as Mathematica to confirm that the
program worked properly.

Table Ib counts the total number of individuals to our experiments and
the number for which we can estimate the learning model. We exclude
sessions with less than three runs of the given payoff matrix and sessions

TABLE Ib
Players By Game

Number of Number of Number of Percentage of
Game sessions players estimable players estimable players

Hawk]Dove 11 138 127 92
Ž .HD

Coordination 9 110 77 70
Ž .Co

Buyer]Seller 8 116 92 79
Ž .B-S

Battle of the Sexes 9 118 97 82
Ž .BoS

Note. All sessions with group size larger than six and at least three runs are included.
Ž .The second column reports the number of individual subjects players in these sessions.

The third column excludes subjects whose choices did not permit estimation of the
learning model. In most cases, such individuals chose the same action in all periods,
except perhaps the first.
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Žwith groups smaller than six players. As explained in F96, some players
apparently attempt to influence the behavior of other players in these
small group sessions. Such attempts are outside the scope of the learning

.models we are presently investigating. For example, HD runs are found in
11 different sessions involving 138 individual players. The choices of 11 of
the 138 players did not permit estimation of the model, typically because

Ž .all choices except perhaps the first in each run were the same, e.g., all
‘‘Dove.’’ Thus we estimate the three parameter learning model for 127 of
138 individual HD subjects.

In each session and type of game we also estimate the learning model
for two aggregate players. The first aggregate, which we refer to as ‘‘player
99,’’ consists of the choices of all players in that session. The second
aggregate, which we refer to as ‘‘player 98,’’ excludes the choices of
nonestimable players. Thus we have 2 = 11 s 22 aggregate HD players,
2 = 9 s 18 aggregate Co players, etc. Later we will compare learning
model fits of individuals and aggregates.

4. RESULTS

The histograms in Fig. 2 show the distributions of point estimates across
individual players. The a estimates always are quite dispersed and usually
unimodal, with modestly positive mode in some data and modestly negative
in order. The exception is in the Co data, where negative tail is truncated.
It seems Co players tend to prefer the payoff dominant action to the risk
dominant action. There is a sprinkling of negative b estimates in the type
Ž . Ž .1 HD and B]S data, but almost none in the type 2 Co and BoS . Since

we expect convergence to interior NE in type 1 but not type 2 games, the
histograms suggest a sprinkling of anticipatory players. Negative g esti-
mates are not rare, but most estimates seem to lie between 0 and 1 as we
had hoped.

The standard errors are not shown here; some estimates are quite
precise but others are not. The dispersion in the histograms arises partly
from imprecise estimates and partly from true heterogeneity across play-
ers. The hypothesis tests presented below will have to deal with both
heterogeneity and with estimation error.

4.1. Parameter Estimates

Table II reports median parameter estimates across individual players.
Ž .The first line labeled 3 par comes from the basic three-parameter model

estimated from all relevant runs of each payoff matrix. The other two lines
report separate parameter estimates for different information and match-
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FIG. 2. Parameter histograms.



INDIVIDUAL LEARNING IN GAMES 63

FIG. 2.}Continued
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TABLE II
Median Parameter Estimates

Ž . Ž .F a a b g F a a b gA A A A

HD: 3 par 0.58 0.20 0.17 0.32
HD: 6 MrR 0.63 0.32 0.56 0.46 0.51 0.02 0.29 0.39
HD: 6 HrN 0.62 0.31 0.33 0.44 0.55 0.13 y0.10 0.57
Co: 3 par 0.70 0.51 0.93 0.41
Co: 6 MrR 0.88 1.18 1.65 0.13 0.72 0.58 0.47 0.48
Co: 6 HrN 0.65 0.40 0.90 0.25 0.64 0.36 0.38 0.40
B-S: 3 par 0.45 y0.13 0.87 0.26
B-S: 6 MrR 0.40 y0.24 1.90 0.17 0.45 y0.14 0.55 0.50
B-S: 6 HrN 0.43 y0.18 1.87 0.18 0.48 y0.04 0.55 0.52
BoS: 3 par 0.53 0.09 0.72 0.33
BoS: 6 MrR 0.61 0.27 0.88 0.12 0.47 y0.06 0.62 0.30
BoS: 6 HrN 0.64 0.36 0.87 0.18 0.52 0.04 0.48 0.25

Note. The number of observations used to calculate each median value
are found in Table III. For the six-parameter model, the medians for
Mean Matching and History are reported in the columns on the left, and
the medians for Random Pairwise and No History are reported in columns
on the right.

ing conditions. For example, for each player an a , b , and g is estimated
Ž .from mean matching MM runs and another a , b , and g from random

Ž .pairwise RP runs, and the medians are reported in the lines labeled 6
MrR. Similarly, the lines labeled 6 HrN reports separate estimates from
History runs and from No History runs.

y1Ž .Table II indicates that the a ’s indeed center near F 2r3 for theˆi
Ž . Usingle-population symmetric games HD and Co with mixed NE s s 2r3.

In the two-population games the a ’s center on slightly negative values asˆi
Ž .often as positive values, especially as expected in B]S where the mixed

Ž . y1Ž .NE 1r4, 1r2 is at or below F 0 s 1r2.
ˆ ' < <The b ’s mostly center below the critical value b s 2p r c f 0.42 fori s

the standard HD matrix and a mostly bit above b f 0.84 for the standards
11 ˆCo matrix. Median values of b are always positive except in the Noi

History HD data.

11 The relevance of b is less in type 2 and 2a games such as Co and BoS because theirs
convergence is expected to the corner NE, not to the interior NE. See F96 for an explanation
of this point, and for listings of slight variants on the standard matrices used in some of the

ˆruns. In any case, the comparisons of the b s and b are tangential to the main issues and wei s
will neglect them in the discussions below. The tables often retain the standard HD b values
of 0.42 as a rough benchmark for interested readers.
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The distribution of g s seems fairly consistent across payoff matrices.ˆi

The median values generally fall in the lower half of the ‘‘adaptive’’ range,
sometimes approaching the Cournot value of 0.0. CF94 shows that the
parameter estimates are robust to specification error due to omitted
variables that change slowly and finds generally similar results for the
sparser data from other two population games.12

4.2. Tests of Location and Treatment Effects

The first pair of lines in each part of Table III reports tests of the point
Ž . Ž .null hypotheses F a s 2r3 or 0, b s 0 or 0.42, and g s 0 Cournot or 1

Ž .fictitious play . The data tested are individual players’ estimated coeffi-
Ž .cients e.g., 127 of them for HD and 77 for Co . Since the standard errors

of the coefficients vary greatly, and since the distribution of estimates has
some large outliers, the table relies on the simple nonparametric signs test.
CF94 discusses other possible tests and points out that they yield similar
results. The signs tests are powerful enough to reject the null hypotheses,

Ž .a , b , and g s 0 in favor of the positive alternatives at the 0.005 level or
better for both the HD and the Co data. We do not reject the hypothesis

Ž .that F a is centered at 2r3 for the Co data. For the HD data we
Ž .confidently infer that F a is centered between 0 and 2r3 and that b is

Ž .centered slightly below 0.42. The fictitious play hypothesis that g is
centered at 1.0 is rejected firmly in both data sets, so we conclude that it
indeed is centered in the adaptive zone between 0 and 1.

The two-population data reinforce the main single-population results.
The median b estimate is near or above 0.42 and the median g is between

12Another sort of specification robustness was not discussed in CF94 but may be worth
Ž .summarizing here. Given either History or Mean Matching or both players can infer the

Ž .exact historical states s , but in RPrNH players observe only a presumably unbiasedi tyu
sample of the historical states. To maintain data consistency across treatments we always

Ž .report parameter estimates based on the exact states ES . But there are enough RPrNH
Ž .runs in the HD data to estimate the parameters using the actual sample AS of observations

to check robustness. There are 44 individual players whose parameters can be estimated both
from ES and AS, usually on about 30 observations each. The median a estimate was 0.26

Ž . Ž .lower under AS than under ES P value s 0.08 , b was 0.21 higher P value s 0.24 , and g
Ž .was 0.05 higher P value s 1.0 . Changing the RPrNH specification from ES to AS therefore

Ž .would have no noticeable effect on the g estimates, would as one might expect increase b
Ž .but not dramatically and not significantly the one-tailed level is 0.24r2 s 12% and would

Ž . Židiosyncratically increase a somewhat given the absence of a predicted direction, the
.significance level is 8% . Quantitatively, the differences of AS from ES estimates seem too

small to affect the inferences drawn from the histograms or tables.
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TABLE IIIa
Hypothesis Tests

Nobs a b g

Hawk]Dove
H : a s 0, b s 0, g s 0 127 16.5 17.5 17.5o

Ž . Ž . Ž .0.00 0.00 0.00
Ž .H : F a s 0.67, b s 0.42, g s 1 127 y32.5 y10.5 y40.5o

Ž . Ž . Ž .0.00 0.08 0.00
Ž . Ž .H : M par y R par s 0 91 12.5 9.5 3.5o

Ž . Ž . Ž .0.01 0.06 0.53
Ž . Ž .H : H par y N par s 0 84 3.0 7.0 0.0o

Ž . Ž . Ž .0.59 0.16 1.00

Coordination
H : a s 0, b s 0, g s 0 77 20.5 34.5 14.5o

Ž . Ž . Ž .0.00 0.00 0.00
Ž .H : F a s 0.67, b s 0.42, g s 1 77 2.5 24.5 y23.5o

Ž . Ž . Ž .0.65 0.00 0.00
Ž . Ž .H : M par y R par s 0 49 2.5 11.5 y5.5o

Ž . Ž . Ž .0.57 0.00 0.15
Ž . Ž .H : H par y N par s 0 28 y1.0 5.0 y1.0o

Ž . Ž . Ž .0.85 0.09 0.85

Note. The signs test statistic is k y 0.5n, where k is the number of cases in which
the estimated value exceeds the value in the null hypothesis, and n is the number of
cases in which the estimated value differs from the value in the null hypothesis.
Two-tailed P values are reported in parentheses.

0 and 1. The main difference from the single-population data is that the a
estimates center near or below 0 in B]S and in BoS. This finding is
consistent with the view that a responds mainly to the mixed NE, because

Žfor these matrices the NE mixing probabilities 1r4 and 1r2, and 1r3 and
. Ž .3r5 mostly are at or below F 0 s 1r2.

The other lines in Table III address a crucial question. Do the informa-
tion and matching treatments affect the parameter estimates? Consistent
with theoretical predictions, a is not significantly affected in most cases,
the only exception being a higher median estimate under MM than under
RP matching in the HD data. More importantly, and again as predicted,
the median b estimate is invariably higher under the better information

Ž .treatments MM and History ; the difference is usually significant at the
0.005 level or better. Even in the least favorable case, History vs No
History in the HD data, we can reject the null hypothesis of no effect
in favor of the research hypothesis at the one-tailed confidence level
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TABLE IIIb
Hypothesis Tests

Nobs a b g

Buyer]Seller
H : a s 0, b s 0, g s 0 92 y9.0 30.0 15.0o

Ž . Ž . Ž .0.08 0.00 0.00
Ž .H : F a s 0.67, b s 0.42, g s 1 92 y33.0 13.0 y33.0o

Ž . Ž . Ž .0.00 0.01 0.00
Ž . Ž .H : M par y R par s 0 82 y3.0 14.0 y10.0o

Ž . Ž . Ž .0.58 0.00 0.04
Ž . Ž .H : H par y N par s 0 76 y1.0 14.0 y11.0o

Ž . Ž . Ž .0.91 0.00 0.02

Battle of the Sexes
H : a s 0, b s 0, g s 0 97 5.5 45.5 28.5o

Ž . Ž . Ž .0.31 0.00 0.00
Ž .H : F a s 0.67, b s 0.42, g s 1 97 y21.5 34.5 y37.5o

Ž . Ž . Ž .0.00 0.00 0.00
Ž . Ž .H : M par y R par s 0 72 3.0 11.0 y4.0o

Ž . Ž . Ž .0.56 0.01 0.41
Ž . Ž .H : H par y N par s 0 75 0.5 11.5 y0.5o

Ž . Ž . Ž .1.00 0.01 1.00

0.16r2 s 0.08.13 Recall that we also predict a lower g under the better
Žinformation treatments, and when significant in B]S at 2 and 1% one-

.tailed levels, and in Co M]R at the marginal 0.15r2 s 7.5% level the
signs tests confirm the prediction.14 In view of the discussion in Section
2.4, these results also support belief learning over rote learning.

4.3. Tests of Consistency across Payoff Matrices

How did the payoff matrix affect the parameter estimates? The question
is crucial, because a learning model is not worth much if its parameters

13 The P values in the tables are for two-tailed tests. Again the tables do not show results
for AS estimates as discussed in the previous footnote, but for 39 of the 44 HD players
estimated AS in RPrNH we were also able to obtain MMrH estimates. In 24 of the 39 cases
the MMrH estimates were higher, consistent with the theoretical prediction and significant

Ž .at the 0.10 one-tailed level in the matched pair binomial signs test. We are grateful to a
referee for encouraging us to pursue this robustness question and a bit surprised to get a
marginally significant result despite the small number of observations per player and the
small number of relevant players.

14 When revising the theoretical section we noticed that the argument that gave us
predictions for the information treatments also suggests the same impact for population size.
Unfortunately the limited variation in population size in our data permits only weak tests.

Ž .The most useful data are 24 Co players participating in several split group and whole group
runs. The median estimates of b and g are not significantly different even at the 20% level,
but a is significantly higher in the split groups. The effect on a is consistent with ‘‘Kantian’’
play, a nonlearning model sketched in F96.
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TABLE IV
Wilcoxon Tests

Comparison Nobs a b g

Co vs HD 77, 127 3.87 5.51 0.39
Ž . Ž . Ž .0.00 0.00 0.70

B]S vs BoS 92, 97 y2.36 0.55 y0.61
Ž . Ž . Ž .0.02 0.59 0.54

B]S: Pop B vs A 92, 92 1.28 1.35 y0.07
Ž . Ž . Ž .0.20 0.18 0.95

BoS: Pop B vs A 97, 97 y7.11 1.83 0.18
Ž . Ž . Ž .0.00 0.07 0.86

Note. The null hypothesis is that both samples in the comparison have
Žthe same distribution. The test statistic and the two-sided P values in

.parentheses are for the normal approximation to the Wilcoxon rank-sum
test.

change unpredictably when payoffs change. Table IV reports Wilcoxon
rank-sum tests of the null hypothesis that the distribution of parameter

Žestimates is the same across various data sets. Signs tests are inappropri-
.ate since we cannot pair estimates across the different data sets. We find

that a is very significantly higher in Co data than in HD data; an
interpretation is that players’ idiosyncratic preferences for the payoff-
dominant action over its alternative is stronger than preferences for Hawk
over Dove. The smaller NE mixing fractions in B]S than in BoS are a
plausible explanation for the a differences reported in the second line of
Table IV. The same sort of explanation would account for the third line
Ž .marginally significant at the 0.20r2 s 10% one-tailed level . We did not
expect to see the highly significant difference in a between the two
populations in the Battle of the Sexes; apparently a strong convention
emerged favoring the second population.

The b comparisons have greater theoretical interest. Recall that basic
learning theory suggests no effect, consistent with the results reported in
the second and third lines. Recall also that the selection bias discussed in

Ž .footnote 4 as well as anticipatory learning correctly predicts the signifi-
cantly higher b s for type 2 than type 1 matrices reported in the first line.
The marginally significant effect in the last line is puzzling. Perhaps the

Žemergent convention requires players in the second population with more
.to gain from getting their preferred NE to pay more attention to payoffs

and less to idiosyncratic preferences.
The most important theoretical prediction here is that g is invariant to

the payoff matrix. It is gratifying to see that in every case the estimates are
entirely consistent with that prediction.
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TABLE V
Contingency Tables for Gamma Classifications

a. Individual Players

Type Fickle Cournot Adaptive Fictitious Imprint Uninformative Total

BoS 4 51 6 18 0 18 97
B]S 4 37 9 17 0 25 92
Co 5 25 6 18 1 22 77
HD 15 31 8 31 1 41 127
Total 28 144 29 84 2 106 393

x 2 s 27.4, P-value s 0.0315

b. Individual Players

Type Cournot Adaptive Fictitious Total

BoS 51 6 18 75
B]S 37 9 17 63
Co 25 6 18 49
HD 31 8 31 70
Total 144 29 84 257

x 2 s 10.7, P-value ) 0.106

c. Individual Players

Type Cournot Adaptive Fictitious Total

Co 25 6 18 49
HD 31 8 31 70
Total 56 14 49 119

x 2 s 0.7, P-value s 0.712

d. Aggregate Players

Type Cournot Adaptive Fictitious Total

Co 5 2 1 8
HD 0 2 6 8
Total 5 4 7 16

x 2 s 8.6, P-value s 0.012
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4.4. Cournot ¨s Fictitious Play ¨s Adaptï e Learning

We now take a closer look at the distribution of g estimates. Table V
Žclassifies the individual players using one-sided, heteroskedasticity-con-

.sistent t tests at the 5% level of the null hypotheses that g is 0 or 1. Thei

player is called fickle if we accept the alternative hypothesis g - 0 and isi

called imprintable if we accept g ) 1. When we can reject neither nulli

hypothesis the player is called uninformative. The remaining players are
called Cournot if we accept the alternative hypothesis g - 1 and do noti

reject the null g s 0; fictitious if we accept g ) 0 but do not reject thei i

null g s 1; and adaptive if we accept both g ) 0 and g - 1.i i i

The first contingency table shows that even under these rather exacting
Ž .definitions almost 2r3 of the players 257 of 393, or 65.4% can be

classified as Cournot, adaptive, or fictitious. The null hypothesis that the
classification proportions are the same across all payoff matrix types is
rejected at the 3% level by the x 2 statistic for the first contingency table.
However, a look at the cell entries raises the suspicion that the rejection
arises not from fundamental differences, but rather from varying propor-
tions of the undesirable classifications.15 Restricting attention to the desir-
able classifications, we see in Table Vb that we cannot quite reject the null
hypothesis of equal frequencies even at the 10% level, an impressive result
for a contingency table of this size.

The remaining contingency tables in Table V tell a cautionary tale about
our next theme, aggregation. The x 2 statistic in Table Vd indicates a
significant difference at the 1% level between HD and Co for the aggre-

Ž .gate ‘‘98’’ players, while Table Vc shows that there actually is no
difference for individual players. A closer look at the cell counts shows
that the discrepancy arises mainly because in the HD data individual

Ž .Cournot players and fictitious players are equally common 31 each but
the Cournot players disappear in the aggregate data.

The point is important. The empirical power of our learning model
stems largely from the hypothesis that people do not change their learning

Žprocess when the payoff function changes or, more precisely, that the g
.distribution is invariant to M . If had we relied on aggregate estimates, we

would have erroneously concluded that the fictitious play model character-
ized the HD data and the Cournot model better characterized the Co data.
The individual estimates actually confirm the invariance hypothesis rather
strongly.

15 Moreover, the usual rule of thumb for a reliable x 2 is that each cell in the contingency
table contain at least five observations. This condition holds in Table Vb but not Va.
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4.5. Indï idual ¨s Aggregate Learning Models

Estimating the learning model on an individual basis may occasionally
keep us from making incorrect inferences, but the question still remains
whether the complication of individual estimation really provides much
additional explanatory power. After all, as economists we are interested in
individual differences mainly to the extent that those differences affect
aggregate behavior, and individual estimation is ‘‘costly’’ in terms of
statistical degrees of freedom. Does the improved fit to the aggregate data
justify the use of separate parameters for each individual player?

Table VI shows that the answer is strongly affirmative. For each of the
main payoff matrices and each relevant laboratory session, we compare the
individualized fits of the three-parameter learning model to representative
agent fits of the same model. We use a likelihood ratio test for the null

Ž .hypothesis that the representative agent player 98 model is correct. The
Ž n98 .null hypothesis implies that the statistic y2 L y Ý L has the asymp-98 is1 i

2Ž . Ž .totic x d distribution, where d s 3 n y 1 is the degrees of freedom98

and L , i s 1, . . . , n are the maximum log likelihoods of the individuali 98

player model fits, while L is the maximum log likelihood of the represen-98

tative agent model fit.

TABLE VIa
Loglikelihood Aggregation Tests for Three-Parameter Model

Hawk]Dove Coordination

Session Nobs df LRStat P value Nobs df LRStat P value

3 720 27 41 0.04 252 18 37 0.00
6 1320 30 308 0.00 270 27 71 0.00
9 1200 24 233 0.00 720 21 133 0.00

10 1170 42 332 0.00 } } } }

15 594 27 84 0.00 1188 30 207 0.00
20 } } } } 1188 30 217 0.00
21 540 27 69 0.00 486 24 84 0.00
22 756 27 78 0.00 } } } }

23 600 27 124 0.00 } } } }

24 675 42 149 0.00 315 18 64 0.00
25 495 30 144 0.00 792 30 127 0.00
26 756 33 107 0.00 108 9 34 0.00

Note. The LRStat uses the likelihood ratio test to compare likelihood values
computed at the experiment level with the sum of likelihood values for all

Ž .individuals in the corresponding experiment. The degrees of freedom df is
Ž . Ždefined by: the number of individuals in the experiment y 1 ) the number of

.parameters estimated .
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TABLE VIb
Loglikelihood Aggregation Tests for Three-Parameter Model

Buyer]Seller Battle of the Sexes

Session Nobs df LRStat P value Nobs df LRStat P value

5 864 21 146 0.00 } } } }

7 } } } } 1440 27 63 0.00
13 440 27 153 0.00 1144 33 105 0.00
17 } } } } 648 33 81 0.00
19 216 21 85 0.00 } } } }

23 660 30 170 0.00 720 33 123 0.00
27 540 42 112 0.00 1008 39 110 0.00
28 504 39 111 0.00 1152 45 111 0.00
29 504 39 120 0.00 432 33 73 0.00
30 432 33 87 0.00 288 21 37 0.02

Note. The LRStat uses the likelihood ratio test to compare likelihood values
computed at the experiment level with the sum of likelihood values for all

Ž .individuals in the corresponding experiment. The degrees of freedom df is
Ž . Ždefined by: the number of individuals in the experiment y 1 ) the number of

.parameters estimated .

The entries in Table VI show that in 34 of 36 cases we reject the null
Žhypothesis at the 0.005 level. Even in the exceptional cases HD session 3

.and BoS session 30 we can reject the null at the 5% level. We conclude
that heterogeneity across subjects in terms of learning and decision param-
eters is an important feature of our data.

5. DISCUSSION

Belief learning models offer the prospect of predicting aggregate perfor-
mance when people interact, even in novel environments with novel
institutions. In this paper we proposed a very simple belief learning model
that generalizes the classic models of Cournot and fictitious play. The
model has three fitted parameters, one for learning rate or memory length
Ž . Ž .g and two for the decision process b and a . The model succeeded in
capturing many aspects of behavior observed in a variety of laboratory
environments. In particular,

1. We find that players are quite heterogeneous. Allowing for pa-
rameter differences across individuals greatly increases explanatory power
and improves the reliability of inferences.

2. Estimates of the parameter g allow us to classify the majority of
Ž . Ž .players as short memory Cournot , or intermediate adaptive , or long

Ž .memory fictitious play .
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3. We argue on theoretical grounds that the distribution of Cournot,
adaptive and fictitious players should be invariant to the payoff function.
The individual data from our simple payoff matrices are consistent with

Žthe invariance prediction. Relying on a representative agent model would
have lead us to the incorrect inference that the distribution depends

.largely on the payoff matrix.
4. When significant, the data are consistent with the theoretical

prediction that g will decrease in more informative environments.
5. The decision sensitivity parameter b is positive for most players,

consistent with direct but approximate optimization. It is negative for a few
Ž .players, as suggested by Selten’s 1991b anticipatory model.

Ž .6. Simple nonanticipatory learning predicts that the distribution of
b is invariant to changes in the payoff function, but a selection bias
suggests that observed values of b will be lower for matrices that encour-
age convergence to an interior equilibrium. Most of the data are consistent

Ž .with the selection bias or with anticipatory play .
7. The data are quite consistent with the theoretical prediction that

b will increase in more informative environments.
8. The decision bias parameter a varies across individual players but

Ž .centers near not precisely on values that imply stability for interior Nash
equilibria.

9. The distribution of a generally responds as predicted to changes
in the payoff matrix. The data are also consistent with the prediction that
the a distribution is invariant to changes in the information environment.

Ž .10. Taken together, the results especially 3, 4, 6, 7, and 9 support
our arguments for belief learning over rote learning, which takes no
explicit account of beliefs.

Despite these successes, we do not believe that our simple three-param-
eter model captures all important aspects of learning in games. There is

Ž .some scattered evidence of anticipatory play in the sense of Selten 1991b
and other signs that the model is misspecified for some players. Fortu-
nately, there is no shortage of ideas for modifying the model. Theoretical

Ž .learning models continue to proliferate in the economics and psychology
literature.

We hope our paper will help focus professional creativity on empirical
Ž .learning models that a are sensitive to the institutional context, especially

Ž . Ž .to the information conditions, b allow for individual diversity, c repre-
Ž .sent beliefs explicitly, d account for the decision process, and, of course,

Ž .e are sufficiently tractable and parsimonious for empirical work. We look
forward to the day, preferably neither very soon nor very late, when such a
model improves on our current explanation of the data.
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APPENDIX: MATHEMATICAL DETAILS

Stability at Interior NE

Let sU be an interior NE of the symmetric 2 = 2 game with payoff
Ž . Ž .Xmatrix M and let c s 1, y1 M 1, y1 . For the moment assume a repre-

sentative agent, i.e., assume that for a fixed value of each parameter
Ž . Ž . Ž .g G 0, a , and b Eqs. 2.1 ] 2.3 describe the behavior of every subject.
Conditioned on the realization of previous actions h , the state next periodt

Ž Ž ..has a binomial distribution with mean F a q bR s , where F is theˆ
XŽ . Ž .y1r2cumulative unit normal distribution with density F x s 2p ?

w 2 x Ž . Ž .exp yx r2 . Recall that s is defined from h by Eq. 2.1 , that R s s b qˆ t
Ž . Ž U .cs by 2.2 and that R s s 0.

The stochastic approximation argument, summarized, e.g., in Chapter 4
Ž . Ž .of Sargent 1993 , shows that for local asymptotic stability it suffices to

show that the deterministic part of the dynamics at s s sU is error
reducing. Accordingly, let s s sU q e be the current state and let the

U Ž .preceding states be error free, s s s . Then from 2.1 we have s s as qˆ
Ž . U U y1 ty1 u1 y a s s ae q s , where a s Ý g ; note that the weight a isus0
between 0 and 1 for all t ) 0 as long as g G 0. The deterministic part of

Ž . Ž Žthe response to the current error e therefore is f e s F a q bR ae q
U .. Ž Ž .. < XŽ . <s s F a q b b q cae . The error reduction condition is f 0 - 1.

< XŽ . < < < XŽ . < < XŽ . < <Ž .y1r2 < <Since f 0 s bc aF F bc F F bc 2p , it follows that b
' < <- 2p r c s b ensures stability.s

< <Extensions of the argument show that the uniform bound b - bi s
suffices even when the b s differ across individuals, and that the bound isi

Žsharp in the sense that if all individuals have b ) b then for sufficientlyi s
. Usmall positive g and t we have an overshooting instability at s .

Comparatï e Statics of Information Conditions

Consider a static binary decision where action a s 1 is chosen if a
summary statistic y G 0, and a s 0 is chosen if y - 0. The statistic y
comes from four sources.

1. ‘‘old’’ evidence, an unbiased sample of size N from a distribution
of precision t ' sy2 ;1 1

2. ‘‘new’’ evidence, an unbiased sample of size N from a distribution
of precision t ) t ;2 1

3. unbiased prior evidence of precision t ; ando

4. a random impulse y , normalized to unit precision.a

Ž .Iterated application of Theorem 9.5.1 of DeGroot 1970, p. 167 tells us
that if all relevant variables are independent and normal then the Bayesian
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Ž . Ž . Žoptimal summary statistic is y s y q t m q Nt x q Nt x r 1 qa o 1 1 2 2
.t q Nt q Nt , where m, x , and x are the prior and the sample means.o 1 2 1 2

Ž .y1It is clear that the weight w s 1 q t q Nt q Nt of the impulse isa o 1 2
decreasing in sample size N, so the weight w s 1 y w of the evidence isb a

Ž . Ž . y1increasing in N. Finally, let G s t q Nt r Nt s t rt q N t rto 1 2 1 2 o 2
be the weight of the older evidence relative to the ‘‘new’’ evidence. Then G
decreases in N, although the effect is relatively weak when priors are
imprecise.

The static model should not be taken literally. Players may not have the
sophistication to use Bayes’ theorem, and even sophisticated players may
not know enough about other players’ beliefs, decision rules, and payoffs
to use a correct likelihood function. Nor are the distributional assumptions
satisfied in laboratory data. Yet we believe that the comparative statics of
the simple model capture the natural response of most humans to in-
creases in the quality of information. If so, we obtain the following
predictions when we take the sample size N as a proxy for the quality of
information.

v The evidence weight b in the three-parameter empirical model, like
w in the static model, will increase when the quality of informationb

improves.
v The learning parameter g in the three-parameter empirical model,

like G in the static model, will decrease when the quality of information
improves. This effect should be weaker since the impact of N on G dies
out as we increase the number of periods or decrease the prior precision.
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