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finite-sample critical values are a function of both the sample size and the
lag truncation parameter. Response surface estimates of the finite-sample
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I. Introduction
Results from standard unit-root tests, such as the augmented
Dickey-Fuller test, 1indicate that economic time bseries are typically
characterized by unit-root peréiStence, The prevalence of‘the findings is met
with a growing concern about the aﬁility ofkthese‘tests to find stationarity
even when a series abtually has no unit root. Stock (1991), for example, show
that the ADF test has little power to discriminate between the unit-root null
hypothesis and local stationary alternatives. The underlying problem is that,
since unit-root nonstationarity is often maintained as the null hypothesis,
one cannot reject it unless statistical evidence strongly suggests otherwise.
Kwiakowski, Phillips, Schmidt, and Shin (1992) recently propose a
procedure, called the KPSS test, for testing for a unit root. This procedure
tests the stationary null hypothesis against the unit-root alternative. The
KPSS test allows examination Qf the persistence issue from a perspective
complementary to standard unit-root tests. The stationary hypothesis has the
Vbenefit of a doubt in the former case, whereas the unit-root hypothesis enjoys
such benefit in the latter case. Because of this basic difference in the test
design, the KPSS test and conventional unit-root tests may yield additional
useful information on -data persistence when their results are interpreted
together. For instance, if the ADF test fails to reject the unit—foot null and
the KPSS test rejects its stationary null, the results will represent strong
evidence for a unit-root process. If the two types of tests both fail to
reject their respective null hypotheses, on the other hand, the results will
indiéate that the data are not sufficiently informative regarding the presence
or absence of a unit root. These two testing approaches thus complement one

another; together they can provide more informative inferences than either



test can do alone. Recent studies employing both stationarity and unit tests
were, for example, Cheung, Chinn and Tran (1995) and Cheung and Chinn
(forthcoming).

Kwiakowski et al. (1992) derive the asymptotic distributions for two KPSS
statistics — one .has a level-stationary null and the other has a
trend-stationary null. By approximating the asymptotic distributions in
simulation, asymptotic critical wvalues for the‘ two KPSS - statistics are
provided in Table 1 of their paper. Empirical applications of the tests
encounter two potentialvproblems, however. One is related to the relevance and
accuracy of the asymptotic critical values, given that empirical applications
necessarily deal with finite-sample data. If the finite-sample critical values
are different from the asymptotic ones, using the latter will bias the KPSS
tests toward rejecting the null of stationarity either too often or too
infrequently. The second issue concérns the choice of the lag truncation
parameter, which has to be determined to compute the heteroskedasticity and
autocorrelation consistent vériance estimator. Under appropriate conditions,
the asymptotic critical values for the KPSS statistics should not depend on
the.lag truncation parameter. In finite samples, nonetheless, the choice of
lag may affect the appropriate critical values.

‘Based on response surface analysis, this study illustrates the effects of
the sample size and the lag truncation specification on the finite-sample
critical values of the two KPSS statistics. To account for both effects
directly, the finite-sample critical values for a wide range of sample sizes
andl lag truncation parameters are summarized in a few response surface
equations.

The two KPSS statistics are described in the following section. Section



IIT discusses the Monte Carlo design and the results of response surface

estimation. Concluding remarks are given in the last section.

II. The KPSS Test

A time series {Yt}t=1,.“,T is considered to have three components: a
deterministic term, a random walk, and a stationary error. The stationary null
hypothesis is specified as the variance of errors in the random walk component
being equal to =zero. The time series is differencé—stationary under the
alternative. Two possible null hypotheses are allowed for: level- and
trend-stationary. Under the trend-stationary null, the deterministic term has
a time trend component.

The KPSS statistics-aré conducted based on the least squares residuals
from regressing Y on the deterministic term. For the level-stationary null, we
first obtain the residual et = Yt - ?, Qhere Y is the mean. The KPSS
statistic, %u, is given by
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where the St is the partial sum process of {et} defined by

St = Z :=1 s : | (2)

and s2(£) is the serial correlation and heteroskedasticity consistent variance

estimator given by (see Newey and West, 1987)
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Following Kwiakowski et al. (1992), the optimal weighting function w(s,?) =1
- s/(1+¢) is used, which guarantees the nonnegativity of s®(£). The null of
level-stationarity is rejected in favor of the unit-root alternative when %

is larger than the appropriate critical value.

A similar procedure is employed to construct the KPSS statistic for the



trend-stationary null hypothesis, with the exception that the residual e, is
obtained from regressing Yt on a constant and a time trend. The resulting
étatistic is labelled %T.

The lag truncation parameter, £, in equation (3) is a choice parameter. A
necessary condition for the consistency of s°(8) under the null is £ — » as

T — w. After considering a few {z-rules, which set ¢ e

INT[z(T/100) " "1,

Kwiakowski et al. (1992) suggest the {£8-rule provides a good compromise

between size and power.

ITII. Finite-Sample Critical Values

The response surface methodology is applied to estimate the fiﬁite—sample
critical values of the two KPSS statistics. In general, response surface
analysis examines the response of a variable, called the response variable, to
systematic changes in a set of control variables. The interactions between the
response and control variables are explored via Monte Carlo experiments. The
information from the resulting experimental data is summarized wusing
computationally simple response surface equations. Early econometric
applications of the respoﬁse surface technique include Hendry (1979) and
Hendry and Harrison (1974). Hendry (1984) provides an excellent review on the
use of response surface analysis in econometrics. Some recent applications are
Cheung and Lai (1993), Ericsson (1991), and MacKinnon (1991).

In this study, the response variable is the finite-sample critical value
and the control variables are the sampie size T and lag truncation parameter
2. A Monte Carlo experiment, covering 371 combinations of T and £ with T =
{30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 55, 60, 65, 70, 75, 80, 85, 90,

95, 100, 120, 150, 200, 250, 300, 350, 400, 450, 500} and £ = {0, 1,



212), is used to generate data for estimating the response surface equations.
In each given (T,8)-experiment, the 10%, 5%, and 1% finite-sample critical
' values are all calcu}ated directly as quantiles of the empirical distribution
based on 20,000 replications.

The data generating process is

Y =¢, ‘ (4)
where €, is an IIDN(0,1) error term. Sample series of T + 50 observations are
first generated and then only the last T observations are used in the
simulation. The routines RAN3 and GASDEV of Press et al. (1992) are used to
generate the pseudo-random normal variates.

A part of the response surface analysis involves the choice of the
functional form for the response surface equation. Although the critical
values are expected to be dependent on T and £ in finite samples, they should
approach their theoretical asymptotic levels for any given 2 as T increases to
infinity. This 1is a ﬁseful guideline for specifying a response surface
equation. The response surface estimation results reported in Table 1 are
based on the following regression equation:

CR,,=a+ )’ B, (/T + Y%y D e, ' (5)
CRLE is the critical value estimate for a sample size T and lag truncation
parameter 2 from the Monte Carlo simulation, and ST,Z is the error term. The
terms involving 1/T and &/T capture the effects of the sample size and the lag
truncation parameter, respectively. Since these two terms go to zero as T
approaches infinity, the intercept « can be interpreted as an estimator of the
asymptotic critical value.

Functional forms other than (5) were also explored. The additional

specifications considered include (1) more general polynomial equations that



i+1/2 i+1/2

incofporate (1/T) and (&/T) , (2) the replacement of T-f with T, and

(3) the use of CRTJ/CRm as the left-hand-side variable, where CRm is the
asymptotic critical value from Kwiakowski et al. (1992). However, all these
different spécifications fail to yield better explanatory power than equation
(5).

Six response surface equations are presented in Table 1 for the two KPSS
statistics. The polynomial orders r and s are determined by their explanatory
power. r = 2 and s = 1 are selected for the KPSS ﬁ“‘statistic, and r = 2 and s
= 3 for the KPSS %r statistic. Both the 1/T and E/Tvvariables/are significant,
as evidenced by the heteroskedasticity consistent sfandard errors reported
below the coefficient estimates. The R® measure indicates that these
specifications describe thé data pretty well. The R® s are ﬁostly larger than
0.90. The only exception is the fitted response surface equation for the 10%
critical values of the KPSS ﬁ” sfatistic. For this case, the simulation
experiment is repeated with 30,000 replications for re-estimating the
corresponding response surface regression. The resulting explanatory power 1is
very similar to that reported in Table 1. The low R® result may indicate that
the 10% critical values of the KPSS ﬁ“ statistic display not much variation
with respect to T and £.

On the other hand, the other measures of data fit consistently éhow that
'the six response surface equations capture the data information very well. The
standard error of the regression (¢) is in the narrow range of .0007 to .0155.
The maximum and the mean of absolute estimated errors (Max|;L£| and IgL£|)
are also very small. We observe that the M§x|;L£| is usually assocliated only

with a small T and large .

The a-estimates are fairly close to the asymptotic critical values given



in Kwiakowski et al. (1992). The 10%, 5%, and 1% critical values derived from
the asymptotic distributions are, respectively, .347, .463, and .739. for the
level-stationary null hypothesis and .119, .146,‘ aﬁd .216 for the trend-
stationary null. The corresponding values from the ' response surface
regressions are .348, .462, and .738 for the former case and .119, .148, and
.218 fér the latter case. The close match in estimates further illustrates the
ability of the response surface equations to model the critical values of the

two KPSS statistics.

IV. Summary

The behavior of the finite-sample cfiticélrvalues of two KPSS statistics
has been examined, with a special focus on théir potential dependence on not
only the simple size but also the lag truncation parameter in these tests. The
latter type of dependence has generally been ignored in previous work. In this
study, response surface analysis is used‘ to invéstigate such possible
dependence. The results show that both the sample size and the lag truncation
parameter can systematically affect the finite-sample critical values for the
KPSS test. The response surface equations are also provided, which can be used
to combute approximate finite-sample critical values that correct. for the

sample size and lag truncation parameter effects.
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*
Table 1. Response Surface Equation

KPSS %“ Test KPSS %T Test

10% 5% 1% 10% 5% 1%

o .348 .426 .738 119 148 218
(.001) (.001) (.003) (.000) (.000)  (.000)

B, -.281 -.361  -2.200 ~.040 -.199 -.730
(.103) (.132) (.487) (.017) (.025) (.053)

B, 10.527 4.947  41.001 3.826 6.033 14.861
(2.736)  (3.608) (14.111) (.523) (.726)  (1.559)

7, -.048 -.362  -1.493 -.021 -.132.  -.532
(.005) (.008) (.035) (.003)  (.007) (.015)

7, 267 . 246 . 642
(.037) - (.075) (.158)

7, ' 1.220 1.977  4.228
(.100) (.229) (.474)

R® .248 .932 .951 .989 .949 .988
- .0035 .0045 .0156 . 0007 .0010 .0021
Max|éT . . 0089 .0100 ~ .0429 .0020 .0032 .0072
|éT g .0026 .0036 .0120 .0006 .0008 .0016

The response surface equation is given by equation (5). The KPSS %“ test
has the null hypothesis of level-stationarity, while the KPSS %r test has
the trend-stationary null. Both tests have difference stationarity as the

alternative hypothesis. & represents the standard error of the

regression. Max{éTel and |£T£| correspond to the maximum and the mean
of the absolute estimated errors. Heteroskedasticity consistent standard

errors are given in parentheses.
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