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Problem 1

(a) The log-likelihood is

l =

n∑
i=1

[
−1

2
log(2πσ2)− 1

2σ2
(yi − µi)2

]
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µi)2

(b) Given µi = µ, we choose µ̂ to maximize the log-likelihood, i.e.,

max
µ̂

l = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ̂)2

First-order condition implies that

1

σ2

n∑
i=1

(yi − µ̂) = 0

which simplifies to

nµ̂−
n∑
i=1

yi = 0

Therefore, the maximum likelihood estimate for µ is

µ̂ =
1

n

n∑
i=1

yi

i.e., the arithmetic mean of outcomes.

Problem 2

(a) First, note that f ′ = 3(ex − 2)2ex, therefore, we use

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

(exi − 2)3

3(exi − 2)2exi
= xi −

exi − 2

3exi
= xi +

2

3
e−xi − 1

3

to iterate for solution.1 The code for function is:

NR<-function(x){

counter <- 1

while( abs(-1/3+2*(exp(-x))/3)>1e-10 & counter<=300000 ){

x <- x-1/3+2*(exp(-x))/3

counter <- counter+1

}

x

}

Note that, the condition abs(-1/3+2*(exp(-x))/3)>1e-10 represents |xi+1 − xi| > 0, which indicates

that an additional iteration does not refine the value of x.

Then, simply by typing NR(0) we will get the answer 0.6931472.

1Of course you may use the original expression. However, using simplified equation will accelerate the computation and

make it more precise.
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(b) Now, f(x) = (ex − 2)n, so f ′ = n(ex − 2)n−1ex. Similar to Part (a), the NR iteration is

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

(exi − 2)n

n(exi − 2)n−1exi
= xi −

exi − 2

3exi
= xi +

2

n
e−xi − 1

n

We modify the interation function in R so that n enters as an argument. Further, the returning value now

(c(x,counter)) is a vector that includes both the solution and the number of iteration.

NR<-function(x,n){

counter <- 1

while( abs(-1/n+2*(exp(-x))/n)>1e-10 & counter<=30000){

x <- x-1/n+2*(exp(-x))/n

counter <- counter+1

}

c(x,counter)

}

By entering from NR(0,2) to NR(0,8), you will see

n Solution Number of Iterations

2 0.6931472 32

3 0.6931472 53

4 0.6931472 74

5 0.6931472 94

6 0.6931472 114

7 0.6931472 133

8 0.6931472 153

Notes: depending on your criteria, you may get different number of iterations.

Problem 3

(a) We use Poisson regression to specify the relation between real wage and our attributes of interest. By

running the following code

library(foreign)

d<-read.dta("D:/org_example.dta")

ds<-subset(d,state=="CA" & year==2013)

poissonreg<-glm(rw~educ+female+age+wbho,ds,family="poisson"(link="log"))

summary(poissonreg)

You will get the result

Call:

glm(formula = rw ~ educ + female + age + wbho, family = poisson(link = "log"),

data = ds)

Deviance Residuals:

Min 1Q Median 3Q Max

-9.9092 -1.8621 -0.6145 0.9679 25.9487

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.2051037 0.0151662 145.40 <2e-16 ***

educHS 0.3397354 0.0125034 27.17 <2e-16 ***

2



educSome college 0.4720058 0.0122888 38.41 <2e-16 ***

educCollege 0.9353610 0.0123980 75.44 <2e-16 ***

educAdvanced 1.1797471 0.0126980 92.91 <2e-16 ***

female -0.1918608 0.0050182 -38.23 <2e-16 ***

age 0.0111549 0.0001857 60.08 <2e-16 ***

wbhoBlack -0.2713582 0.0129974 -20.88 <2e-16 ***

wbhoHispanic -0.1710364 0.0067647 -25.28 <2e-16 ***

wbhoOther -0.0875031 0.0066407 -13.18 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 83415 on 6840 degrees of freedom

Residual deviance: 50183 on 6831 degrees of freedom

(6948 observations deleted due to missingness)

AIC: Inf

Number of Fisher Scoring iterations: 5

Given other variables fixed, a female earns 19.2% less than a male, given other factors fixed.

Notes: some students replace NA in outcomes with 0 and get a different result (around 30%), or directly

calculate E [Y |female = 1]− E [Y |female = 0] rather than the marginal effect. They are also correct.

(b) Here is the LM test. Note that the variable wbho includes four choices, thus the degree of freedom is 3.

poissonreg2<-glm(rw~educ+female+age,ds,family="poisson"(link="log"))

LR<-(poissonreg2$deviance-poissonreg$deviance)

chi_crit<-qchisq(.95, df=3)

ifelse(LR>chi_crit,"Reject the restrictions", "Fail to reject the restrictions")

The null hypothesis is rejected at 95% significance level, i.e., ethnicity does play a role in wage outcomes.

(c) Using the regression from part (a), we use the following code:

ds$glm_predict<-predict(poissonreg,newdata=ds,type="response")

plot(density(ds$rw,na.rm=TRUE),lwd=1.5,main="Real wages (black) vs Predicted Real Wages (blue)",

xlab="Real Wages")

lines(density(ds$glm_predict,na.rm=TRUE),lwd=2,col="blue")

The output is in the figure below. Here, we see that while the distributions of actual values and predicted

values are pretty similar, the mode of the predicted values is skewed to the right a bit. This is because

there are some very high wages in the data, which pull up the average from zero. However, the independent

variables do not have sufficient variation to explain these high values, so the regression compensates by

increasing the predicted value of other observations so that the means are the same for both predicted and

actual values.

3



0 50 100 150 200 250

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

Real wages (black) vs Predicted Real Wages (blue)

Real Wages

D
e

n
si

ty

Problem 4

(a)

d<-read.dta("D:/org_example.dta")

ds<-subset(d,state=="CA" & year==2013)

ds$logrw<-log(ds$rw)

ds$loghourslw<-log(ds$hourslw)
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dsfull<-ds[complete.cases(ds$rw & ds$hourslw & ds$logrw & ds$loghourslw),]

fit.loess1 <- loess(dsfull$logrw~dsfull$hourslw,span = 1,degree= 2)

x1=seq(min(dsfull$hourslw),max(dsfull$hourslw),0.01)

plot(x1,predict(fit.loess1,x1),col = "black",xlab="Hours worked",ylab="Log real wage")

fit.loess2 <- loess(dsfull$logrw~dsfull$loghourslw,span = 1,degree= 2)

x2=seq(min(dsfull$loghourslw),max(dsfull$loghourslw),0.01)

plot(x2,predict(fit.loess1,x2),col = "black",xlab="Log hours worked",ylab="Log real wage")
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The

relation between hours worked and log wage exhibits bell shape: when working hours is less than about 65

per week, the log hourly wage increases with working hours, but when working hours is over 65 per week,

the log hourly wage decreases with working hours. However, if we estimate the relation between log hours

worked and log wage, we find a positive and proportional relation.

(b) Using the regression from part (a), we use the following code:

gamresults<-gam(ds$logrw ~s(ds$hourslw)+educ+age, data=ds)

summary(gamresults)

plot(gamresults,se=TRUE,rug=FALSE,terms="s")

abline(h=0)

We find that when the working hours is between 5 and 35, the predicted log wage is significantly lower than

average, and when the working hours is between 40 and 70, the predicted log wage is significantly higher

than average.
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(c)

small<- data.frame(dsfull$logrw,dsfull$hourslw)

for(h in 1:20){

for(i in 1:nrow(small)){

smalldrop<-small[i,]

smallkeep<-small[-i,]
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fit<-loess(small$logrw~small$hourslw,smallkeep, family="gaussian",span=(h/20), degree=1)

dropfit<-predict(fit,smalldrop,se=FALSE)

sqrerr<-(smalldrop$logrw-as.numeric(dropfit))^2

if(i*h==1){results<-data.frame(h,i,sqrerr)}

if(i*h>1){results<-rbind(results,data.frame(h,i,sqrerr))}

} }

tapply(results$sqrerr,results$h,FUN=sum,na.rm=TRUE)

We find the optimal span is 0.65 in this case.
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